岩石学报  2016, Vol. 32 Issue (10): 3187-3204   PDF    
大别-苏鲁造山带在朝鲜半岛的延伸方式——基于40Ar/39Ar构造年代学的约束
武昱东1, 侯泉林2     
1. 国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037 ;
2. 中国科学院计算地球动力学重点实验室, 中国科学院大学地球科学学院, 北京 100049
摘要: 本文结合野外构造变形特征观测,在朝鲜半岛的不同构造单元采集14件糜棱岩和片麻岩样品进行40Ar/39Ar年代学分析,在此基础上通过对比朝鲜半岛与大别造山带不同构造单元的变形特征,探讨大别苏鲁构造带在朝鲜半岛的东延特征,取得如下认识:朝鲜半岛中部的主要构造带在中生代经历了碰撞阶段(~210Ma)、逆冲推覆(200~150Ma)、造山后伸展阶段(140~90Ma)三个主要的构造过程;从变形期次和变形特征看,临津江构造带与大别造山带的北淮阳构造带、苏鲁构造带北部威海地区具有可比性,沃川构造带与南大别构造带有相似之处;在朝鲜半岛,自临津江带至沃川带构成了较完整的中生代碰撞造山带,即大别-苏鲁造山带的东延部分,原认为的“京畿地块”应属造山带的一部分。
关键词: 大别苏鲁造山带     京畿地块     40Ar/39Ar构造年代学     朝鲜半岛    
The extension of the Dabie-Sulu orogenic belt in Korean Peninsula:Based on 40Ar/39Ar Tectonic chronology.
WU YuDong1, HOU QuanLin2     
1. MLR Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China ;
2. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences;College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In this study, 40Ar/39Ar dating was done on 14 biotites or hornblende mineral separated from mylonites and gneiss in shear belts from different tectonic position of Korean Peninsula. Depending on the deformation characteristics of geological sections and associative tectonic chronology data, comparison was made between Korean Peninsula (include Rimjingang Belt and Okchon Belt) and Dabie-Sulu orogenic belt, and the eastward extension of Dabie-Sulu orogenic belt was discussed. As a result, Rimjingang belt of Korean Peninsula is similar to Beihuaiyang tectonic belt of North Dabie orogenic belt and north of Sulu belt in deformation characteristics and era, and Okchon belt is similar to South Dabie belt in the same ways. Furthermore, three main Mesozoic tectonic event of Korean Peninsula could be recognized such as:Collide Stage (T1,~210Ma), Orogenesis Stage (T2-J3, 200~150Ma), Extensional Stage (K1-2, 140~90Ma). On these bases, the geologic body between Rimjingang belt and Okchon belt is a holonomic Mesozoic orogene, as the eastern extending part of Dabie-Sulu orogenic belt, and "Gyonggi Massif" should be redefined as a part of the orogenic belt.
Key words: Dabie-Sulu orogenic belt     Gyonggi massif     40Ar/39Ar dating     Korean Peninsula    

大别-苏鲁造山带在朝鲜半岛的东延方式是地质学家们十分关注的问题(Hsü et al.,1990; Rogers et al.,2006; Zhai et al.,2007a; Niu et al.,2015)。位于朝鲜半岛中部的两条NE走向的构造带(自北向南依次为临津江构造带、沃川构造带)将其分割成三个地块,从北向南依次为狼林地块、京畿地块和岭南地块(图 1)。大别-苏鲁造山带在朝鲜半岛的延伸方式问题,大致有以下几种观点:1) 认为大别-苏鲁构造带没有经过朝鲜半岛,在黄海一带被一走向NNW的大型右行走滑剪切带切断,然后经朝鲜半岛南面的济州岛向北东延伸(图 1-2),而没有进入朝鲜半岛(Chang,2015; Hao et al.,2006; Ishiwatari et al.,2003; Lee and Lee,2003);2) 认为大别-苏鲁构造带东延后与朝鲜半岛临津江构造带(Rimjingang Belt)特别是涟川杂岩相对应(图 1-3)(Ree et al.,1996; Zhang,1997; 蔡乾忠,1995; 任纪舜,2003),认为后者可能为三叠纪碰撞折返的产物;3) 认为大别-苏鲁构造带东延后与沃川带(Okchon Belt)相对应(图 1-3)。在洪城(Hongsong)一带发现榴辉岩和类似于苏鲁造山带的岩石组合(洪城杂岩)后,该观点得到了进一步支持(Guo et al.,2005; Metcalfe,2006; Oh et al.,2005; Oh and Kusky,2007; Zhai and Liu,2005; Zhai et al.,20052007ab; 徐嘉炜和朱光,1995);4) 认为“京畿地块”(包括临津江带和沃川带)是等同于大别-苏鲁带的造山带而非独立地块(Ernst and Liou,1995; 侯泉林等,2008; Kwon et al.,2009)。Yin and Nie(1993) 认为京畿地块(Gyonggi Massif)作为扬子板块的一部分,插入朝鲜半岛中部,而临津江带和湖南剪切带(Honam shear zone)是中朝板块和扬子板块之间的缝合线,与大别-苏鲁造山带相对应(图 1-4)。Chough et al.(2000) 认为京畿地块随扬子板块一起向北运动,穿插于狼林地块(Rangrim Massif)和岭南地块(Ryongnam Massif)之间。然而从沉积特征上看,京畿地块具有与扬子板块相似的震旦纪-第三纪沉积盖层,而岭南地块却具有与华北板块相似的震旦纪-三叠纪盖层特征。半岛中南部古地磁资料研究结果显示岭南地块晚古生代-早中生代古地磁极与同时代华北板块古地磁极特征相似(Doh and Piper,1994; Uno,19992000);京畿地块西部下中生界Daedong超群古地磁极与华南板块非常一致(Uno,2000)。下扬子、朝鲜半岛中部京畿地块部分地区上、下地壳可能存在归属性差异(Li et al.,2003; 唐贤君等,2010)。此外,Kim et al.(2013) 通过对比朝鲜半岛中南部和华北、扬子板块基底的碎屑锆石年龄组成,得出“京畿地块”的碎屑锆石U-Pb年龄分布特征(0.4~3.6Ga)与扬子板块更为接近,岭南地块的碎屑锆石U-Pb年龄组成(1.8~3.6Ga)与华北相似。前三种模式难以解释上述一系列现象;第四种模式考虑到京畿地块与扬子板块具有相似的基底,所以提出在晚二叠世-早三世叠期间,京畿地块随着扬子板块向北运动穿插在狼林、岭南地块之间,或仰冲于朝鲜半岛的中部,但必要的构造年代学证据相对缺乏。

图 1 朝鲜半岛与中国东部地质简图(据Chough et al.,2000; Ree et al.,2001修改) a-模式1:大别-苏鲁构造带向东没有经过朝鲜半岛(Chang,2015; Hao et al.,2006; Ishiwatari and Tsujimori,2003; Lee and Lee,2003);b-模式2:大别-苏鲁构造带东延后与朝鲜半岛临津江构造带相对应(Ree et al.,1996; Zhang,1997);c-模式3:大别-苏鲁构造带东延后与沃川带(Okchon Belt)相对应(Oh et al.,20052007; Zhai et al.,2005; Zhai and Liu,2005);d-模式4:京畿地块(Gyonggi Massif)作为扬子板块的一部分,插入朝鲜半岛中部(Yin and Nie,1993; Chough et al.,2000) Fig. 1 Geological sketch of Korean Peninsula and Eastern China(modified after Chough et al.,2000; Ree et al.,2001) a-model 1: a collision belt does not exist within the Korean Peninsula(Chang,2015; Hao et al.,2006; Ishiwatari and Tsujimor,2003; Lee and Lee,2003); b-model 2: Rimjingang belt is regarded as extension of the Sulu belt into the Korean Peninsula(Ree et al.,1996; Zhang,1997); c-model 3: Okchon Belt is regarded as extension of the Sulu belt into the Korean Peninsula(Oh et al.,2005; Oh and Kusky,2007; Zhai et al.,2005; Zhai and Liu,2005); d-model 4: The Gyonggi Massif,as part of the Yangtze plate,collided to the smooth southern edge of the Korean Peninsula(Yin and Nie,1993; Chough et al.,2000)

图 2 朝鲜半岛地质概况(据Kim et al.,2013)与采样和剖面位置示意图 Fig. 2 The tectonic framework(after Kim et al.,2013),sample and section distribution in Korean Peninsula

图 3 朝鲜半岛糜棱岩样品显微照片 (a)样品080703-19,片麻岩;(b)样品080703-22,片麻岩;(c)样品080703-24,片麻岩;(d)样品080705-4,花岗糜棱岩;(e)样品 080707-6,辉长岩;(f)样品080707-11,片麻岩.Pl-斜长石;Bt-黑云母;Hbl-角闪石;Qtz-石英 Fig. 3 Microphotographs of mylonites from the Korea Peninsula (a)Sample 080703-19,gneiss;(b)Sample 080703-22,gneiss;(c)Sample 080703-24,gneiss;(d)Sample 080705-4,granitic mylonites;(e)Sample 080707-6,gabbro;(f)Sample 080707-11,gneiss. Pl-plagioclase; Bt-biotite; Hbl-hornblende; Qtz-quartz

