2. 合肥工业大学资环学院, 合肥 230009;
3. 中国科学院地质与地球物理研究所岩石圈演化国家重点实验室, 北京 100029
2. School of Resources and Environment Engineering, Hefei University of Technology, Hefei 230009, China;
3. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
大别山结构框架的精确标定对于理解大别碰撞造山带的俯冲、折返过程及其形成机制极为重要。最初,Okay et al. (1989)根据有无榴辉岩将大别碰撞造山带分为南、北两个单元,并将南大别单元分为超高压和高压两个单元。而Cong (1996)依据岩石组合特征、变质级别和榴辉岩的出露状况,将该造山划分为北淮阳地块、北大别地块、南大别地块和宿松地块。Faure et al.(1999, 2003) 则从构造角度将其分为北大别浅变质单元、中大别混合岩单元、南大别高压-超高压单元和南部前陆褶冲单元。但随着北大别地块中榴辉岩的发现(魏春景等, 1997; Liu et al., 2007),以及南大别地块的低温高压单元中确定了低温超高压榴辉岩(Rolfo et al., 2000; Liu et al., 2001; Li et al., 2004) 最终将大别造山带自北向南分为北淮阳浅变质带、北大别高温超高压变质带、中大别中温超高压变质带、南大别低温超高压变质带和宿松低温高压蓝片岩带5个单元(图 1)。由于北、中、南大别出露有世界上最多、最大、最完整的榴辉岩,故该单元一直是国内外地质学者透视大陆深俯冲高压-超高压变质作用的热点地区。然而,我们注意到无论是年代学还是岩石学的研究主要集中在下五河-碧溪岭-五庙-横冲-双河和南部的石马、朱家冲和黄镇附近(Okay et al., 1989; Okay, 1993; Wang et al., 1989, 1990, 1992, 1999; Carswell et al., 1997, 2000; Schmid et al., 2000; Rolfo et al., 2000, 2004; Franz et al., 2001; Proyer et al., 2004; Li et al., 2004. Li et al., 1993, 2000; Ames et al., 1996; Chavagnac et al., 1996; Rowley et al., 1997; Ayers et al., 2002; Chen et al., 2003; Jahn et al., 2003; Liu et al., 2006; Wu et al., 2006; Chen and Li, 2008; Schmidt et al., 2008; 图 1),对于中大别腹地店前-黄岗-寺前-罗溪地区则缺乏任何细致的研究资料。先前的研究对于该地区是否经历超高压变质作用仅仅是一种趋势上的判断(Okay, 1993; Wang et al., 1990, 1992; Carswell et al., 1997, 2000),并没有确实区域变质岩石学分析予以确定。
![]() |
图 1 研究区地质简图及中、南大别榴辉岩峰期变质年龄分布图 Fig. 1 Simplified geological map of Dabie area and the distribution of peak-metamorphism ages |
此外,北、中、南大别的温度差异主要是依据榴辉岩的温度标定进行判定的。而榴辉岩的温度估算则需要应用不同的温度计(Ellis and Green, 1979; Powell, 1985; Krogh, 1988, 2000; Ai, 1994),对峰期平衡矿物对进行评价得出的。然而,由于温压计选择的不同,相平衡的影响,以及主要平衡矿物如石榴石、绿辉石中Fe2+的校正的问题,榴辉岩的温度判别差异较大(Okay, 1993; Wang et al., 1990, 1992; Carswell et al., 1997; Schmid et al., 2000, 2003; Proyer et al., 2004; Li et al., 2005; 陈意等, 2005; Shi and Wang, 2006; 石永红等, 2007; Liu et al., 2007; 魏春景等, 2009)。因此,如何正确标定温度直接关系到各单元判别的合理性。
精确测定高压超高压变质岩的峰期变质时间和退变质时间是判断大陆深俯冲的发生和结束时代以及超高压变质岩折返历史的最直接有效的方法,据此,我们收集了前人对研究区出露的榴辉岩所测定年龄资料进行参考比较。随着研究深入,郑永飞(2008)综合前人资料,确定高压-超高压变质事件发生在240~225Ma之间,>240Ma属于峰期之前变质, < 225Ma为退变质时间。据此,我们收集了前人对研究区出露的榴辉岩所测定年龄资料进行参考比较。从空间分布上看,所有测定的榴辉岩主要来自中大别中温超高压变质单元的下五河-五庙-双河地区,这些年龄基本上在245~220Ma之间。而来自南大别变质单位的黄镇、朱家冲地区的高压榴辉岩年龄则仅有两个年龄,陈道公等(2003)的锆石U-Pb年龄(231.6±9.7Ma) 和Li et al. (2004)的Sm-Nd等时年龄(236.1±4.2Ma),这其中陈道公等(2003)的年龄分析误差较大,并不十分理想,其确定的高压峰期变质年龄集中在230~240Ma范围内。而因研究地区和程度所限,中大别腹地黄岗-牛凸岭地区则缺乏任何年龄资料的限定。
因此,本次研究期望通过对中大别腹地黄岗-牛凸岭地区榴辉岩锆石U-Pb年代学的研究,精确测定该地区榴辉岩的峰期变质年龄,对该地区的榴辉岩形成年代给予确证,同时通过对年代学的研究限定各岩片的形成时限,对该地区榴辉岩岩相学以及热力学的研究结果进行验证;同时结合前人研究资料,为该地区提供更精确的岩石-构造单元的划分依据,对深俯冲阶段脱耦的不同岩片进行精确划分,并为探讨大别碰撞造山带的俯冲、折返机制提供年代学的约束,揭示不同高压-超高压板片的峰期变质条件和多板片脱耦折返过程。
2 样品分析及P-T评价 2.1 样品地质特征本次研究的区域位于中大别腹地黄岗-牛凸岭地区,依据石永红等(2008)的研究,该区域属于低温高压单元,与南大别低温高压单元一致(图 1)。该单元主体由细粒花岗片麻岩和绿帘黑云斜长片麻岩构成,面理产状多倾向南-南南东,倾角多在20°~40°,线理倾向南东,倾角多为10°~30°。本次分析的样品分别为JS249、JS250和S77,其中后两个样品采自同一个地点(图 1)。
样品JS249榴辉岩位于黄岗西约2km处,出露较差,岩石多风化,出露宽度约3~5m,产状为250°/50°,石榴石多为自形,粒径粗大,可达5~10mm (图 2a, b)。样品JS250和S77榴辉岩采自黄岗南西约5km的汪家河处,岩石新鲜,出露厚度约5~10m,产状为160°/75°,共生围岩主要为石榴绿帘黑云斜长片麻岩和细粒花岗片麻岩(图 2c),露头规模可见自形-半自形的石榴石,粒径多在5~10mm (图 2d)。
![]() |
图 2 样品JS249和JS250野外及镜下照片 Fig. 2 Photos for eclogites outcrops in field and photomicrographs for eclogites |
