﻿ 基于RINSIM仿真平台的汽水分离再热器系统动态仿真
«上一篇
 文章快速检索 高级检索

 应用科技  2020, Vol. 47 Issue (2): 93-97  DOI: 10.11991/yykj.201905012 0

引用本文

NIE Xiaoqiang, LIU Youkuo, AI Xin, et al. Dynamic simulation of the moisture separator and reheater system on RINSIM platform[J]. Applied Science and Technology, 2020, 47(2): 93-97. DOI: 10.11991/yykj.201905012.

文章历史

Dynamic simulation of the moisture separator and reheater system on RINSIM platform
NIE Xiaoqiang, LIU Youkuo, AI Xin, JIANG Liping
Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001, China
Abstract: In order to simulate the working process and thermal characteristics of the Moisture Separator and Reheater (MSR) system in the real-time, accurate and full working condition, this paper adopts the modeling method of RINSIM simulation platform to establish the real-time dynamic simulation model of the moisture separator and reheater (MSR) system. Based on the established model, data of the typical steady operating condition and dynamic operating condition are analyzed. The results show that the system model is consistent with the actual system characteristics, and dynamic response characteristics within the system can be accurately reflected, verifying that the model is accurate and reliable and meet the demand of simulation.
Keywords: nuclear safety    MSR system    dynamic simulation    RINSIM    gas-liquid two-phase flow    compressible flow network    incompressible flow network    conductance

1 仿真对象

2 数学模型

RINSIM是武汉核动力运行研究所研发的大型仿真平台，具有强大的建模功能，可以对两相流进行计算，同时也考虑了气体中可能出现的多组态成分，如O2、H2、N2及部分放射性元素等。对流网进行计算时，其基本数学模型为质量守恒、能量守恒、动量守恒及浓度平衡等方程，并用矩阵进行求解[11]。本系统采用的数学模型是基于以下假设建立的：

1）整个节点的参数取节点混合物的参数；

2）蒸汽和不凝气组成的混合物为理想气体混合物，蒸汽与不凝气的常数根据蒸汽的真实性质进行不断更正；

3）混合物看作是近似的均匀流，不考虑滑移；

4）蒸汽、不凝气与水的混合物是饱和的，蒸汽与不凝气的温度都是在蒸汽分压力下的饱和温度；

5）单个再热器内的换热管线简化为单块换热板的传热。

 $\frac{{{\rm{d}}{m_i}}}{{{\rm{d}}\tau }} = \sum\limits_i {{G_{ij}}}$ (1)
 $\frac{{{\rm{d}}\Bigg({m_i} \cdot \Bigg({h_i} - \dfrac{{{p_i}}}{{{\rho _i}}}\Bigg)\Bigg)}}{{{\rm{d}}\tau }} = - \sum\limits_i {{G_{ij}}} \cdot h + {Q_i} + {R_i}$ (2)
 $\frac{{{\rm{d}}({m_i} \cdot C_i^k)}}{{{\rm{d}}\tau }} = - \sum\limits_i {{G_{ij}}} \cdot C + J$ (3)
 $\frac{L}{S} \cdot \frac{{{\rm{d}}G}}{{{\rm{d}}\tau }} + \xi \cdot \frac{{{G^2}}}{{2{S^2} \cdot \rho }} - \Delta p' - {k_1}{n^2} - {k_2}nG - {k_3}{G^2} = 0$ (4)

 $\Delta p' = \Delta p + \rho \cdot g \cdot \Delta z = {p_i} - {p_j} + \rho \cdot g \cdot \Delta z$ (5)

${A^2} = {S^2}/\xi$ ，求解式（4）可得：

 $\begin{split} G = & \Bigg(\Bigg(2{A^2}\rho \Bigg(\Delta p' + \dfrac{{{G^c}L}}{{S\Delta \tau }} + {k_1} \cdot {n^2}\Bigg)\Bigg(1 - 2{k_3}{A^2}\rho \Bigg) + \Bigg(\dfrac{{\rho {A^2}L}}{{S\Delta \tau }} - \\ & {{{k_2}\rho {A^2}n\Bigg)^{2}{\Bigg)^{{\frac{\scriptstyle{1}}{\scriptstyle{2}}}}} - \dfrac{{\rho {A^2}L}}{{S\Delta \tau }} + {k_2}\rho {A^2}n\Bigg)} \Bigg/ {\Bigg(1 - 2{A^2}\rho {k_3}\Bigg)}} \end{split}\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ (6)

 $G = {G^c} + \frac{{\partial G}}{{\partial {p_i}}} \cdot \frac{{{\rm{d}}{p_i}}}{{{\rm{d}}\tau }} + \frac{{\partial G}}{{\partial {p_j}}} \cdot \frac{{{\rm{d}}{p_j}}}{{{\rm{d}}\tau }} + {\Bigg(\frac{{\partial G}}{{\partial \rho }} \cdot \frac{{\partial \rho }}{{\partial p}} \cdot \frac{{{\rm{d}}p}}{{{\rm{d}}\tau }}\Bigg)_{i,j}}$ (7)