图 4 “京畿地块”北缘、南缘和西部样品角闪石、白云母、黑云母坪年龄与等时线年龄 Fig. 4 Age spectra and isochron plots for hornblende,muscovite and biotite samples from northern and southern margin and western part of “Gyonggi Massif”

近年一些新的研究成果为研究朝鲜半岛的东延问题提供了新的证据。侯泉林等(2008) 基于大别-苏鲁构造带和京畿地块一带构造特征的相似,认为在朝鲜半岛,自临津江带至沃川带构成了较完整的中生代碰撞造山带,即大别-苏鲁造山带的东延部分(图 1-1)。Kwon et al.(2009) 研究了“京畿地块”中部的榴辉岩和高压麻粒岩岩石学特征,认为其与苏鲁构造带相似,提出在朝鲜半岛中部存在二叠-三叠纪阿尔卑斯型碰撞造山带。Sajeev et al.(2010) 通过研究临津江带南部麻粒岩的P-T轨迹,认为其在晚三叠世经历了减压和冷却,表明临津江地区和“京畿地块”西部经历的地壳埋深要高于“京畿地块”的东部和南部,上述发现结合洪城地区的榴辉岩特征,揭示“京畿地块”内部存在俯冲作用产物,应作为造山带的一部分。Kim et al.(2011b)通过研究洪城杂岩中的大陆岩浆弧序列、镁铁质火山岩以及含蛇纹石混杂堆积,认为该地区存在俯冲作用,并通过Shrimp U-Pb年代学将其碰撞造山作用约束在早三叠世,这一特征与北大别-桐柏地区相似。Seo et al.(2010) 认为其在洪城杂岩中发现的黑云母花岗岩和正长岩包体等形成于碰撞后,一系列围绕洪城杂岩的研究工作表明该区域可能存在晚古生代至早中生代俯冲-碰撞造山作用(Choi et al.,2009; Cho et al.,2013; Kim et al.,2011ac20122014; Kwon et al.,2013; Lee et al.,2014; Park et al.,2014; Peng et al.,2008; Williams et al.,2009; Yengkhom et al.,2014),此外,地球物理学证据也表明苏鲁构造带向东可能经黄海延入“京畿地块”(Hong and Choi,2012; 岳保静等,2014)。由于洪城杂岩在朝鲜半岛出露位置相对较小,没有构成一个横穿朝鲜半岛的变质带,一度有学者认为其可能是来自朝鲜半岛西缘缝合带拆离的下地壳残片(Zhai et al.,2007b),但构造变形特征表明,洪城地区在晚古生代至中生代期间经历近南北向的挤压缩短,表现为强烈向SSW方向逆冲推覆,与华北扬子板块碰撞拼合事件对应(Yengkhom et al.,2014),因此中生代碰撞拼合缝合线在朝鲜半岛的表现仍为近东西走向。

上述证据表明“京畿地块”与大别苏鲁构造带(特别是北大别杂岩带),存在一定对应关系,那么这套杂岩带中也相应记录了碰撞造山、伸展拆离和岩浆侵入等构造热事件,但该区域相关构造年代学的工作比较匮乏。Oh et al.(2004) 针对沃川构造带中部的变沉积岩和花岗岩的黑云母和白云母进行了K-Ar和40Ar/39Ar年代学研究,获得三组年龄分别为~105Ma,142~194Ma和216~249Ma,其中142~194Ma年龄段数据广泛分布。多名学者在沃川构造带西段洪城一带发现了变质年龄在230Ma左右的高压榴辉岩和类似于苏鲁造山带的岩石组合(Guo et al.,2005; de Jong et al.,2014; Kim et al.,2006a; Oh et al.,2005; Zhai and Liu,2005)。Oh et al.(2004) 认为湖南剪切带中存在SE伸展拆离剪切构造变形,并获得其变形云母的K-Ar同位素年龄为104~138Ma。侯泉林等(2008) 通过研究朝鲜半岛临津江带、沃川带和湖南剪切带构造变形特征,认为其与大别构造带的变形特征有相似之处。相对沃川带研究的深入,朝鲜临津江带和狼林地块对应地区的变形特征和相应的构造变形年龄相对匮乏。本文针对这一问题,在朝鲜半岛选择不同构造部位,尤其是朝鲜半岛北部地区进行有针对性的构造变形分析和样品采集,通过对比大别苏鲁造山带不同构造单元的变形特征,探讨大别苏鲁构造带在朝鲜半岛的东延特征。

1 地质背景

位于朝鲜半岛中部的两条NE走向的构造剪切带(自北向南依次为临津江构造带、沃川构造带)将朝鲜半岛分割成三个地块,从北向南依次为狼林地块、京畿地块和岭南地块(图 2)。

狼林地块(Rangrim Massif)向西延伸到我国的辽吉两省,其下部主要为片麻岩,上部主要为结晶片岩夹角闪岩和大理岩,并有早元古代的镁铁和超镁铁岩(早期)及花岗岩(晚期)侵入。区内褶皱多为EW走向,NE和NW走向构造也有发育(陶国宝,1996)。

临津江构造带(Rimjingang Belt)是一个NEE走向的褶皱冲断带,整体断面南倾,长约100km,宽约l0km,北界自海州,经平康至高城,南界自临津江下游,经涟川至金刚山。该带主要由变形变质的碎屑岩和碳酸盐岩组成,如石英岩、片岩、大理岩、白云岩等(Ri et al.,1990; Cluzel et al.,1990; Cluzel and Cadet,1992; 陶国宝,1996; Paek et al.,1996; Kwon et al.,2009)。Paek et al.(1996) 认为临津江褶皱冲断带的岩石组成相当于“在华北地台上发育的一套古生代沉积”。

京畿地块(Gyonggi Massif)基底主要由京畿变质杂岩组成,包含片麻岩、混合片麻岩、夹片岩、石墨片岩、结晶灰岩和石英岩,同位素年龄2666±40Ma,最老为2925Ma(Kim et al.,2006b; Lee,1987; Lee and Cho,1995; Paek,1993; Sagong et al.,2003)。其上分别被早-中元古代的春川超群和晚元古代的涟川群不整合。春川超群主要由长乐群的变质砾岩、片麻岩、片岩、局部夹石英岩和春城群的石英岩、片岩、片麻岩、结晶灰岩等组成。涟川群(主要为板岩、千枚岩、片岩)主要分布在地块北缘的临津江附近(蔡乾忠,1995; 陶国宝,1996)。大量的(图中所示并不多)侏罗纪和白垩纪的花岗岩、花岗闪长岩和闪长岩侵入其中。

沃川构造带(Okchon Belt)被NNE走向的湖南剪切带划分成西南段(沃川带)和东北段(太白山带,Taebaeksan)。西南段主要为由寒武系-中志留统的片岩、白云岩、灰岩、石英岩、千枚岩、板岩等组成(Chough et al.,2000; Cluzel et al.,1991; Cluzel and Cadet,1992; Kim,1996; 陶国宝,1996)。Cluzel and Cadet(1992) 认为,沃川带发育一系列向SE方向的逆冲推覆构造。东北段以灰岩为主,夹石英岩和页岩,所含寒武纪三叶虫属华北型(陶国宝,1996)。最近在洪城(Hongsong)一带发现榴辉岩和类似于苏鲁造山带的岩石组合(洪城杂岩)(Guo et al.,2005; Kim et al.,2006a; Oh et al.,2005; Zhai and Liu,2005)。本文将西自洪城东至湖南剪切带统称为沃川构造带。

岭南地块(Ryongnam Massif)的前寒武纪基底主要由片麻岩夹片岩(最大同位素年龄为2330±50Ma)以及变基性杂岩(包括变质斜长岩、 变质辉长岩等)(Zhai et al.,2007a)。地块内广泛发育侏罗纪和白垩纪花岗岩、花岗闪长岩,局部有白垩系沉积(陶国宝,1996)。

2 样品采集及测试 2.1 样品采集

本次研究的样品采集于朝鲜半岛的不同构造单元,以前文所述,在“京畿地块”北部、中部和南部分别采集构造变形样品,包括糜棱岩化的火山岩13件和沉积岩1件。样品采样位置及岩性见表 1。通过镜下鉴定确定正变质岩碎斑主要为长石、角闪石、云母、(辉石),基质为云母和石英,通过估算变质温度进而挑取相应的矿物进行40Ar/39Ar年代学分析。

表 1 朝鲜半岛样品采样位置及岩性 Table 1 Sampling localities of the dated rocks from Korean Peninsula