样品JS249 主要组成矿物为Grt+Omp+Phn+Rt+Ep+Ky+Qtz+Bar+Pg (图 2e-g)。文中矿物代号根据Kretz (1983)的缩写,其他矿物则为:Phn=多硅白云母;Coe=柯石英;Amp=角闪石;Dm=金刚石。石榴石多为自形-半自形,破裂较为发育,内部含有早期矿物包体,如角闪石、金红石和石英(图 2e),粒径0.5~10mm,边缘常具有韭闪石+长石反应边(图 2e, f)。绿辉石多为他形,粒径0.1~0.5mm,常常分解形成透辉石+长石后成合晶(图 2f)。多硅白云母为他形-半自形,含量较少,边缘具有黑云母+长石反应边(图 2f)。金红石主要以包体和基质形式存在(图 2e, f),包体的金红石颗粒细小,为他形。基质金红石颗粒较大,粒径0.1~0.3mm,呈他形产出(图 2e, f)。帘石主要发育在基质中,其粒径变化较大,大者可达3mm,并以变斑晶形式存在,常包裹石榴石、绿辉石和金红石等矿物。小者粒径为0.2~0.5mm,为半自形-他形,常常与蓝晶石和石英交织生长(图 2g),Castelli et al. (1998)、Franz et al. (2007)和Li et al. (2004)认为该结构代表了硬柱石的变质分解特征。冻蓝闪石和钠云母同样以变斑晶形式存在,粒径为0.5~3mm,并包裹石榴石、绿辉石、蓝晶石和金红石等矿物。根据矿物交切关系判断,该榴辉岩至少经历了四期变质作用,第一期变质以石榴石中早期矿物包体为代表:Amp+Qtz+Rt+Ep;第二期为峰期变质矿物组合:Grt+Omp+Phn+Ky+Ep (细粒)+Qtz+Rt;第三期组合以变斑晶矿物为代表,Bar+Ep (粗粒)+Pg;第四期组合以后成合晶和反应边矿物为代表,Di+Prg+Bt+Ab,该期组合可能反映了角闪岩相变质作用。
样品JS250和S77 主要矿物为Grt+Omp+Phn+Rt+帘石Ep (少量)+Qtz+Bar (少量)+Pg (少量) (图 2h),同样品JS249相比,其缺乏蓝晶石组合,且帘石、冻蓝闪石和钠云母含量较少。石榴石多为自形-半自形,粒径为0.5~10mm,同样具有Amp+Qtz+Rt等早期矿物包体,边缘具有Prg+Ab反应边(图 2h),绿辉石和多硅白云母则为他形-半自形,分别具有Di+Ab和Bt+Ab后成合晶(图 2h)。根据矿物之间的结构关系判断,其同样具有四期矿物组合。
2.3 主要矿物化学成分特征为了较为准确判别榴辉岩峰期变质P-T条件,本次研究对榴辉岩中主要峰期矿物石榴石、绿辉石和多硅白云母进行了成分剖面研究。矿物成分测试分析由中国科学院地质与地球物理研究所电子探针分析实验室完成,仪器型号为CAMECA SX51,工作条件为加速电压15kV,电子束流20nA。代表性矿物分析数据见表 1。
![]() |
表 1 中大别腹地榴辉岩中石榴石、绿辉石和多硅白云母的代表性成分(wt%) Table 1 Representative composition of garnet, omphacite and phengite from the hinterland of the central Dabie eclogites (wt%) |
从图 3a中可以看出,石榴石核部相对均匀,边部成分变化明显。Mg/(Mg+Fe2+) 和XMg明显降低,XFe和XCa则呈镜像变化,XMn则因含量较低,变化不明显,总体表现为退变质特征环带。绿辉石自核部至边部,则表现为Na+和Fe2+降低,Mg2+增高之趋势(图 3b)。多硅白云母由核部到边部,Si4+逐渐降低,Al3+逐渐增高,Fe2+和Mg2+同样因含量较低,变化不明显。根据Carswell et al. (1997)、Holland (1980)和Massonne and Schreyer (1987)、Massonne et al. (1989)的论述,石榴石、绿辉石和多硅白云母的边部成分可能代表了退变质成分,而核部成分反映了“峰期”成分。
![]() |
图 3 中大别腹地榴辉岩中石榴石、绿辉石和多硅白云母矿物成分剖面图 Fig. 3 The compositions of garnet, omphacite and phengite |
早期对于榴辉岩形成的P-T条件的估计,主要是应用石榴石的Fe-Mg温度计(Ellis and Green, 1979; Powell, 1985; Krogh, 1988, 2000; Ai, 1994) 和Grt-Cpx-Phn压力计(Waters and Martin, 1993, 1996) 进行较为精确的判别(Okay et al., 1989; Okay, 1993; Wang et al., 1989, 1990, 1992; Carswell et al., 1997, 2000; Tabata et al., 1998; Wain, 1998, 2000; Cuthbert et al., 2000; Nowlan et al., 2000; Schmid et al., 2000, Rolfo et al., 2000, 2004; Shi and Wang, 2006)。然而,由于温压计选择的不同,不同作者对于温度压力的评价差异较大。为此,Krogh-Ravna and Terry (2004)经验标定了Grt-Cpx-Phn-Ky-Qtz/Coe温压计,该温压计能较为精确地判定榴辉岩的P-T条件,且得到了较为广泛的认同(Zheng, 2009)。因此,本次研究主要是应用Krogh-Ravna and Terry (2004)温压计,但考虑到Fe2+的校正问题,特别是绿辉石中Fe2+的含量对温度计算影响明显,本文对绿辉石的Fe2+的校正应用了电价平衡(Droop, 1987) 和端元组分校正法(Cawthron and Collerson, 1974),并配合使用石榴石-多硅白云母Fe-Mg温度计(Green and Hellman, 1982) 进行温压评判,这里假设多硅白云母中的全Fe=Fe2+。此外,对每个榴辉岩样品选取了6个矿物对进行计算,以避免相不平衡对温压评价的影响(魏春景等, 2009)。同时,Ganguly et al. (1996)的石榴石、Holland (1990)的绿辉石和Holland and Powell (1998)的多硅白云母活度模式被采用。石榴石结构式按照ΣCaMnFetotMgAlTiCr=5.00进行计算,其中Ca+Mn+Fe2++Mg=3.00,Al+Ti+Cr+Fe3+=2.00。绿辉石的结构式按照6个氧和4个阳离子进行计算,多硅白云母的结构式则标准化至ΣSiAlTiCrFeMnMg=12.00。榴辉岩的峰期变质P-T条件见表 2和图 4。由于样品JS249榴辉岩具有充分的矿物组合,JS250和S77榴辉岩则缺乏蓝晶石,故前者应用了Ravna and Terry (2004)温压计中的方法1、2、3、4和方法5 (Green and Hellman, 1982),而后者只能应用Krogh-Ravna and Terry (2004)的方法1和4及方法5 (Green and Hellman, 1982) 进行温压估算。
![]() |
图 4 本次研究应用不同温压计和不同校正Fe2+的方法计算的平均峰期温压条件 Fig. 4 The average peak temperature and pressure for eclogites in this study, using different thermometers and methods of Fe2+ correction |
![]() |
表 2 中大别腹地榴辉岩应用不同温压计计算的峰期变质P-T条件 Table 2 The peak P-T condition of the hinterland of the central Dabie eclogites with different thermometers |
从表 2和图 4可以看出,样品JS249在应用方法1、2和3时,其峰期温压范围为:T=517~668℃和P=2.25~2.89GPa,平均温压为T=594±61℃和P=2.58±0.27GPa。而应用方法1和4时,因方法4的Grt-Cpx Fe-Mg温度计涉及到绿辉石Fe2+的校正问题,故其具有两种情况:(1) 用Droop (1987)方法校正绿辉石Fe2+时,其温压范围为:T=488~1075℃,P=2.22~3.29GPa,平均温压为T=862±230℃,P=2.80±0.41GPa;(2) 用Cawthron and Collerson (1974)端元组分法校正绿辉石Fe2+时,在压力相同条件下,温度范围为T=784~1075℃平均温度为T=927±132℃。而在应用方法1和5时,在压力一致的条件下,温度范围为T=769~938℃,平均温度为T=844±62℃。