 ${V_i} \cdot \frac{{\partial \rho }}{{\partial {p_i}}} \cdot \frac{{\partial {p_i}}}{{\partial \tau }} = - \sum {{G_{i,j}}}$ (8)

 $\Bigg(k \cdot (1 - \varphi ) + {V_i} \cdot \frac{{\partial \rho }}{{\partial {p_i}}}\Bigg) \cdot \frac{{\partial {p_i}}}{{\partial \tau }} = - \sum {{G_{i,j}}}$ (9)

 $\begin{split} & \Bigg(\frac{{\partial G}}{{\partial \rho }} \cdot \frac{{\partial \rho }}{{\partial p}} + k \cdot (1 - \varphi ) + {V_i} \cdot \frac{{\partial \rho }}{{\partial {p_i}}}\Bigg) \cdot \frac{{{\rm{d}}{p_i}}}{{{\rm{d}}\tau }} + \\ & \quad \frac{{\partial G}}{{\partial {p_i}}} \cdot \frac{{{\rm{d}}{p_i}}}{{{\rm{d}}\tau }} + \frac{{\partial G}}{{\partial {p_j}}} \cdot \frac{{{\rm{d}}{p_j}}}{{{\rm{d}}\tau }} = - \sum {G_{ij}^c} \end{split}$ (10)

3 汽水分离再热器系统建模过程 3.1 仿真系统初步设计

1）在建模前，首先需要对系统图进行仿真范围划分，确定需要仿真的设备、部件及管道等，并将电厂系统划分为仿真系统；

2）对仿真系统进行节点划分，并对系统模型进行部分简化与等效；

3）确定调试时的稳态工况，并对系统中各个节点及边界进行压力划分，计算出管线流导及摩擦系数；

4）流网及控制图建模，并进行调试。

3.2 仿真图建立

3.3 流导计算

3.4 模型调试

4 结果分析 4.1 稳态工况结果分析

4.2 动态工况结果分析 4.2.1 降功率工况

4.2.2 疏水泵故障工况

5 结论

1)稳态工况下的汽水分离再热器系统的主要参数与设计值吻合，符合仿真要求；

2)降功率及切换备用疏水泵动态工况下的关键节点参数变化趋势与理论符合较好, 为操作人员以及后续该堆型的动态参数变化验证提供理论依据；

3) 汽水分离再热器内部的动态流场仍需进一步仿真计算。

 [1] 吕崇德. 大型火电机组系统仿真与建模[M]. 北京: 清华大学出版社, 2002. (0) [2] 陈斌, 黄邦西. 核电汽轮机再热器的建模研究[J]. 仪器仪表与分析监测, 2012(1): 13-15. DOI:10.3969/j.issn.1002-3720.2012.01.005 (0) [3] 张厚明, 姚远, 段天英, 等. 钠冷快堆中间回路建模仿真及流量控制研究[J]. 原子能科学技术, 2013, 47(12): 2283-2287. DOI:10.7538/yzk.2013.47.12.2283 (0) [4] 魏先英, 高树强. 核电汽轮机汽水分离再热器(MSR)疏水箱设计参数的选取[J]. 发电设备, 1988(1): 16-20. (0) [5] 钱玉刚, 高颖. MSR疏水箱水位控制故障分析及改进[J]. 山东工业技术, 2015(1): 40, 49. (0) [6] BÜRKHOLZ A, MUSCHELKNAUTZ E. Tropfenabscheider. Übersicht zum stande des wissens[J]. Chemie ingenieur technik, 1972, 44(8): 503-507. DOI:10.1002/cite.330440803 (0) [7] PARK H S, CHOI N H, CHANG S K, et al. Experimental study on a two-phase critical flow with a non-condensable gas at high pressure conditions[J]. International journal of multiphase flow, 2007, 33(11): 1222-1236. DOI:10.1016/j.ijmultiphaseflow.2007.05.008 (0) [8] PALADINO D, AUBAN O, HUGGENBERGER M, et al. A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS)[J]. Nuclear engineering and design, 2011, 241(11): 4551-4561. DOI:10.1016/j.nucengdes.2010.11.022 (0) [9] 张琴舜, 邹文进, 蔡日基, 等. 再热器动态数学模型和仿真研究[J]. 动力工程, 2001, 21(3): 1237-1240. (0) [10] MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions: experimental studies of the deformation and breakup process[J]. International journal of multiphase flow, 1995, 21(2): 151-173. DOI:10.1016/0301-9322(94)00069-V (0) [11] ANTAR M A, ZUBAIR S M. The impact of fouling on performance evaluation of multi-zone feedwater heaters[J]. Applied thermal engineering, 2007, 27(14/15): 2505-2513. (0) [12] ALMAZROUEE A I, AL-FADHALAH K J, ALHAJERI S N, et al. High temperature corrosion of martensitic steel of reheater pipes in a desalination power plant[J]. Engineering failure analysis, 2018, 85: 89-96. DOI:10.1016/j.engfailanal.2017.12.003 (0)