糜棱岩中石英、长石的变形现象与变形温度密切相关(Pryer,1993; Stipp et al.,2002; Tullis and Yund,1991),据此可以进行变形温度估计。石英在300~700℃时依次经历了鼓胀式重结晶(BLG)、亚颗粒旋转重结晶(SR)及颗粒边界迁移重结晶(GBM)三种型式(Tullis and Yund,1991)。其中300~380℃表现为BLG重结晶;380~420℃范围内由BLG向SR转变;420~480℃以独立的SR重结晶存在;480~530℃区间重结晶由SR型向GBM型转变;530℃以上表现为独立的GBM重结晶。长石在400℃以上开始出现塑性拉长,500℃开始出现动态重结晶(Pryer,1993; Stipp et al.,2002; Tullis and Yund,1991),500~600℃范围内表现为BLG重结晶;700~800℃区间内呈现独立的SR重结晶;800~850℃时SR型与GBM型重结晶共存;850℃以上时长石呈现独立的GBM重结晶(王勇生等,2009)。根据这些判别标准,对所分析的糜棱岩的形成温度进行了估计。结合镜下照片(图 3)可以看出,本文所选样品糜棱岩,石英主要介于SR型和GBM型之间,局部长石发生BLG重结晶。因此估测温度在420~530℃之间。鉴于角闪石样品的形成温度较高,因此其年龄可反映成岩年龄,而黑云母和白云母年龄则反映变形时代。

2.2 分析方法

本次工作所选用的糜棱岩样品,经过碎样→水漂→过筛→磁选→比重液分离等步骤分选出黑云母、角闪石和白云母等单矿物定年样品,最后在双目镜下手工挑纯。

40Ar/39Ar测年分析工作在中国地质科学院地质研究所40Ar/39Ar法定年实验室进行。选纯的矿物(纯度>99%)用超声波清洗。一般先用经过两次亚沸蒸馏净化的纯净水清洗3次,每次3min,以保证矿物表面和解理缝中在天然状态下和碎样过程中吸附的粉末和杂质被清除。然后在丙酮中清洗两次,每次3min,在此过程中,矿物表面吸附的油污等有机物质被清除。清洗烘干后的样品被封进石英瓶中送核反应堆中接受中子照射。照射工作是在中国原子能科学研究院的“游泳池堆”中进行的,使用H8孔道,中子流密度约为2.65×1013n·cm-2S-1。照射总时间为2883min,积分中子通量为4.58×1018n·cm-2;同期接受中子照射的还有用做监控样的标准样:ZBH-25黑云母标样,其标准年龄为132.7±1.2Ma,K含量为7.6%。

样品的阶段升温加热使用石墨炉,每一个阶段加热30min,净化30min。质谱分析是在多接收稀有气体质谱仪Helix MC上进行的,每个峰值均采集20组数据。所有的数据在回归到时间零点值后再进行质量歧视校正、大气氩校正、空白校正和干扰元素同位素校正。中子照射过程中所产生的干扰同位素校正系数通过分析照射过的K2SO4和CaF2来获得,其值为:(36Ar/37Aro)Ca=0.0002389,(40Ar/39Ar)K=0.004782,(39Ar/37Aro)Ca=0.000806。37Ar经过放射性衰变校正;40K衰变常数λ=5.543×10-10y-1;用ISOPLOT程序计算坪年龄及正、反等时线(Ludwig,2001)。坪年龄误差以2σ给出。详细实验流程见有关文章(陈文等,2002; Steiger and Jäger,1977; 张彦,2006)。

3 测试结果与分析

40Ar/39Ar年代学测试结果见表 2、年龄谱见图 4图 5。各样品坪年龄与等时线年龄在误差范围内一致。现今大气40Ar/36Ar比值为295.5,除080703-22和20110716-3H这2个样品外,各样品由反等时线获得的初始氩比值在误差范围内与现今大气压比值接近或一致。

图 5 “京畿地块”东部样品角闪石、白云母、黑云母坪年龄与等时线年龄 Fig. 5 Age spectra and isochron plots for hornblende,muscovite and biotite samples from eastern part of “Gyonggi Massif”

表 2 朝鲜半岛样品角闪石、白云母、黑云母40Ar/39Ar测试结果 Table 2 40Ar/39Ar Age for hornblende,muscovite and biotite samples from Korean Peninsula
4 讨论

本部分从构造变形特征和构造年代学角度,分别将朝鲜半岛的沃川构造带、临津江构造带与大别-苏鲁造山带进行对比讨论。

4.1 临津江构造带与大别山北淮阳构造带的比较

根据野外构造观测,临津江构造带明显表现为两期构造变形。较早的一期变形主要表现为向NW和NE方向的逆冲剪切作用,如金川郡砚内里(图 6图版 f)、瑞兴郡泛雁里长寿山一带(图 7图版 i)、凤山郡天德里(图 8图版 j)平卧褶皱、背形堆垛双冲构造(anti-formal stack duplex)广为发育(剖面位置如图 2),指示整体自S向N的逆冲推覆,显示了前陆褶皱冲断带的构造样式,形成了一系列指向北部克拉通方向的叠瓦冲断构造,局部为强变形带(图 7泛雁里剖面),在逆冲岩系内部则变形较弱(图 6砚内里剖面);较晚的一期变形主要表现为近SW方向的伸展拆离剪切作用,如构造带西段南浦郡松串里一带拉伸线理等十分发育,指示向SWW方向的拆离作用(图 9)。

图 6 朝鲜半岛临津江构造带黄海北道金川郡砚内里实测构造剖面(据侯泉林等,2008修改) Fig. 6 Hyonnae-ri tectonic section of Kumchon-gun in Rimjingang Belt,North Hwanghae Province,Korean Peninsula(modified after Hou et al.,2008)

图 7 朝鲜半岛临津江构造带北部黄海北道泛雁里长寿山构造剖面(据侯泉林等,2008修改) Fig. 7 Jangsusan tectonic section of Boman-ri of Sohung County in norden border of Rimjingang Belt,North Hwanghae Province,Korea Peninsula(modified after Hou et al.,2008)

图 8 临津江构造带北部黄海北道凤山郡天德里背形堆垛双冲构造素描图(据侯泉林等,2008修改) Fig. 8 The drawing of anti-formal stack duplex of Chondok-ri in Pongsan County in norden border of Rimjingang Belt,North Hwanghae Province,Korea Peninsula(modified after Hou et al.,2008)

图 9 临津江构造带西北部平安南道南浦市松串里拆离构造素描图(据侯泉林等,2008修改) Fig. 9 Songchon-ri extensional detachment structure in Nampo City of northwestward of Rimjingang Belt,South Pyongan Province,Korea Peninsula(modified after Hou et al.,2008)

图 图版 图版说明(a)样品080702-5采样点,忠清南道洪城市花岗糜棱岩中的δ型旋转碎斑指示左行剪切;(b)样品H10NK45采样点,黄海南道海州郡首阳山片麻状浅色花岗质糜棱岩中的C-S-C’组构,指示上盘向下拆离;(c)样品080703-19采样点,忠清南道洪城市片麻岩中的背型堆垛逆冲构造;(d)样品080703-20、080703-22(靠近脉体)、080703-24采样点,忠清南道洪城市,照片位置如图 12;(e)样品080705-3、080705-4采样点,全罗北道南原市花岗片麻岩中的S-C组构指示右行剪切;(f)图 6黄海北道金川郡砚内里剖面照片,花岗片麻岩中的眼球状构造指示右行剪切;(g)图 11庆尚北道闻庆构造剖面中左侧照片,δ型旋转碎斑指示右行剪切(D1);(h)图 11庆尚北道闻庆构造剖面中右侧照片,大理岩不对称褶皱指示左行剪切(D2);(i)图 7黄海北道瑞兴郡泛雁里长寿山剖面照片,指示由泥页岩和灰岩组成的背形堆垛式双重逆冲推覆构造(antiformal stick duplex);(j)图 8黄海北道凤山郡天德里背形堆垛式双重逆冲构造,自S向N的逆冲推覆;(k)图 9平安南道南浦市松串里拆离构造,指示向SWW方向的拆离作用.