对于样品S77而言,因应矿物组合限制,只能应用方法1和4以及方法1和5进行P-T评价。在应用方法1和4时,同样分为两种情形;(1) 应用Droop (1987)方法,计算温压为T=553~683℃,P=1.99~2.31GPa,平均温压为T=616±56℃,P=2.14±0.14GPa;(2) 应用Cawthron and Collerson (1974)方法,在压力相同条件下,样品S77的温度范围为T=731~799℃,平均温度为T=765±29℃。在应用方法1和5时,在压力一致的条件下,温度范围为T=793~860℃,平均温度为T=836±26℃。
通过比较不难看出:(1) 应用方法1和4时,绿辉石Fe2+用Cawthron and Collerson (1974)方法校正后,计算得出的温压和由方法1和5给出的温压普遍偏高,均大于750℃(多数>800℃) (图 4);(2) 组合充分时,应用方法1、2和3计算的温压,以及组合不充分时,应用方法1和4时,Droop (1987)方法校正绿辉石Fe2+后计算的温压最低,均 < 700℃。结合岩相学研究可以看出,样品JS249和样品S77的石榴石普遍含有早期矿物包体,这表明其形成温度较低,石榴石并为完全均一化,意味着温度可能低于700℃。且与同一单元邻区朱家冲、黄镇地区的榴辉岩峰期变质P-T条件相比(Carswell et al., 1997; Castelli et al., 1998; Franz et al., 2001; Li et al., 2004; Shi and Wang, 2006),其结果也是十分吻合的。因此,我们认为样品JS249应用方法1、2和3计算的温压(T=594±61℃和P=2.58±0.27GPa);以及样品S77应用方法1和4时,用Droop (1987)方法校正绿辉石Fe2+后计算的温压(T=616±56℃,P=2.14±0.14GPa) 是合理的。在后面的阐述中将以它们的P-T条件为讨论基础。
3 锆石年代学分析锆石样品的挑选是在河北省地勘局廊坊实验室完成,用于锆石定年的样品制靶是在中国地质大学(武汉) 地质过程与矿产资源国家重点实验室进行。根据晶形、大小和颜色,在双目镜下挑选30颗锆石,先将锆石颗粒粘在双面胶上,然后用无色透明的环氧树脂固定,等环氧树脂充分固化后再对锆石进行抛光,用于锆石阴极发光(CL) 图像和LA-ICP-MS U-Pb同位素研究分析。锆石阴极发光显微图像在中国科学院地质与地球物理研究所扫描电镜实验室利用CL阴极发光装置(型号MiniCL) 拍照获得,仪器分光波长范围为185~850nm。根据单偏光以及正交偏光下和CL图像,避免裂缝和包体,选择并确定年龄分析点年龄。拉曼光谱测试是在西北大学地质系大陆动力学国家重点实验室激光拉曼光谱实验室进行,实验采用RENISHAW-1000型激光Raman谱仪对矿物包体进行鉴定。锆石U-Pb年龄以及微量元素成分是在中国科学院地质与地球物理研究所多接收等离子质谱仪实验室进行,利用配有193nm激光取样系统的Neptune多接收等离子体质谱仪(MC-ICPMS) 和Agilent 7500a四极杆等离子体质谱仪(Q-ICPMS) 同时分析完成。根据锆石颗粒大小不同,激光剥蚀束斑设定为40μm,频率为8~10Hz,脉冲输出能量为100mJ,能量密度为15~25J/cm2,采样方式为单点剥蚀。每个分析点的气体背景采集时间为30s,信号采集时间为40s。每测5个样品分析点,测一次标准锆石91500和一次标准硅酸盐玻璃NIST 600以优化仪器(柳小明,2004)。锆石年龄的分馏校正和计算采用GLITTER 4.0软件。以91500U/Pb标准锆石(1065Ma) 为外部标准,对锆石中207Pb/206Pb、206Pb/238U和208Pb/232Th的比值进行校正和计算,所有年龄结果均以204Pb含量做了普通铅校正;锆石样品的U-Pb加权平均年龄计算和谐和图绘制均采用Isoplot (ver3.0) 完成。分析结果见表 3。
![]() |
表 3 榴辉岩(样品JS249和JS250) LA-ICPMS锆石U-Pb同位素数据 Table 3 LA-ICP-MS zircon U-Pb dating results of the eclogites (sample JS249 and JS250) |
对所选锆石进行CL成象观察,在绝大数情况下,CL图像反应锆石内部结构最清楚。样品JS249-2锆石颗粒较大,晶体大小50~120μm,他形到半自形、浑圆状。CL图像显示JS249锆石内部无晶核,即无核边结构,CL强度中等,内部分带特征无岩浆振荡环带结构,主要为无分带、弱分带和云雾状分带,具有典型变质锆石特征(图 5a-c)。在JS249样品锆石中,U含量为74.6×10-6~156.9×10-6,Th含量为3.2×10-6~7.4×10-6,其Th/U比值为0.031~0.059,均 < 0.1;利用拉曼光谱对样品JS249锆石矿物包裹体进行成分分析,其包裹体主要有长石、磷灰石等(图 6a, b)。在JS249样品中,我们对其中9颗锆石进行了分析测试,对应的分析了9个点,这9个点的年龄全部集中分布在谐和线上,其206Pb/238U年龄范围从214±5Ma~219±5Ma,加权平均年龄为217.3±3.5Ma (MSWD=0.108)(图 5g),结合CL图像以及Th/U比值,该组谐和年龄应代表锆石生长年龄。
![]() |
图 5 榴辉岩锆石CL图及部分点年龄和锆石年龄谐和图 Fig. 5 CL images and zircon U-Pb concordia diagram and weighted mean 206Pb/238U age for zircon from eclogites |
![]() |
图 6 锆石中包裹体拉曼图谱及对应年龄 Fig. 6 Laser Raman micro-spectrometry of inclusions and zircon U-Pb age from the hinterland of the central Dabie eclogite |
样品JS250锆石颗粒较大,晶体大小60~150μm,他形到半自形。在CL图中无晶核和岩浆振荡环带结构,CL强度中等并具无分带、云雾状分带和片状分带特征,具有典型变质锆石特征(图 5d-f)。在JS250样品锆石中,U含量为75.6×10-6~144.4×10-6,Th含量为4.7×10-6~18.0×10-6,其Th/U比值大部分为0.008~0.090,均 < 0.1。样品JS250锆石矿物包体主要有金红石、石榴子石(图 6c, d)。在JS250样品中,我们对其中17颗锆石进行了分析测试,对应的分析了17个点,这17个点的年龄全部集中分布在谐和线上,其206Pb/238U年龄范围从230±4Ma~239±4Ma,加权平均年龄为235.2±4.2Ma (MSWD=0.36)(图 5h),结合CL图像以及Th/U比值,该组谐和年龄应代表锆石生长年龄。
