﻿ 基于SOLAS 2009的船舶概率破损稳性评估研究
«上一篇
 文章快速检索 高级检索

 应用科技  2018, Vol. 45 Issue (5): 16-21  DOI: 10.11991/yykj.201806002 0

### 引用本文

LU Shuping, BIAN Jinning, CHEN Miao. Study on ship stability probability damage stability evaluation based on SOLAS 2009[J]. Applied Science and Technology, 2018, 45(5), 16-21. DOI: 10.11991/yykj.201806002.

### 文章历史

1. 中国国际工程咨询有限公司，北京 100037;
2. 哈尔滨工程大学 船舶工程学院，黑龙江 哈尔滨 150001

Study on ship stability probability damage stability evaluation based on SOLAS 2009
LU Shuping1, BIAN Jinning2, CHEN Miao2
1. China International Engineering Consulting Company, Bejing 100037, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: Because disaster conditions such as bad sea conditions, stranding, bottoming out, and collisions are unavoidable, it is necessary to perform calculation and analysis of the damage stability at the initial stage of ship design. SOLAS 2009 is a method based on probabilistic calculation of damage stability, which can more accurately assess the probability of flooding risks in each cabin of the ship. Compared with the deterministic method, SOLAS 2009 has higher calculation accuracy. Based on the requirements of SOLAS 2009, maxsurf was used to build a numerical simulation model, define compartments, and achieve the subdivision index by the combination of different compartment damages, so as to evaluate the probabilistic damage stability of the vessel. Finally, based on the calculation results, the rationality of compartment division was revised to improve the ship's resistance to sinking.
Keywords: damage stability    SOLAS 2009    maxsurf    subdivision index    loading conditions    cabin division    probability    anti-sinking

1 SOLAS 2009公约

SOLAS 2009中采用了概率评估的方法来衡量船舶的破舱稳性是否达到要求，主要含有参数 $R$ $A$ $R$ 为船舶需要的分舱指数，它是通过大量的海损事故总结的公式， $A$ 为能达到的分舱指数，若 $A \geqslant R$ ，且在相应装载下的 $A$ 也满足要求时，称此船的破舱稳性满足要求。

1.1 要求的分舱指数

 $R = 1 - \frac{{128}}{{{L_S} + 152}}$

 $R = 1 - \frac{1}{{1 + \displaystyle\frac{{{L_S}}}{{100}} \times \displaystyle\frac{{{R_0}}}{{1 - {R_0}}}}}$

1.2 达到的分舱指数
 $A = 0.4{A_s} + 0.4{A_p} + 0.2{A_l}$
 $AC = \sum\limits_{}^{} {P_i \cdot S_i \cdot V_i}$

2 破损区域划分细则

2.1 纵向区域划分

 ${J_{\max }} = 10/33$

 ${J_{kn}} = 5/33$

${J_{kn}}$ 处累积概率：

 ${p_k} = 11/12$

 ${l_{\max }} = 60 \;{\rm{m}}$

 ${L^*} = 260 \;{\rm{m}}$

$J = 0$ 时概率密度：

 ${b_0} = 2\left( {\frac{{{p_k}}}{{{J_{kn}}}} - \frac{{1 - {p_k}}}{{{J_{\max }} - {J_{kn}}}}} \right)$

${L_S} < {{L^{*}}}$ 时：

 ${J_m} = \min \left\{ {{J_{\max }},\frac{{{l_{\max }}}}{{{L_s}}}} \right\}$
 ${J_k} = \frac{{{J_m}}}{2} + \frac{{1 - \sqrt {1 + (1 - 2{p_k}){b_0}{J_m} + \displaystyle\frac{1}{4}b_0^2J_m^2} }}{{{b_0}}}$

${L_S} > {{L^{*}}}$ 时：

 ${J_k} = \frac{{{J_m}}}{2} + \frac{{1 - \sqrt {1 + (1 - 2{p_k}){b_0}{J_m} + \displaystyle\frac{1}{4}b_0^2J_m^2} }}{{{b_0}}}$
 ${J_m} = \frac{{J_m{{^*}} \cdot {L{{^*}}}}}{{{L_s}}}\;{J_k} = \frac{{J_k{{^*}} \cdot {L{{^*}}}}}{{{L_s}}}$
 ${b_{11}} = 4\frac{{1 - {p_k}}}{{\left( {{J_m} - {J_k}} \right){J_k}}} - 2\frac{{{p_k}}}{{J_k^2}}$
 ${b_{21}} = - 2\frac{{1 - {p_k}}}{{{{\left( {{J_m} - {J_k}} \right)}^2}}}$
 ${b_{22}} = - {b_{21}}{J_m}$