受采样条件限制,仅于朝鲜半岛北部获得2件年龄样品,均位于临津江带以北。1件黑云母样品采自黄海南道海州郡首阳山片麻状浅色花岗岩(采样位置如图 2),该采样处矿物优选面理(S)为115°∠25°,剪切带面理(C)为125°∠40°,伸展褶劈理(C’)为110°∠46°,A型线理倾伏向95°,运动学方向指示为向SEE方向的拆离作用(图版 b)。该处样品H10NK45获得黑云母坪年龄为106.20±0.74Ma(图 4表 2)。

另1件白云母样品H10NK40-M来自江原道通川郡长进里片麻岩(采样位置如图 2),获得白云母坪年龄为162.3±1.0Ma(图 4表 2)。该片麻岩边部花岗岩体侵入体时代为中侏罗世(据朝鲜同行专家介绍);于该区域东部开城地区获得的一系列花岗岩形成时代分布在197~163Ma(另文发表),因此该白云母坪年龄暗示片麻岩的形成时代应早于162Ma。

此外,Suzuki(2009) 通过分析京畿地块北部变质岩及其基底岩石的锆石和独居石特征后认为,245Ma左右存在一期强烈的变形变质作用;亦有学者认为这期变质作用持续的时间为260~230Ma(Lee et al.,2014; Ree et al.,1996; Yengkhom et al.,2014),可能代表了碰撞造山作用发生的时代。

大别山北淮阳构造带(包括晓天-磨子潭剪切带)主要表现为两期构造变形,较早的一期为大致自南向北的逆冲剪切作用(面理整体向南倾),此期变形可能与中生代的碰撞造山作用有关;较晚的一期主要表现为向NE和NNE方向伸展拆离剪切,有些地方尚未形成透入性劈理,而是表现为伸展褶劈理(extensional crenulation cleavage)。侯泉林等(2007) 在晓天-磨子潭剪切带糜棱岩中角闪石的变形年龄为259~219Ma(表 3),可能代表了俯冲-碰撞造山作用年龄,同时在北淮阳构造带云母的40Ar/39Ar同位素年龄为126~129Ma,认为其代表碰撞造山作用之后的伸展拆离变形年龄(Hou et al.,2012ab)。王勇生等(2009) 通过变形和40Ar/39Ar年代学分析获得晓天-磨子潭剪切带伸展拆离作用发生的时间为120~142Ma,该时间与北大别杂岩带穹状隆升活动对应(Ma et al.,2004; Wang et al.,2007; Zhao et al.,2007)。

表 3 大别造山带与朝鲜半岛变形年龄(Ma)对比 Table 3 The deformation ages(Ma)of Korea Peninsula and Dabie Belt of China

苏鲁超高压变质带北部威海地区中生代侵入岩浆活动亦可划分为有三期,分别是:(1) 晚三叠世(210Ma之前)碱性辉长岩、辉石正长岩及正长花岗岩等,其形成可能指示深俯冲大陆的板片断离作用;(2) 晚侏罗世至早白垩世(160~140Ma)花岗闪长岩和花岗岩俯冲的扬子板块部分熔融的产物;(3) 早白垩世早期(110~100Ma)辉石闪长岩和斑状花岗岩等代表高钾钙碱系列侵入体,是中国东部普遍发育的岩石圈减薄过程中强烈的壳幔相互作用的产物(郭敬辉等,2005)。

从变形期次和变形特征看,临津江构造带与大别山的北淮阳构造带和苏鲁构造带北部威海地区具有可比性。

4.2 沃川构造带与南大别构造带的比较

在沃川构造带西段洪城一带观察到两期主要的构造面理(图 10,剖面位置如图 2):较早的一组面理倾向NW,指向构造标志指示自NW向SE方向的逆冲剪切作用;较晚的一组面理倾向SE,指向构造指示向SE方向的伸展拆离剪切作用(侯泉林等,2008);沃川构造带西段闻庆构造剖面也可以看到明显的两期构造作用叠加(图 11,剖面位置如图 2),包括早期向SE方向的逆冲剪切(石英旋转碎斑,D1)(图版 g)和晚期向NW方向的拆离剪切作用(不对称褶皱,D2)(图版 h)。

图 10 朝鲜半岛沃川构造带忠清南道洪城实测构造剖面(据侯泉林等,2008修改) Fig. 10 Hongsong tectonic section in Okchon Belt,South Chungchong Province,Korea Peninsula(modified after Hou et al.,2008)

图 11 沃川构造带东段庆尚北道闻庆构造剖面 剖面中照片,左-图版 g、右-图版 h Fig. 11 Mungyeong section in Okchon Belt,North Gyeongsang Province,Korea Peninsula The related photographs are shown in Plate(left-g,right-h)

洪城杂岩西北唐津构造剖面上可观测到早期片麻理产状为SE向(倾向110°~120°,倾角67°~72°)(图 12图版 d),该处采集的080703-24样品(图 3c,采样位置如图 2)获得角闪石坪年龄为250.5±3.0Ma(图 4表 2),可能代表俯冲碰撞造山作用下片麻理形成的时限。Jong et al.(2014) 在洪城杂岩西部获得榍石U-Pb年龄为232Ma、白云母40Ar/39Ar坪年龄为230~228Ma(表 3),Oh et al.(2006) 在该区域获得石榴子石Sm-Nd年龄为257~225Ma,另有Shrimp U-Pb年龄为231Ma(Guo et al.,2004; Kim et al.,2006b),考虑到同位素体系温度中榍石U-Pb体系的封闭温度(500~600℃)要略高于角闪石40Ar/39Ar体系(460~560℃),明显高于云母40Ar/39Ar体系(380~420℃)(McDougall and Harrison,1999; Shen et al.,2012),因此这些250~228Ma的年龄表明这些地质体可能经历了俯冲碰撞的一系列变质热事件。

图 12 洪城杂岩西北忠清南道唐津构造剖面 剖面中照片为图版 d Fig. 12 Tangjin tectonic section in Okchon Belt,South Chungchong Province,Korea Peninsula The related photograph are shown in Plate d

采自唐津构造剖面(图 12)的另1件样品080703-22(图 3b,采样位置如图 2)获得黑云母坪年龄为174.8±1.8Ma,该点相邻处的2件花岗岩样品成岩年龄为175~188Ma,地球化学特征表明其形成可能与同碰撞花岗岩相关(另文发表),表明该黑云母样品记录的是碰撞造山作用过程中的热事件。080702-5和080703-19样品(图 3a,采样位置如图 2)采自临近剖面(图版 ac),其黑云母坪年龄分别为173.7±1.2Ma和174.7±1.1Ma(图 4表 2),应形成于同一构造背景。此外,片麻岩与下部花岗岩剪切接触面上的产状为30°∠12°,指示向SSW方向的剪切变形,该处样品080703-20获得黑云母坪年龄97.0±1.3Ma(图 4表 2),代表碰撞造山作用后构造事件,与南大别宿松-清水河剪切带晚中生代拆离构造具有相同的变形样式(侯泉林等,2007)。

与此对应,采集于沃川带中段南部、湖南剪切带(全罗北道南原市)的2件糜棱岩样品080705-3与080705-4(图 3d,采样位置如图 2)获得黑云母坪年龄分别为164.5±1.4Ma和165.5±1.0Ma(图 4表 2),在沃川带中段北部京畿道杨坪郡获得的变辉长岩样品(080707-6,图 3e,采样位置如图 2)黑云母获得坪年龄为167.8±3.2Ma(图 5表 2)。同处花岗糜棱岩样品080707-11(图 3f)指示变形特征为NWW向SEE方向逆冲推覆,片理面产状为310°∠78°,该处获得黑云母获得坪年龄为209.1±4.0Ma(图 5表 2),反映了碰撞过程中的逆冲推覆事件。

采集于沃川带东段太白山构造带北部江原道束草市的3件样品20110716-1H-B、20110716-3H-B、20110719-1H均采自花岗糜棱岩(采样位置如图 2),韧性剪切带C面理产状为20°∠23°,不对称眼球构造指示由北向南逆冲推覆作用,在该三处糜棱岩中获得的黑云母坪年龄分别为156.8±1.1Ma、172.0±1.3Ma、197.1±1.7Ma(图 5表 2)。表明该区域在197~156Ma期间处于碰撞造山和逆冲推覆阶段。

南大别构造带的水吼-五河-英山剪切带也表现为早期的逆冲剪切作用(197~156Ma)和晚期向SSE的伸展拆离作用(128~124Ma)(表 3)(侯泉林等,2007)。大别南部伸展体系中,水吼-五河剪切带和太湖-马庙剪切带向南南东拆离,而宿松-清水河剪切带则向南西拆离。宿松带蕲春清水河和枚川一带,红安群与燕山期花岗岩一起发生伸展剪切变形,表明该剪切作用发生于燕山花岗岩侵入之后。在这两期构造作用之前,存在一期超高压榴辉岩变质作用,代表碰撞造山作用。关于大别造山带榴辉岩的变质年龄,前人已进行了大量的分析(Chavagnac and Jahn,1996; Chen et al.,2004; Cheng et al.,2008; Gao et al.,2011; Jahn et al.,19962003; Katsube et al.,2009; Ames et al.,1996; Li et al.,199320002004; Liu et al.,2007; Rowley et al.,1997; Schmidt et al.,2008; Wu et al.,2006; Zheng et al.,2005; Zheng,2008; 石永红等,2013; 徐旭峰等,2013),普遍认同超高压变质作用发生在一个年龄范围内(Liou et al.,2009; Zhang et al.,2009),超高压变质事件主要发生在240~225Ma之间,而>240Ma属于峰期前变质,<225Ma为就位退变质时间。苏鲁构造带南部东海青龙山超高压变质带中正片麻岩的白云母和钾长石40Ar/39Ar坪年龄分别为219Ma和217Ma(陈文等,2003)、含柯石英榴辉岩的Sm-Nd、U-Pb年龄在226Ma(Li et al.,1994),代表了碰撞造山作用发生的时代。