4 榴辉岩类型归属及年代学讨论由于分类依据的不同,榴辉岩的分类方案较为繁多,且相互之间也难以对比(Eskola, 1914, 1915, 1921; Smulikowski, 1960, 1964, 1968; Coleman et al., 1965; Banno, 1970; Carswell, 1990; Cong, 1996; 刘福来等, 2005, 2006; 刘贻灿等, 2008)。目前,普遍接受的是温度(Carswell, 1990; 刘福来等, 2005, 2006; 刘贻灿等, 2008) 和压力(Cong, 1996) 分类,两者常配合应用。Cong (1996)的压力分类是依据石英/柯石英的相变线确定的,其认为在相变线之上的为超高压榴辉岩,相变线之下的为高压榴辉岩。但温度分类则略有不同,Carswell (1990)结合榴辉岩产出的地质背景,将榴辉岩分为低温(T < 550℃)、中温(T=550~900℃) 和高温(T>900℃) 三类。刘贻灿等(2008)根据对大别碰撞造山带榴辉岩的研究,也将其分为三类榴辉岩,只是温度划分界限不同,其认为低温为T < 700℃、中温为T=700~800℃、高温为T>800℃。
比较本次榴辉岩的峰期变质温压可以看出(表 2、图 4),按照压力分类按照(Cong, 1996),研究区榴辉岩均属于高压榴辉岩,这与前人研究结果也是一致的(Carswell et al., 1997; Castelli et al., 1998; Franz et al., 2001; Shi and Wang, 2006) (图 4)。而依据温度分类则较为困难,这主要由于温度界限限定的不同造成的。按照刘贻灿等(2008)的分类原则,样品JS249和S77均归入低温榴辉岩,而按照Carswell (1990)的分类,它们均属于中温榴辉岩。对此,我们无法判别这两个温度分类方案的利弊。但从刘贻灿等(2008)温度界限来看,中温榴辉岩的温度范围相对较窄,约100℃,如果考虑到温度计选择的差异以及温度误差的影响,榴辉岩的类型归属很容易跨界。例如,样品JS249可能归为高温榴辉岩,样品S77则可分别归入低温、中温和高温三个类型(图 4)。相比较而言,Carswell (1990)的温度似乎较为理想,无论应用何种方法和Fe2+的校正,样品JS249和S77基本位于中温区域(图 4)。重要的是这一分类不仅仅是温度的判别,其具有很好的地质含义,Carswell (1990)认为低温榴辉岩与大洋俯冲相关,中温榴辉岩则代表了大陆俯冲背景,高温榴辉岩则反映地幔的特征。从大别碰撞造山带看,其反映的是大陆深俯冲作用(郑永飞, 2008; Zhang et al., 2009; Liou et al., 2009),这意味着该地区的榴辉岩应属于中温类型。尽管如此,我们也意识到目前计算的榴辉岩峰期变质P-T条件,可能也仅仅是近似于“峰期”条件。
根据魏春景等(2009)的论述,由于退变质和相不平衡的影响,榴辉岩的温压估计也并不能十分确定,目前最好的解决方案是进行多个矿物对进行计算,并取其平均值。例如,样品JS249中的矿物对4和5计算的压力落入到超高压区域(图 4),而依据岩相学分析该岩石并未见到超高压矿物(图 2e-g),这也许暗示了相不平衡的影响。如果剔除这两个矿物对,计算的平均温压为T=561±42℃,P=2.44±0.20GPa,且这一结果与岩相学限定和Carswell et al. (1997)的温压估计十分吻合。而对于样品S77而言,由于应用的是方法1和4进行P-T评价,其势必要受到Fe2+校正的制约。尽管,Droop (1987)的电价平衡方法被应用,但这也仅仅是一个经验标定,实际的Fe2+的含量并不十分肯定。Schmid et al. (2003)、Proyer et al. (2004)和Li et al. (2005)通过对榴辉岩主要矿物石榴石和绿辉石的穆斯鲍尔谱(Mossbauer spectroscopy) 和X-射线吸收近边结构分析(XANES:X-ray absorption near-edge structure analysis) 研究,计算得出的温度相对较低。换言之,样品S77的温度可能还要低一些。考虑到目前大别碰撞造山带结构单元的划分(郑永飞, 2008),该造山带个单元岩石组合特征(Cong, 1996) 和温度标定(Liu et al., 2007; Li et al., 2004),以及目前温压计算的不确定性,我们认为黄岗-牛凸岭地区榴辉岩可以归入低温单元。
近年来对大别苏鲁造山带进行了大量的锆石U-Pb年龄测定的年龄多在215~245Ma之间,但对其峰期变质时代还存在争议(郑永飞, 2008)。由于变质岩石中,变质锆石可以形成于不同的变质阶段,如前进变质阶段、峰期变质阶段和退变质阶段等(吴元保等,2005),故将变质锆石形成的时限与不同变质期次合理的结合,可以较好地阐述变质锆石U-Pb年龄的地质含义。研究表明锆石一旦捕获矿物包裹体,其包裹体矿物的性质及化学成分就很难被改变。由于不同环境中形成的锆石具有与之对应的包裹体矿物组成,因此锆石中包裹体矿物成分研究可以很好地指示寄主岩石的演化历史和直接有效地制约锆石的形成环境(吴元保和郑永飞,2004;刘福来等, 2005, 2006)。
对黄岗榴辉岩JS249锆石的包裹体研究表明,其锆石包裹的矿物主要为长石,结合其野外、岩相学观察和变质期次的划分(图 2a-f),可以认定该样品的锆石年龄(217.3±3.5Ma (MSWD=0.108)) 反映的是角闪岩相变质年龄。该年龄与Li et al. (2004)在南大别黄镇地区获得榴辉岩角闪岩相退变锆石年龄222±4.2Ma也基本一致。而对黄岗榴辉岩JS250锆石的包裹体的研究,显示其锆石的包裹体矿物主要为石榴石、金红石等矿物,并未发现超高压矿物包体柯石英。鉴于石榴石和金红石为榴辉岩中的高压变质矿物(图 6c, d),故该样品的锆石年龄应代表高压榴辉岩相变质作用时限为235.2±4.2Ma。结合郑永飞(2008)、Zhang et al. (2009)建议的变质年龄范围,以及前人所测定的中大别和南大别榴辉岩峰期年龄可以看出,中大别变质年龄基本在230~220Ma范围,南大别变质年龄集中在240~230Ma之间,而此次分析的样品JS250,即便考虑年龄误差,其年龄也落入南大别峰期年龄范围内。
综合其地质特征、岩相学和P-T条件研究,中大别腹地黄岗-牛凸岭地区榴辉岩与南大别低温高压单位相对应,应为低温高压榴辉岩构造岩片,并未经历超高压变质作用,且普遍经历了角闪岩相退变作用。结合榴辉岩中锆石包裹体和年代学研究,该地区榴辉岩记录了两期变质事件,而这两组年龄与Li et al. (2004)峰期变质年龄236.1±4.2Ma和退变质222±4.2Ma基本一致,分别反映了榴辉岩峰期变质年龄和折返过程中角闪岩相退变质年龄。
5 结论(1) 本次对黄岗-牛凸岭地区榴辉岩地质特征、岩相学、P-T条件评价以及锆石U-Pb年代学的研究表明,中大别腹地黄岗-牛凸岭地区榴辉岩应为低温高压榴辉岩构造岩片,其峰期变质年龄也在南大别峰期变质年龄范围内,该地区榴辉岩应与南大别低温高压单位相对应,并未经历超高压变质作用,且普遍经历了角闪岩相退变作用。
(2) 综合榴辉岩中锆石包裹体和年代学研究,该地区榴辉岩记录了两期变质事件,其样品JS250锆石U-Pb年龄235.2±4.2Ma应反映了榴辉岩峰期变质年龄,而样品JS249锆石U-Pb年龄217.3±3.5Ma则反映了角闪岩相退变质年龄。
致谢 感谢毛骞博士和马玉光工程师在矿物电子探针测试分析中的大力支持和帮助;感谢杨岳衡和张艳斌老师在激光等离子质谱仪测试分析中给予了热情的指导和帮助;感谢审稿专家提出了许多建设性的意见。[] | Ai Y. 1994. A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer. Contributions to Mineralogy and Petrology, 115(4): 467–473. DOI:10.1007/BF00320979 |
[] | Ames L, Zhou GZ, Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472–489. DOI:10.1029/95TC02552 |