 $J \leqslant {J_k}:p\left( {{x_1},{x_2}} \right) = {p_1} = \frac{1}{6}{J^2}\left( {{b_{11}}J + 3{b_{12}}} \right)$
 $\begin{array}{l}J \! > \! {J_k}:p\left( {{x_1},{x_2}} \right) \! = \! {p_2} \! = \! - \displaystyle\frac{1}{3}{b_{11}}J_k^3 \! +\! \displaystyle\frac{1}{2}\left( {{b_{11}}J - {b_{12}}} \right)J_k^2 + {b_{12}}J{J_k} - \\\qquad \displaystyle\frac{1}{3}{b_{21}}\left( {J_n^3 - J_k^3} \right) + \displaystyle\frac{1}{2}\left( {{b_{21}}J - {b_{22}}} \right)\left( {J_n^2 - J_k^2} \right) + {b_{22}}J\left( {{J_n} - {J_k}} \right)\end{array}$

 \begin{aligned}& J \leqslant {J_k}:p\left( {{x_1},{x_2}} \right) = \displaystyle\frac{1}{2}\left( {{p_1} + J} \right)\\& J > {J_k}:p\left( {{x_1},{x_2}} \right) = \displaystyle\frac{1}{2}\left( {{p_2} + J} \right)\end{aligned}
2.2 横向区域划分

 $r\left( {{x_{1,}}x_2^{},b} \right) = 1 - \left( {1 - C} \right)\left[ {1 - \frac{G}{{p\left( {{x_1},{x_2}} \right)}}} \right]$

 $G = {G_2} = - \frac{1}{3}{b_{11}}J_0^3 + \frac{1}{2}\left( {{b_{11}}J - {b_{12}}} \right)J_0^2 + {b_{12}}J{J_0}$

 $G = \frac{1}{2} \cdot \left( {{G_2} + {G_1} \; J} \right)$
2.3 水平水密间隔不破损概率 $V$

 $V_m = V(H_{j,n,m,}d) - V(H_{j,n,m} {_{- 1,}}d)$

$(H_m - d) \leqslant 7.8$ 时：

 $V_{(H,d)} = \frac{{0.8(H - d)}}{{7.8}}$

 $V_{(H,d)} = 0.8 + \frac{{0.2((H - d) - 7.8)}}{{4.7}}$
2.4 因数 $S$ 的计算

 ${s_i} = \min \{ {s_{{\rm{intermediate}},i}},{s_{{\rm{final}},i}},{s_{{\rm{mom}},i}}\}$

3 某货船破舱稳性分析实例 3.1 数值计算模型构建

3.2 达到的分舱指数A计算

3种工况的初始数据如表 5所示。

4 破舱稳性分析

2）在最深分舱吃水下，计算获得的A值为0.583 1，满足规范要求。对具体区域结果进行分析可以看出，在工况1中，区域7破损时的全部舱室组合残存概率S全为0，对最终结果A无贡献，因此Z7的舱室划分不合理（1货舱较大，破损后残存概率低）。此时可根据SOLAS 09的要求进行处理。

Z7内的全部舱室沿纵向等分为2个货舱，同时划分为Z7Z8，重新进行计算得到分舱后的计算结果如表 12

5 结论

1) 每个破损组合有至少1个中间过程。二者的 $P$ $r$ $V$ 相同，残存概率 $S$ 不同，若中间过程有更小的 $S$ 时应当用较小的 $S$ 值。

2) 最深分舱吃水下的 $A$ 值较小为0.583 1，刚刚满足要求。而轻盈分舱吃水和部分分舱吃水下的A值较大，为0.972 6。也就是说当船舶的货物装载的越多，此船的破舱稳性越不好。

3）利用SOLAS 2009计算时，要求计算区域内全部的舱室破损。

 [1] 张文广. " 加百利”轮海难救助合同纠纷再审案评析[J]. 法律适用, 2016(8): 42-45. (0) [2] 李世锋. 从客船视角谈大规模海难救助的几点思考[J]. 航海, 2016(6): 53-56. (0) [3] 盛振邦, 杨尚荣, 陈雪深. 船舶静力学[M]. 上海:上海交通大学出版社, 1988. (0) [4] PAPANIKOLAOU A, ELIOPOULOU E. On the development of the new harmonised damage stability regulations for dry cargo and passenger ships[J]. Reliability engineering & system safety, 2008, 93(9): 1305-1316. (0) [5] 马涅采夫H Я. 船舶不沉性理论[M]. 键链, 译. 北京: 国防工业出版社, 1977. (0) [6] 邹梦瑶. 水面舰船破损稳性的概率评估方法研究[D]. 大连: 大连理工大学, 2016. (0) [7] 中国船舶工业集团公司, 中国船舶重工集团公司, 中国造船工程学会. 船舶设计实用手册: 总体分册[S]. 3版. 北京: 国防工业出版社, 2013. (0) [8] 中国船级社, 国际海上人命与安全中国船级社. SOLAS 2009分舱与破损稳性要求实施指南[M]. 北京:人民交通出版社, 2009. (0) [9] 王侨. SOLAS 2009概率破损稳性方法应用研究[D]. 大连: 大连理工大学, 2011. (0) [10] 黄武刚. 基于FORAN的船舶概率破舱稳性计算分析[J]. 中国造船, 2015, 56(S1): 177-184. (0) [11] 周晓明. 基于概率破舱稳性的驳船优化分舱研究[D]. 大连: 大连理工大学, 2006. (0) [12] 陈晓娜. 客滚船概率破舱稳性计算分析[J]. 船舶设计通讯, 2017(2): 24-29. DOI:10.3969/j.issn.1001-4624.2017.02.006 (0)