在碰撞作用期后,UHP和HP单元南部的边界断层依次由大致向北的逆冲断层转变为向南的拆离断层。后期的拆离作用是一期非常强的变形期,掩盖了早期的许多变形形迹,140°左右的拉伸线理和上部指向SE和SSE向的剪切运动可以在南大别山的许多构造单元中观察到(侯泉林等,2007)。从湖南剪切带看,具有向SE伸展拆离剪切的性质,其变形云母的K-Ar同位素年龄为104~138Ma(Oh et al.,2004),与大别碰撞造山作用之后的伸展拆离变形时代相当(表 3),构造样式相似。因此,有理由怀疑目前观察到的岭南地块中的具有华北性质的部分可能是在造山作用之后的伸展拆离过程中,以湖南剪切带为边界,自NW向SE拆离下来的原本属于华北板块的外来构造岩片,覆于岭南地块(扬子板块的一部分)之上。

从变形期次和变形特征看,沃川构造带与南大别构造带的变形特征有相似之处。

4.3 朝鲜半岛构造演化过程

华北中生代构造体制转折始于150~140Ma,峰期~120Ma;南(东)缘的挤压构造以230~210Ma为主,然后在130~110Ma期间达到构造转折的剧变期(Zhai et al.,2004; 翟明国等,2004)。王勇生等(2006) 研究表明,郯庐断裂带在距今139Ma之前为左行走滑剪切,距今139~128Ma为由走滑向伸展活动的转换期,在之后的伸展事件中发生了缓慢的抬升和冷却。按照上文所述的对应关系,在朝鲜半岛,自临津江带、“京畿地块”至沃川带共同构成了较完整的中生代碰撞造山带,即大别-苏鲁造山带的东延部分。其演化过程讨论如下:

(1) 碰撞阶段(T1-2):扬子板块向中朝(华北)板块俯冲,并大致沿沃川带发生碰撞,陆内俯冲开始,(超)高压变质岩形成,榴辉岩变质年龄在~230Ma左右(Kwon et al.,2009)。本文沃川带中一系列220~260Ma的年龄记录响应了朝鲜半岛中生代的俯冲和碰撞造山事件(Choi,2014; Chough et al.,2000; Kwon et al.,2009; Ree et al.,1996; Yengkhom et al.,2014),亦反映其碰撞时间与大别山造山带相当。这一过程中,中朝板块在变质核心上部高位仰冲至扬子板块之上(图 13),造成在岭南地块的碎屑锆石U-Pb年龄组成(1.8~3.6Ga)具有与华北相似的信息(Kim et al.,2013; Lee et al.,2016)。

(2) 造山作用阶段(T3-J3):碰撞造山作用持续进行,陆内俯冲,华北板块继续仰冲于扬子板块之上(图 13),逆冲剪切带和平行于造山带的走滑剪切带形成(图 10图 11沃川构造带、图 9临津江构造带、图 12湖南剪切带等),同时在朝鲜半岛中北部形成了一系列由S向N逆冲的反冲断层(图 6图 7图 8),(超)高压变质岩折返等,形成了临津江构造带;京畿造山带隆升过程中,其南部形成一系列由S向N的逆冲剪切断层及部分反冲断层,如庆尚北道闻庆构造剖面看到的一系列σ型石英旋转碎斑(图 11),沃川构造带唐津构造剖面及其附近存在的一系列173~173Ma左右的变形年龄(图 12表 3)、太白山盆地和湖南剪切带中普遍存在的156~204Ma变形年龄(表 3),这些特征与大别造山带同阶段的年龄组成特征(156~197Ma)相符。

图 13 朝鲜半岛的中生代碰撞造山动力学演化模式图 Fig. 13 Collision orogenic dynamics evolution model of Korean Peninsula

(3) 造山后伸展阶段(K1-2):随着造山作用后期的底侵、拆沉、去根作用,造山带由挤压状态进入伸展状态(图 9)。随着晚中生代岩浆侵入,“京畿地块”发生热隆,同时向SE、NW方向拆离(图 13),在此过程中,上覆的华北陆壳可能部分向SE方向拆离,以构造岩片方式覆于岭南地块(扬子)之上,此类变形如庆尚北道闻庆构造剖面(图 11)和忠清南道唐津构造剖面(图 12)的剪切变形(指示向SSW方向滑动);同时造山带中下伏的扬子陆壳不断隆升,随着构造拆离作用的发展而出露,使得中朝板块高位推覆体之下的京畿碰撞造山带(“京畿地块”)出露地表,该造山带变质杂岩体在俯冲-碰撞过程混合了来自中朝板块(1.6~3.6Ga)和扬子板块(0.4~3.6Ga)的物质,造成“京畿地块”的碎屑锆石U-Pb年龄分布特征(0.4~3.6Ga)表现的更像扬子板块(Kim et al.,2013)。

5 结论

本文结合野外构造变形特征观测结果,在朝鲜半岛的不同构造单元系统采集14件样品进行40Ar/39Ar年代学分析,并在此基础上通过对比大别造山带不同构造单元的变形特征,探讨大别苏鲁构造带在朝鲜半岛的东延特征,结果表明:

(1) 朝鲜半岛中部造山带在中生代经历了碰撞阶段(~210Ma)、逆冲推覆造山作用阶段(200~150Ma)、造山后伸展阶段(140~90Ma)三个主要的构造过程。