[] | Ayers JC, Dunkle S, Gao S, Miller CF. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3): 315–33. |
[] | Banno S. 1970. Classification of eclogites in terms of physical conditions of their origin. Physics of the Earth and Planetary Interiors, 3: 405–421. DOI:10.1016/0031-9201(70)90083-X |
[] | Carswell DA. 1990. Eclogite Facies Rocks. New York: Blackie. |
[] | Carswell DA, O'Brien PJ, Wilson RN, Zhai M. 1997. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of central China. Journal of Metamorphic Geology, 15(2): 239–252. DOI:10.1111/jmg.1997.15.issue-2 |
[] | Carswell DA, Wilson RN, Zhai M. 2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos, 52(1-4): 121–155. DOI:10.1016/S0024-4937(99)00088-2 |
[] | Castelli D, Rolfo F, Compagnoni R, Xu ST. 1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. The Island Arc, 7(1-2): 159–173. DOI:10.1046/j.1440-1738.1998.00185.x |
[] | Cawthron RG, Collerson KD. 1974. The recalculation of pyroxene end-member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses. American Mineralogist, 59: 1023–1208. |
[] | Chavagnac V, Jahn BM. 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133(1): 29–51. |
[] | Chen DG, Deloule E, Chen H, Xia QK, Wu YB. 2004. Multi-isotopic system geochronology of low temperature eclogite from Huangzhen, southern Dabie Terrain. Science in China (Series D), 47(10): 931–942. DOI:10.1360/03yd0043 |
[] | Chen FK, Siebe W, Guo JH, Cong BL, Satir M. 2003. Late Proterozoic magmatism and metamorphism recorded in gneisses from the Dabie high pressure metamorphic zone, eastern China evidence from zircon U-Pb geochronology. Precambrian Research, 120(1-2): 131–148. DOI:10.1016/S0301-9268(02)00162-6 |
[] | Chen Y, Ye K, Wu CM. 2005. Reviews on applying common-used geothermobarometers for eclogites. Acta Petrologica Sinica, 21(4): 1067–1080. |
[] | Chen Z, Li Q. 2008. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications. Chinese Science Bulletin, 53(5): 768–776. DOI:10.1007/s11434-008-0006-1 |
[] | Coleman RG, Lee DE, Beatty LB, Brannock WW. 1965. Eclogites and Eclogites: Their differences and Similarities. Geological Society of America Bulletin, 76(5): 483–508. DOI:10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2 |
[] | Cong BL. 1996. Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press. |
[] | Cuthbert SJ, Carswell EJ, Krogh-Ravana EJ, Wain A. 2000. Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52(1-4): 165–195. DOI:10.1016/S0024-4937(99)00090-0 |
[] | Droop GTB. 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51(361): 431–435. DOI:10.1180/minmag |
[] | Ellis DJ, Green DH. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71(1): 13–22. DOI:10.1007/BF00371878 |
[] | Eskola P. 1914. On the Petrology of the Orijärvi Region in Southwestern Finland. Finland: Printing-office of the Imperial Senate. |
[] | Eskola P. 1915. On the Relations between the Chemical and Mineralogical Composition in the Metamorphic Rocks of the Orijarvi Region. Finlande: Bull comm géol: 109-143. |
[] | Eskola P. 1921. On the Eclogites of Norway. Oxford: In Commission by Jacob Dybwad. |
[] | Faure M, Lin W, Shu L, Sun Y, Schaèrer U. 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11(6): 251–258. DOI:10.1046/j.1365-3121.1999.00257.x |
[] | Faure M, Lin W, Schärer U, Shu L, Sun Y, Arnaud N. 2003. Continental subduction and exhumation of UHP rocks, structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3): 213–241. |
