﻿ 基于LOS法的自航模航迹跟踪控制算法实现
«上一篇
 文章快速检索 高级检索

 应用科技  2018, Vol. 45 Issue (3): 66-70  DOI: 10.11991/yykj.201706005 0

### 引用本文

HAN Peng, LIU Zhilin, ZHOU Zecai, et al. Path tracking control algorithm based on LOS method for surface self-propulsion vessel[J]. Applied Science and Technology, 2018, 45(3), 66-70. DOI: 10.11991/yykj.201706005.

### 文章历史

1. 哈尔滨工程大学 自动化学院，黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 船舶工程学院，黑龙江 哈尔滨 150001

Path tracking control algorithm based on LOS method for surface self-propulsion vessel
HAN Peng1, LIU Zhilin1, ZHOU Zecai2, TANG Hao1, BAN Liang1, HAO Liulei2
1. College of Automation, Harbin Engineering University, Harbin 150001, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: Aiming at the small self-propelled model in the laboratory environment, the paper discussed how to realize the path tracking quickly, accurately and stably. The problem of path tracking of the self-propelled model was transformed into the heading control problem of the self-propelled model by the Line of Sight algorithm. Via the PID controller, the heading angle of the self-propelled model converged to the desired course angle, so that the self-propelled model continuously headed towards the desired course point. By setting different expected heading points, the path tracking control of the self-propelled model was realized. Subsequently, through the MATLAB simulation, the feasibility was verified. Finally, the algorithm was used for the path tracking of the self-propelled flight in the laboratory environment, a good effect was obtained and the engineering practicability was further verified.
Key words: surface self-propulsion vessel    path tracking    heading control    LOS algorithm    MATLAB simulation    PID controller    expected heading point

LOS算法最大的优点在于其不依赖于被控对象的模型，即可以在模型参数不确定的情况下，或者外界扰动对船模影响较大的环境中设计控制器，完成对目标模型的控制。其次，LOS算法设计简便，抗干扰能力强，控制效果出色也是其被使用的主要因素。因此，对LOS算法的进一步研究和改进对无人艇航迹跟踪控制技术的应用和发展具有重要意义。

1 LOS算法介绍

1.1 航向角的求取

 ${\psi _{{\rm{LOS}}}} = \arctan \left( {\frac{{{y_{k + 1}} - y}}{{{x_{k + 1}} - x}}} \right)$

1.2 LOS法导航方式分析

LOS控制算法可以用于直线航迹跟踪和曲线航迹跟踪，是一种较好的航迹跟踪控制算法。该算法通过引入一个可视距离 $\varDelta$ 来协助完成，原理如图2所示[8]

 ${\alpha _\phi } = {\alpha _k} + \arctan \left( {\frac{{ - e}}{\varDelta }} \right)$

 ${\left( {{x_{k + 1}} - x} \right)^2} + {\left( {{y_{k + 1}} - y} \right)^2} \leqslant R_0^2$

1.3 航向角映射原理

2 基于视线法的PID控制器设计

 $\delta = {k_1}{\psi _e} + {k_2}{\psi _e} + {k_3}\int_0^t {{\psi _e}} {\rm d}t$ (4)

 ${\psi _e} = \psi - {\psi _{\rm LOS}}$ (5)

3 MATLAB仿真结果及分析

4 自航模实验 4.1 自航模系统

4.2 自航模实验分析

5 结论

1) 本文首先通过MATLAB仿真验证LOS法的可行性，仿真结果表明，将LOS法应用于小型自航模航迹跟踪时有良好的控制效果。

2) 在小转角航迹跟踪过程中，跟踪效果良好，而大转角跟踪过程初期，会出现的较小的超调，经过控制算法的调节，最终实现航迹跟踪的效果。在转角过大的情况下，对于航迹跟踪点进行切换时出现的超调，可能使小船完全偏离航向，由于控制器的限制，目前本文并未得到有效减少超调的方法。

3) 在自航模航迹跟踪控制实验中，小船可稳定快速地实现预定航迹的跟踪，表明LOS法可有效应用于实际的水面无人艇控制。

 [1] 金平仲. 船舶喷水推进[M]. 北京: 国防工业出版社, 1986: 41-136. (0) [2] DO K D, PAN J. Global waypoint tracking control of underactuated ships under relaxed assumptions[C]//Proceedings of the 42nd Conference on Decision and Control. Maui, USA, 2003: 1244−1249. (0) [3] DO K D, JIANG Z P, PAN J. Robust global stabilization of underactuated ships on a linear course: state and output feedback[J]. International journal of control, 2003, 76(1): 1-17. DOI:10.1080/0020717021000048233 (0) [4] 李铁山. 船舶直线航迹非线性设计方法[D]. 大连: 大连海事大学, 2005. (0) [5] 于瑞亭. 欠驱动水面船舶的全局镇定控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. (0) [6] PARK W G, YUN H S, CHUN H H, et al. Numerical flow simulation of flush type intake duct of waterjet[J]. Ocean engineering, 2005, 32(17/18): 2107-2120. (0) [7] PARK W G, JANG J H, CHUN H H, et al. Numerical flow and performance analysis of waterjet propulsion system[J]. Ocean engineering, 2005, 32(14/15): 1740-1761. (0) [8] FOSSEN T I, BREIVIK M, SKJETNE R. Line-of-Sight Path following of underactuated marine craft[J]. IFAC proceedings volumes, 2003, 36(21): 211-216. DOI:10.1016/S1474-6670(17)37809-6 (0) [9] 班良. 小型自航模控制系统设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2014. (0) [10] HARVALD S A. Resistance and propulsion of Ships[M]. New York: John Wiley & Sons, 1983: 57-599. (0) [11] 董飞垚, 雷虎民, 周池军, 等. 导弹鲁棒高阶滑模制导控制一体化研究[J]. 航空学报, 2013, 25(9): 2212-2218. (0) [12] 杨震, 王岩, 刘志林. 一种欠驱动船舶编队滑模鲁棒控制方法[J]. 电机与控制学报, 2014, 18(11): 90-96, 105. DOI:10.3969/j.issn.1007-449X.2014.11.014 (0) [13] 朱齐丹, 于瑞亭, 夏桂华, 等. 风浪流干扰及参数不确定欠驱动船舶航迹跟踪的滑模鲁棒控制[J]. 控制理论与应用, 2012, 29(7): 959-964. (0) [14] 金小婷, 杜佳璐, 汤占军. 基于Backstepping的非线性船舶航迹跟踪控制器设计[J]. 科学技术与工程, 2012, 12(13): 3146-3149, 3154. DOI:10.3969/j.issn.1671-1815.2012.13.025 (0) [15] 胡寿松. 自动控制原理简明教程[M]. 2版. 北京: 科学出版社, 2008. (0)