(2) 从变形期次和变形特征看,临津江构造带与大别山的北淮阳构造带、苏鲁构造带北部威海地区具有可比性,沃川构造带与南大别构造带有相似之处。

(3) 在朝鲜半岛,自临津江带至沃川带构成了较完整的中生代碰撞造山带,即大别-苏鲁造山带的东延部分。

致谢 野外工作中,朝鲜国家科学院地质研究所相关专家,韩国全北大学的吴昌桓教授、高丽大学的崔善奎教授、庆北大学的柳寅昌教授等给予了大力支持,中国科学院地质与地球物理研究所翟明国院士、吴福元院士、彭澎研究员、张晓晖研究员、张艳斌副研究员、赵磊博士共同进行了野外考察和研讨;中国科学院地质与地球物理研究所林伟研究员、中国科学院大学闫全人教授提出了宝贵的修改意见;在此一并感谢!
参考文献
[1] Ames L, Zhou GZ and Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics , 15 (2) :472–489. DOI:10.1029/95TC02552
[2] Cai QZ. 1995. Corresponding division of geotectonic units of eastern China and Korea. Marine Geology & Quaternary Geology , 15 (1) :7–24.
[3] Chang KH. 2015. Yellow Sea Transform Fault (YSTF) and the development of Korean Peninsula. Russian Journal of Pacific Geology , 9 (2) :81–95. DOI:10.1134/S1819714015020037
[4] Chavagnac V and Jahn BM. 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China:Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology , 133 (1-4) :29–51. DOI:10.1016/S0009-2541(96)00068-X
[5] Chen DG, Deloule E, Cheng H, Xia QK and Wu YB. 2004. Multi-isotopic system geochronology of low temperature eclogite from Huangzhen, Southern Dabie Terrain. Science in China (Series D) , 47 (10) :931–942. DOI:10.1360/03yd0043
[6] Chen W, Liu XY and Zhang SH. 2002. Continuous laser stepwise heating 40Ar/39Ar dating technique. Geological Review , 48 (S) :127–134.
[7] Chen W, Li SG, Zhang Y and Liu XY. 2003. 40Ar/39Ar chronological study of the muscovite from Qinglongshan high-pressure orthogneiss, Donghai County, Su-Lu UHP-metamorphic belt. Geological Review , 49 (5) :537–543.
[8] Cheng H, King RL, Nakamura E, Vervoort JD and Zhou Z. 2008. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. Journal of Metamorphic Geology , 26 (7) :741–758. DOI:10.1111/jmg.2008.26.issue-7
[9] Cho M, Cheong W, Ernst WG, Yi K and Kim J. 2013. SHRIMP U-Pb ages of detrital zircons in metasedimentary rocks of the central Ogcheon fold-thrust belt, Korea:Evidence for tectonic assembly of Paleozoic sedimentary protoliths. Journal of Asian Earth Sciences , 63 :234–249. DOI:10.1016/j.jseaes.2012.08.020
[10] Choi DK.2014. Geology and Tectonic Evolution of the Korean Peninsula. Seoul: Seoul National University Press .
[11] Choi SG, Rajesh VJ, Seo J, Park JW, Oh CW, Pak SJ and Kim SW. 2009. Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc , 18 (2) :266–281.
[12] Chough SK, Kwon ST, Ree JH and Choi DK. 2000. Tectonic and sedimentary evolution of the Korean peninsula:A review and new view. Earth-Science Reviews , 52 (1-3) :175–235. DOI:10.1016/S0012-8252(00)00029-5
[13] Cluzel D, Cadet JP and Lapierre H. 1990. Geodynamics of the Ogcheon belt (South Korea). Tectonophysics , 183 (1-4) :41–56. DOI:10.1016/0040-1951(90)90187-D
[14] Cluzel D, Jolivet L and Cadet JP. 1991. Early Middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea):A new insight on the Paleozoic buildup of east Asia. Tectonics , 10 (6) :1130–1151. DOI:10.1029/91TC00866
[15] Cluzel D and Cadet JP. 1992. Geodynamic evolution of Korea:A view. Island Arc , 1 (1) :64–70. DOI:10.1111/iar.1992.1.issue-1
[16] de Jong K, Han S, Ruffet G and Yi K. 2014. First age constraints on the timing of metamorphism of the Taean Formation, Anmyeondo:Concordant 233Ma U-Pb titanite and 231~229Ma 40Ar/39Ar muscovite ages. Journal of the Geological Society of Korea , 50 (5) :593–609. DOI:10.14770/jgsk.2014.50.5.593
[17] Doh SJ and Piper JDA. 1994. Palaeomagnetism of the (Upper Palaeozoic-Lower Mesozoic) Pyongan Supergroup, Korea:A Phanerozoic link with the North China Block. Geophysical Journal International , 117 (3) :850–863. DOI:10.1111/gji.1994.117.issue-3
[18] Ernst WG and Liou JG. 1995. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology , 23 (4) :353–356. DOI:10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
[19] Gao XY, Zheng YF and Chen YX. 2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen:Constraints on P-T-t path. Journal of Metamorphic Geology , 29 (7) :721–740. DOI:10.1111/j.1525-1314.2011.00938.x
[20] Guo JH, Zhai MG, Oh CW and Kim SW.2004. 230Ma Eclogite from Bibong, Hongseong area, Gyeonggi Massif, South Korea:HP metamorphism, zircon SHRIMP U-Pb ages, and tectonic implication. Chonju: Miscellaneous Publishing : 47 .
[21] Guo JH, Sun M, Chen FK and Zhai MG. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton:Timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences , 24 (5) :629–642. DOI:10.1016/j.jseaes.2004.01.017
[22] Guo JH, Chen FK, Zhang XM, Siebel W and Zhai MG. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China:Zircon U-Pb geochronology. Acta Petrologica Sinica , 21 (4) :1281–1301.
[23] Han R, Min K, Ree JH and Foster DA. 2014. Extensional deformation along the southern boundary of the Gyeonggi Massif, South Korea:Structural characteristics, age constraints, and tectonic implications. International Journal of Earth Sciences , 103 (3) :757–776. DOI:10.1007/s00531-013-0985-2
[24] Hao TY, Xu Y, Suh M and Liu JH. 2006. Geophysical study on the location of boundary belt between Sino-Korea and Yangtzi blocks in Yellow Sea and adjacent area. In:2006 Western Pacific Geophysics Meeting. Beijing
[25] Hong TK and Choi H. 2012. Seismological constraints on the collision belt between the North and South China blocks in the Yellow Sea. Tectonophysics , 570-571 :102–113. DOI:10.1016/j.tecto.2012.08.034
[26] Hou QL, Liu Q, Li J and Zhang HY. 2007. Late Mesozoic shear zones and its chronology in the Dabie Mountains, Central China. Chinese Journal of Geology , 42 (1) :114–123.
[27] Hou QL, Wu YD, Wu FY, Zhai MG, Guo JH and Li Z. 2008. Possible tectonic manifestations of the Dabie-Sulu orogenic belt on the Korean Peninsula. Geological Bulletin of China , 27 (10) :1659–1666.
[28] Hou QL, Zhang HY, Liu Q, Li J and Wu YD. 2012a. The Dabie extensional tectonic system:Structural framework. Journal of Geological Research , 2012 :369513.
[29] Hou QL, Liu Q, Zhang HY, Zhang XH and Li J. 2012b. The Mesozoic tectonic dynamics and chronology in the eastern North China block. Journal of Geological Research , 2012 :291467.
[30] Hsü KJ, Li JL, Chen HH, Wang QC, Sun S and Sengör AMC. 1990. Tectonics of South China:Key to understanding West Pacific geology. Tectonophysics , 183 (1-4) :9–39. DOI:10.1016/0040-1951(90)90186-C
[31] Ishiwatari A and Tsujimori T. 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia:A synthesis. Island Arc , 12 (2) :190–206. DOI:10.1046/j.1440-1738.2003.00390.x
[32] Jahn BM, Cornichet J, Cong BL and Yui TF. 1996. Ultrahigh-εNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology , 127 (1-3) :61–79. DOI:10.1016/0009-2541(95)00108-5
[33] Jahn BM, Fan QC, Yang JJ and Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan:Chemical and isotopic constraints. Lithos , 70 (3-4) :243–267. DOI:10.1016/S0024-4937(03)00101-4
[34] Katsube A, Hayasaka Y, Santosh M, Li SZ and Terada K. 2009. SHRIMP zircon U-Pb ages of eclogite and orthogneiss from Sulu ultrahigh-pressure zone in Yangkou area, eastern China. Gondwana Research , 15 (2) :168–177. DOI:10.1016/j.gr.2008.08.002
[35] Kim HS, Ree JH and Kim J. 2012. Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny:Evidence from the Late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences , 101 (2) :483–498. DOI:10.1007/s00531-011-0683-x
[36] Kim HS, Hwang MK, Ree JH and Yi K. 2013. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian:Insights from U-Pb dating of detrital zircon. Earth and Planetary Science Letters , 368 :204–218. DOI:10.1016/j.epsl.2013.03.003
[37] Kim J, Yi K, Jeong YJ and Cheong CS. 2011a. Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research , 20 (2-3) :608–620. DOI:10.1016/j.gr.2010.12.005
[38] Kim JH. 1996. Mesozoic tectonics in Korea. Journal of Southeast Asian Earth Sciences , 13 (3-5) :251–265. DOI:10.1016/0743-9547(96)00032-3
[39] Kim SW, Oh CW, Williams IS, Rubatto D, Ryu IC, Rajesh VJ, Kim CB, Guo JH and Zhai MG. 2006a. Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea:Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos , 92 (3-4) :357–377. DOI:10.1016/j.lithos.2006.03.050