[] | Franz L, Romer RL, Klemd R, Schimd R, Oberhanshli R, Wagner T, Dong S. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flowduring exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3): 322–346. DOI:10.1007/s004100000233 |
[] | Franz L, Romer RL. 2007. Caledonian high-pressure metamorphism in the Strona-Ceneri Zone (Southern Alps of southern Switzerland and northern Italy). Swiss journal of Geosciences, 100(3): 457–467. DOI:10.1007/s00015-007-1232-2 |
[] | Ganguly J, Cheng W, Tirone M. 1996. Thermodynamics of aluminosilicate garnet solid solution: New experimental data, an optimized model, and thermometric applications. Contributions to Mineralogy and Petrology, 126(1-2): 137–151. DOI:10.1007/s004100050240 |
[] | Green TH, Hellman PL. 1982. Fe Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos, 15(4): 253–266. DOI:10.1016/0024-4937(82)90017-2 |
[] | Holland TJB. 1980. The reaction albite=jadeite+quartz determined experimentally in the range 600~1200℃. American Mineralogist, 65: 129–134. |
[] | Holland TJB, Powell R. 1990. An enlarged and updated internally consistent thermodynamic dataset with uncertainties andcorrelations: The system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 8(1): 89–124. DOI:10.1111/jmg.1990.8.issue-1 |
[] | Holland TJB, Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of metamorphic Geology, 16(3): 309–343. |
[] | Jahn BM, Rumble D and Liou JG. 2003. Geochemistry and isotopic tracer study of UHP metamorphic rocks.In: Carswell DA and Compagnoni R (eds.). EMU Notes in Mineralogy. Ultrahigh Pressure Metamorphism.Hungary, 2003. Hungary: Eötvös University Press, 5: 365-414 |
[] | Kretz R. 1983. Symbols for rock-forming minerals. American Mineralogist, 68: 277–279. |
[] | Krogh EJ. 1988. The garnet-clinopyroxene Fe-Mg geothermometer: A reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 99(1): 44–48. DOI:10.1007/BF00399364 |
[] | Krogh R. 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer: An updated calibration. Journal of Metamorphic Geology, 18(2): 211–219. DOI:10.1046/j.1525-1314.2000.00247.x |
[] | Krogh-Ravna EJ, Terry MP. 2004. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. Journal of Metamorphic Geology, 22(6): 579–592. DOI:10.1111/jmg.2004.22.issue-6 |
[] | Li SG, Xiao Y, Liou D, Chen Y, Ge N, Zhang Z, Wang S. 1993. Collision of the north China and Yangtse blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1): 89–111. |
[] | Li SG, Jagoutz E, Chen Y, Li Q. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Moubtains, centrl China. Geochimica et Cosmochimica Acta, 64(6): 1077–1093. DOI:10.1016/S0016-7037(99)00319-1 |
[] | Li XP, Zheng YF, Wu YB, Chen FK, Gong B, Li YL. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443–470. DOI:10.1007/s00410-004-0616-9 |
[] | Li YL, Zheng YF, Fu B. 2005. Mossbauer spectroscopy of omphacite and garnet pairs from eclogites: Application to geothermobarometry. American Mineralogist, 90(1): 90–100. DOI:10.2138/am.2005.1400 |
[] | Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes-the view from China. Journal of Asian Earth Sciences, 35(3): 199–231. |
[] | Liu FL, Xu ZQ, Yang JS, Xue HM. 2005. The boundary between UHP and HP metamorphic belts in southwestern Sulu terrane, eastern China: Evidence from mineral inclusions in zircons from metamorphic rocks. Acta Petrologica et Mineralogica, 24(1): 32–46. |
[] | Liu FL, Xue HM, Xu ZQ, Liang FH, Gerdes A. 2006. SHRIMP U-Pb zircon dating from eclogite lens in marble, Shuanghe area, Dabie UHP terrane: Restriction on the prograde, UHP and retrograde metamorphic ages. Acta Geoscientica Sinica, 22(7): 1761–1778. |
[] | Liu FL, Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1–39. DOI:10.1016/j.jseaes.2010.08.007 |
[] | Liu JB, Ye K, Sun M. 2006. Exhumation P-T path of UHP eclogites in the Hong'an area, western Dabie Mountains, China. Lithos, 89(1-2): 154–173. DOI:10.1016/j.lithos.2005.12.002 |
[] | Liu X, Wei C, Li S, Dong S, Liu J. 2004. Thermobaric structure of a traverse across western Dabieshan: Implications for collision tectonics between the Sino-Korean and Yangtze cratons. Journal of Metamorphic Geology, 22(4): 361–379. DOI:10.1111/j.1525-1314.2004.00519.x |
[] | Liu XM. 2004. Geochemical research on the Mesozoic crust-mantle interaction in the North China Craton. Ph. D. Dissertation? Xi'an: Northwest University (in Chinese) |
[] | Liu YC, Li SG. 2008. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(18): 2153–2165. |
[] | Liu YC, Li SG, Gu XF, Xu ST, Chen GB. 2007. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology, 25(9): 975–989. DOI:10.1111/j.1525-1314.2007.00739.x |
[] | Massonne HJ, Schreyer W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and Quartz. Contributions to Mineralogy and Petrology, 96(2): 212–224. DOI:10.1007/BF00375235 |
[] | Massonne HJ, Schreyer W. 1989. Stability field of the high-pressure assemblage, talc+phengite and two new phengite barometers. European Journal of Mineralogy, 1(3): 391–410. DOI:10.1127/ejm/1/3/0391 |
[] | Nowlan EU, Schertl HP, Schreyer W. 2000. Garnet-omphacite-phengite thermobarometry of eclogites from the coesite-bearing unit of the southern Dora-Maira Massif, Western Alps. Lithos, 52(1-4): 197–214. DOI:10.1016/S0024-4937(99)00091-2 |
[] | Okay AI, Xu ST, Sengor AMC. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1: 595–598. DOI:10.1127/ejm/1/4/0595 |
[] | Okay AI. 1993. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China. European Journal of Mineralogy, 5(4): 659–675. DOI:10.1127/ejm/5/4/0659 |
[] | Powell R. 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: The garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3(3): 231–243. DOI:10.1111/jmg.1985.3.issue-3 |
[] | Proyer A, Dachs E, McCammon C. 2004. Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contributions to Mineralogy and Petrology, 147(3): 305–318. DOI:10.1007/s00410-004-0554-6 |
[] | Rolfo F, Compagnoni R, Xu ST, Jiang LL. 2000. First report of felsic whiteschist in the ultrahigh-pressure metamorphic belt of Dabie Shan, China. European Journal of Mineralogy, 12(4): 883–898. DOI:10.1127/0935-1221/2000/0012-0883 |
[] | Rolfo F, Compagnoni R, Wu WP, Xu ST. 2004. A coherent lithostratigraphic unit in the coesite-eclogite complex of Dabie Shan, China: Geologic and petrologic evidence. Lithos, 73(1-2): 71–94. DOI:10.1016/j.lithos.2003.10.008 |
[] | Rowley DB. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1): 1–13. |
[] | Schmid R, Franz L, Oberhänsli R, Dong SW. 2000. High-Si phengite, mineral chemistry and P-T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China. Geological Journal, 35(3-4): 185–207. DOI:10.1002/gj.v35:3/4 |
[] | Schmid R, Wilke M, Oberhänsli R, Janssens K, Falkenberg G, Franz L, Gaab A. 2003. Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos, 70(3-4): 381–392. DOI:10.1016/S0024-4937(03)00107-5 |