[40] Kim SW, Oh CW, Williams IS, Rubatto D, Ryu IC, Rajesh VJ, Kim CB, Guo JH and Zhai MG. 2006b. Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea:Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos , 92 (3-4) :357–377. DOI:10.1016/j.lithos.2006.03.050
[41] Kim SW, Kwon S, Santosh M, Williams IS and Yi K. 2011b. A Paleozoic subduction complex in Korea:SHRIMP zircon U-Pb ages and tectonic implications. Gondwana Research , 20 (4) :890–903. DOI:10.1016/j.gr.2011.05.004
[42] Kim SW, Santosh M, Park N and Kwon S. 2011c. Forearc serpentinite mélange from the Hongseong suture, South Korea. Gondwana Research , 20 (4) :852–864. DOI:10.1016/j.gr.2011.01.012
[43] Kim Y, Aum HW, Choeng W, Kim T and Yi K. 2014. An occurrence of the post-orogenic Triassic strata on Deokjeok Island, western Gyeonggi massif, Korea. Geosciences Journal , 18 (2) :137–147. DOI:10.1007/s12303-014-0027-5
[44] Kwon S, Sajeev K, Mitra G, Park Y, Kim SW and Ryu IC. 2009. Evidence for Permo-Triassic collision in Far East Asia:The Korean collisional orogen. Earth and Planetary Science Letters , 279 (3-4) :340–349. DOI:10.1016/j.epsl.2009.01.016
[45] Kwon S, Kim SW and Santosh M. 2013. Multiple generations of mafic-ultramafic rocks from the Hongseong suture zone, western South Korea:Implications for the geodynamic evolution of NE Asia. Lithos , 160-161 :68–83. DOI:10.1016/j.lithos.2012.11.011
[46] Lee BC, Oh CW, Yengkhom KS and Yi K. 2014. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton. Precambrian Research , 248 :17–38. DOI:10.1016/j.precamres.2014.04.003
[47] Lee DS.1987. Geology of Korea. Seoul: Kyohak-Sa Publishing Corporation : 1 -514.
[48] Lee SR and Cho M. 1995. Tectonometamorphic evolution of the Chuncheon amphibolite, central Gyeonggi massif, South Korea. Journal of Metamorphic Geology , 13 (2) :315–328. DOI:10.1111/jmg.1995.13.issue-2
[49] Lee YI and Lee JI. 2003. Paleozoic sedimentation and tectonics in Korea:A review. Island Arc , 12 (2) :162–179. DOI:10.1046/j.1440-1738.2003.00388.x
[50] Lee YI, Choi T, Lim HS and Orihashi Y. 2016. Detrital zircon geochronology and Nd isotope geochemistry of the basal succession of the Taebaeksan Basin, South Korea:Implications for the Gondwana linkage of the Sino-Korean (North China) block during the Neoproterozoic-early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology , 441 :770–786. DOI:10.1016/j.palaeo.2015.10.025
[51] Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR and Wang SS. 1993. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites:Timing and processes. Chemical Geology , 109 (1-4) :89–111. DOI:10.1016/0009-2541(93)90063-O
[52] Li SG, Wang SS, Chen YZ, Liu DL, Qiu J, Zhou HX and Zhang ZM. 1994. Excess argon in phengite from eclogite:Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and 40Ar/39Ar methods. Chemical Geology , 112 (3-4) :343–350. DOI:10.1016/0009-2541(94)90033-7
[53] Li SG, Jagoutz E, Chen YZ and Li QL. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta , 64 (6) :1077–1093. DOI:10.1016/S0016-7037(99)00319-1
[54] Li XP, Zheng YF, Wu YB, Chen FK, Gong B and Li YL. 2004. Low-T eclogite in the Dabie terrane of China:Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology , 148 (4) :443–470. DOI:10.1007/s00410-004-0616-9
[55] Li ZX, Cho M and Li XH. 2003. Precambrian tectonics of East Asia and relevance to supercontinent evolution. Precambrian Research , 122 (1-4) :1–6. DOI:10.1016/S0301-9268(02)00204-8
[56] Lin W, Michel F, Wang QC and Nicolas A. 2005. Tectonic evolution of the Dabieshan orogen:In the view from polyphase deformation of the Beihuaiyang metamorphic zone. Science in China (Series D) , 48 (7) :886–899. DOI:10.1360/03yd0306
[57] Liou JG, Ernst WG, Zhang RY, Tsujimori T and Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes:The view from China. Journal of Asian Earth Sciences , 35 (3-4) :199–231. DOI:10.1016/j.jseaes.2008.10.012
[58] Liu YC, Li SG and Xu ST. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos , 96 (1-2) :170–185. DOI:10.1016/j.lithos.2006.09.010
[59] Ludwig KR.2001. Isoplots/Ex version 2.49:A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, Special Publication. No.1a : 1 -58.
[60] Ma CQ, Yang KG, Ming HL and Lin GC. 2004. The timing of tectonic transition from compression to extension in Dabieshan:Evidence from Mesozoic granites. Science in China (Series D) , 47 (5) :453–462.
[61] McDougall I and Harrison TM.1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press .
[62] Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context. Gondwana Research , 9 (1-2) :24–46. DOI:10.1016/j.gr.2005.04.002
[63] Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the Western Pacific and eastern China since the Mesozoic. Science Bulletin , 60 (18) :1598–1616. DOI:10.1007/s11434-015-0891-z
[64] Oh CW, Kim SW, Ryu IC, Okada T, Hyodo H and Itaya T. 2004. Tectono-metamorphic evolution of the Okcheon Metamorphic Belt, South Korea:Tectonic implications in East Asia. Island Arc , 13 (2) :387–402. DOI:10.1111/iar.2004.13.issue-2
[65] Oh CW, Kim SW, Choi SG, Zhai MG, Guo JH and Krishnan S. 2005. First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu collision belt in China. The Journal of Geology , 113 (3) :226–232.
[66] Oh CW, Krishnan S, Kim SW and Kwon YW. 2006. Mangerite magmatism associated with a probable Late-Permian to Triassic Hongseong-Odesan collision belt in South Korea. Gondwana Research , 9 (1-2) :95–105. DOI:10.1016/j.gr.2005.06.005
[67] Oh CW and Kusky T. 2007. The Late Permian to Triassic Hongseong-Odesan collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review , 49 (7) :636–657. DOI:10.2747/0020-6814.49.7.636
[68] Paek RJ. 1993. Lower Proterozoic era stratigraphy. In:Geological Institute, Academy of Sciences, North Korea (ed.). Geology of Korea. Pyongyang:Foreign Languages Books Publishing House, 41-52
[69] Paek RJ, Kang HG and Jon GP.1996. Geology of Korea. Pyongyang: Foreign Languages Books Publishing House .
[70] Park SI, Kim SW, Kwon S, Thanh NX, Yi K and Santosh M. 2014. Paleozoic tectonics of the southwestern Gyeonggi massif, South Korea:Insights from geochemistry, chromian-spinel chemistry and SHRIMP U-Pb geochronology. Gondwana Research , 26 (2) :684–698. DOI:10.1016/j.gr.2013.07.015
[71] Peng P, Zhai MG, Guo JH, Zhang HF and Zhang YB. 2008. Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton:An example from North Korea. Geological Magazine , 145 (5) :637–647.
[72] Pryer LL. 1993. Microstructures in feldspars from a major crustal thrust zone:The Grenville Front, Ontario, Canada. Journal of Structural Geology , 15 (1) :21–36. DOI:10.1016/0191-8141(93)90076-M
[73] Ree JH, Cho M, Kwon ST and Nakamura E. 1996. Possible eastward extension of Chinese collision belt in South Korea:The imjingang belt. Geology , 24 (12) :1071–1074. DOI:10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
[74] Ree JH, Kwon SH, Park Y, Kwon ST and Park SH. 2001. Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea:Implications for the timing of strike-slip shearing and thrusting. Tectonics , 20 (6) :850–867. DOI:10.1029/2000TC001267
[75] Ren JS. 2003. A brief introduction of the latest tectonic map of China. Acta Geoscientia Sinica , 24 (1) :1–2.
[76] Ri JN and Ri JC.1990. Geological Construction of Korea 6. Pyongyang. North Korea: Foreign Languages Books Publishing House .
[77] Rogers, John JW and Santosh M. 2006. The Sino-Korean Craton and supercontinent history:Problems and perspectives. Gondwana Research , 9 (1-2) :21–23. DOI:10.1016/j.gr.2005.04.001
[78] Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J and Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters , 151 (3-4) :191–203. DOI:10.1016/S0012-821X(97)81848-1
[79] Sagong H, Cheong CS and Kwon ST. 2003. Paleoproterozoic orogeny in South Korea:Evidence from Sm-Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research , 122 (1-4) :275–295. DOI:10.1016/S0301-9268(02)00215-2
[80] Sajeev K, Jeong J, Kwon S, Kee WS, Kim SW, Komiya T, Itaya T, Jung HS and Park Y. 2010. High P-T granulite relicts from the Imjingang belt, South Korea:Tectonic significance. Gondwana Research , 17 (1) :75–86. DOI:10.1016/j.gr.2009.07.001
[81] Schmidt A, Weyer S, Mezger K, Scherer EE, Xiao YL, Hoefs J and Brey GP. 2008. Rapid eclogitisation of the Dabie-Sulu UHP terrane:Constraints from Lu-Hf garnet geochronology. Earth and Planetary Science Letters , 273 (1-2) :203–213. DOI:10.1016/j.epsl.2008.06.036
[82] Seo J, Choi SG and Oh CW. 2010. Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research , 18 (2-3) :479–496. DOI:10.1016/j.gr.2009.12.009
[83] Shen CB, Mei LF, Min K, Jonckheere R, Ratschbacher L, Yang Z, Peng L and Liu ZQ. 2012. Multi-chronometric dating of the Huarong granitoids from the middle Yangtze Craton:Implications for the tectonic evolution of eastern China. Journal of Asian Earth Sciences , 52 :73–87. DOI:10.1016/j.jseaes.2012.02.013
[84] Shi YH, Wang J, Kang T and Xu XF. 2013. Analysis of metamorphic P-T conditions and zircon U-Pb age across the southeastern area of Dabie massif. Acta Petrologica Sinica , 29 (5) :1540–1558.
[85] Steiger RH and Jäger E. 1977. Subcommission on geochronology:Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters , 36 (3) :359–362. DOI:10.1016/0012-821X(77)90060-7
[86] Stipp M, Stünitz H, Heilbronner R and Schmid SM. 2002. The eastern Tonale fault zone:A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology , 24 (12) :1861–1884. DOI:10.1016/S0191-8141(02)00035-4
[87] Suzuki K. 2009. CHIME dating and age mapping of monazite in granulites and paragneisses from the Hwacheon area, Korea:Implications for correlations with Chinese cratons. Geosciences Journal , 13 (3) :275–292. DOI:10.1007/s12303-009-0027-z
[88] Tang XJ, Yu WH and Shan R. 2010. The Mesozoic plate boundary in the eastern China and Korean Peninsula:Present studies and problems. Acta Geologica Sinica , 84 (5) :606–617.
[89] Tao BG. 1996. Geologic structure relation between the southern Yellow Sea and adjacent areas. Marine Geology Translations (4) :1–14.
[90] Tullis J and Yund RA. 1991. Diffusion creep in feldspar aggregates:Experimental evidence. Journal of Structural Geology , 13 (9) :987–1000. DOI:10.1016/0191-8141(91)90051-J
[91] Uno K. 1999. Early Triassic palaeomagnetic results from the Ryeongnam Block, Korean Peninsula:The eastern extension of the North China Block. Geophysical Journal International , 139 (3) :841–851. DOI:10.1046/j.1365-246x.1999.00981.x
[92] Uno K. 2000. Clockwise rotation of the Korean Peninsula with respect to the North China Block inferred from an improved Early Triassic palaeomagnetic pole for the Ryeongnam Block. Geophysical Journal International , 143 (3) :969–976. DOI:10.1046/j.0956-540X.2000.01289.x
[93] Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL and He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta , 71 (10) :2609–2636. DOI:10.1016/j.gca.2007.03.008
[94] Wang YS, Zhu G, Song CZ, Liu GS, Xiang BW, Li CC and Xie CL. 2006. 40Ar-39Ar geochronology records of transition from strike-slip to extension in the Tan-Lu fault zone on eastern terminal of the Dabie Mountains. Chinese Journal of Geology , 41 (2) :242–255.
[95] Wang YS, Xiang BW, Zhu G, Chen W and Wei X. 2009. 40Ar-39Ar geochronology records for post-orogenic extension of the Xiaotian-Mozitan fault. Geochimica , 38 (5) :458–471.
[96] Williams IS, Cho DL and Kim SW. 2009. Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea:Constraints on Triassic post-collisional magmatism. Lithos , 107 (3-4) :239–256. DOI:10.1016/j.lithos.2008.10.017
[97] Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta , 70 (14) :3743–3761. DOI:10.1016/j.gca.2006.05.011
[98] Xu JW and Zhu G. 1995. Discussion on tectonic models for the Tan-Lu fault zone, eastern China. North China Journal of Geology and Mineral Resources , 10 (2) :121–134.
[99] Xu XF, Shi YH, Lin W and Ji WB. 2013. Zircon U-Pb geochronology and typological classification of eclogites in the hinterland of the central Dabie. Acta Petrologica Sinica , 29 (5) :1559–1572.
[100] Yengkhom KS, Lee BC, Oh CW, Yi K and Kang JH. 2014. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton. Precambrian Research , 240 :37–59. DOI:10.1016/j.precamres.2013.10.016
[101] Yin A and Nie SY. 1993. An indentation model for the North and South China collision and development of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics , 12 (4) :810–813.
[102] Yue BJ, Liao J, Liu H, Zeng J and Shi J. 2014. East boundary of the collision belt between Sino-Korean and Yangtze plates in eastern China and their extension in the sea. Marine Geology & Quaternary Geology , 34 (1) :75–85.
[103] Zhai MG, Zhu RX, Liu JM, Meng QR, Hou QL, Hu SB, Liu W, Li Z, Zhang HF and Zhang HF. 2004. Time range of Mesozoic tectonic regime inversion in eastern North China Block. Science in China (Series D) , 47 (2) :151–159. DOI:10.1360/02yd0416
[104] Zhai MG, Meng QR, Liu JM, Hou QL, Hu SB, Li Z, Zhang HF, Liu W, Shao JA and Zhu RX. 2004. Geological features of Mesozoic tectonic regime inversion in eastern North China and implication for geodynamics. Earth Science Frontiers , 11 (3) :285–297.
[105] Zhai MG and Liu WJ. 2005. Tectonic division of the Sulu ultrahigh-pressure region and the nature of its boundary with the North China block. International Geology Review , 47 (10) :1074–1089. DOI:10.2747/0020-6814.47.10.1074
[106] Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton:A review. Journal of Asian Earth Sciences , 24 (5) :547–561. DOI:10.1016/j.jseaes.2004.01.018
[107] Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL and Fan QC. 2007a. Linking the Sulu UHP belt to the Korean Peninsula:Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research , 12 (4) :388–403. DOI:10.1016/j.gr.2007.02.003
[108] Zhai MG, Guo JH, Peng P and Hu B. 2007b. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine , 144 (3) :547–552. DOI:10.1017/S0016756807003287
[109] Zhang KJ. 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics , 270 (1-2) :145–156. DOI:10.1016/S0040-1951(96)00208-9
[110] Zhang RY, Liou JG and Ernst WG. 2009. The Dabie-Sulu continental collision zone:A comprehensive review. Gondwana Research , 16 (1) :1–26. DOI:10.1016/j.gr.2009.03.008
[111] Zhang Y, Chen W, Chen KL and Liu XY. 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of 39Ar recoil loss:Examples from the clay minerals of P-T boundary in Changxing, Zhejiang Province. Geological Review , 52 (4) :556–561.
[112] Zhao ZF, Zheng YF, Wei CS and Wu YB. 2007. Post-collisional granitoids from the Dabie orogen in China:Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos , 93 (3-4) :248–272. DOI:10.1016/j.lithos.2006.03.067
[113] Zheng YF, Wu YB, Zhao ZF, Zhang SB, Xu P and Wu FY. 2005. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters , 240 (2) :378–400. DOI:10.1016/j.epsl.2005.09.025
[114] Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin , 53 (20) :3081–3104.
[115] 蔡乾忠.1995. 中国东部与朝鲜大地构造单元对应划分. 海洋地质与第四纪地质 , 15 (1) :7–24.
[116] 陈文, 刘新宇, 张思红.2002. 连续激光阶段升温40Ar/39Ar地质年代测定方法研究. 地质论评 , 48 (S) :127–134.
[117] 陈文, 李曙光, 张彦, 刘新宇.2003. 苏鲁超高压变质带东海青龙山高压正片麻岩中白云母的40Ar/39Ar年代学研究. 地质论评 , 49 (5) :537–543.
[118] 郭敬辉, 陈福坤, 张晓曼, SiebelW, 翟明国.2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学. 岩石学报 , 21 (4) :1281–1301.
[119] 侯泉林, 刘庆, 李俊, 张宏远.2007. 大别山晚中生代剪切带特征及年代学制约. 地质科学 , 42 (1) :114–123.
[120] 侯泉林, 武昱东, 吴福元, 翟明国, 郭敬辉, 李忠.2008. 大别-苏鲁造山带在朝鲜半岛可能的构造表现. 地质通报 , 27 (10) :1659–1666.
[121] 任纪舜.2003. 新一代中国大地构造图-中国及邻区大地构造图(1:5000000)附简要说明:从全球看中国大地构造. 地球学报 , 24 (1) :1–2.
[122] 石永红, 王娟, 康涛, 徐旭峰.2013. 大别地块东南缘变质P-T条件及锆石U-Pb年代学研究. 岩石学报 , 29 (5) :1540–1558.
[123] 唐贤君, 於文辉, 单蕊.2010. 中国东部-朝鲜半岛中生代板块结合带划分研究现状与问题. 地质学报 , 84 (5) :606–617.
[124] 陶国宝.1996. 南黄海周缘地区的地质构造联系. 海洋地质译丛 (4) :1–14.
[125] 王勇生, 朱光, 宋传中, 刘国生, 向必伟, 李长城, 谢成龙.2006. 大别山东端郯庐断裂带由走滑向伸展运动转换的40Ar-39Ar年代学记录. 地质科学 , 41 (2) :242–255.
[126] 王勇生, 向必伟, 朱光, 陈文, 魏鑫.2009. 晓天-磨子潭断裂后造山伸展活动的40Ar-39Ar年代学记录. 地球化学 , 38 (5) :458–471.
[127] 徐嘉炜, 朱光.1995. 中国东部郯庐断裂带构造模式讨论. 华北地质矿产杂志 , 10 (2) :121–134.
[128] 徐旭峰, 石永红, 林伟, 冀文斌.2013. 中大别腹地榴辉岩锆石U-Pb年龄及其类型归属. 岩石学报 , 29 (5) :1559–1572.
[129] 岳保静, 廖晶, 刘鸿, 曾洁, 施剑.2014. 中朝-扬子板块碰撞结合带东部边界及海域延伸. 海洋地质与第四纪地质 , 34 (1) :75–85.
[130] 翟明国, 孟庆任, 刘建明, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟, 邵济安, 朱日祥.2004. 华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨. 地学前缘 , 11 (3) :285–297.
[131] 张彦, 陈文, 陈克龙, 刘新宇.2006. 成岩混层(I/S) Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例. 地质论评 , 52 (4) :556–561.