[] | Schmidt A, Weyer S, Mezger K, Scherer EE, Xiao Y, Hoefs J, Brey GP. 2008. Rapid eclogitisation of the Dabie-Sulu UHP terrane: Constraints from Lu-Hf garnet geochronology. Earth and Planetary Science Letters, 273(1): 203–213. |
[] | Shi YH, Wang QC. 2006. Variation in peak P-T conditions across the upper contact of the UHP terrane, Dabieshan, China: Gradational or abrupt?. Journal of Metamorphic Geology, 24(9): 803–822. |
[] | Shi YH, Yu G, Zhao Q. 2007. The identification on the high-ultrahigh pressure transition eclogite across the southern Dabie and its tectonic implication. Journal of Mineralogy and Petrology, 27(1): 52–62. |
[] | Shi YH, Lin W, Wang QC. 2008. The P-T path with increasing temperature during retrograde metamorphism for the low-temperature and high-pressure eclogites from Leizhuang across Tongcheng area in Dabie Mountains and its tectonic significance. Acta Petrologica Sinica, 24(8): 1759–1770. |
[] | Smulikowski K. 1960. Comments on eclogite facies in regional metamorphism. Rep. Int. Geol. Congr. XXI Copenhagen Pt, 13: 372–382. |
[] | Smulikowski K. 1964. An attempt at eclogite classification. Bull. Acad. Polon. Sci. (Ser Sci geol et geogr), 12: 27–33. |
[] | Smulikowski K. 1968. Differentiation of eclogites and its possible causes. Lithos, 1(2): 89–101. DOI:10.1016/S0024-4937(68)80001-5 |
[] | Tabata H, Maruyama S, Shi Z. 1998. Metamorphic zoning and thermal structure of the Dabie ultrahigh-pressure / high-pressure terrane, central China. The Island Arc, 7(1-2): 142–158. DOI:10.1046/j.1440-1738.1998.00186.x |
[] | Wain AL. 1998. Ultrahigh Pressure Metamorphism in the Western Gneiss Region of Norway. Oxford: University of Oxford. |
[] | Wang XM, Liou JG, Mao HK. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085–1088. DOI:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2 |
[] | Wang XM, Jing Y, Liou JG, Pan G, Liang W, Xia M, Maruyama S. 1990. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China. Lithos, 25(1): 119–131. |
[] | Wang XM, Liou JG, Maruyama S. 1992. Coesite-bearing eclogites from the Dabie Mountains, Central China: Petrogenesis, P-T paths, and implications for regional tectonics. Journal of Geology, 100(2): 231–250. DOI:10.1086/629585 |
[] | Wang XM, Sakuma T, Asafu-Adjaye E, Shiu GK. 1999. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius by LC/MS/MS. Analytical Chemistry, 71(8): 1579–1584. DOI:10.1021/ac980890p |
[] | Waters DJ, Martin HN. 1993. Geobarometry of phengite-bearing eclogites. Terra Abstracts, 5: 410–411. |
[] | Waters DJ. 1996. Update of Waters and Martin. http://www.earth.ox.ac.uk/fdavewa/research/ecbarcal.html |
[] | Wei CJ, Shan ZG, Zhang LF, Wang SG, Chang ZG. 1998. Determination and geological significance of the eclogites from the northern Dabie Mountains, central China. Chinese Science Bulletin, 43(3): 253–256. DOI:10.1007/BF02898924 |
[] | Wei CJ, Su XL, Lou YX, Li YJ. 2009. A new interpretation of the conventional thermobarometry in eclogite: Evidence from the calculated PT pseudosections. Acta Petrologica Sinica, 25(9): 2078–2088. |
[] | Wu CM, Zhao GC. 2006. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages. Journal of Petrology, 47(12): 2357–2368. DOI:10.1093/petrology/egl047 |
[] | Wu YB, Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554–1569. DOI:10.1007/BF03184122 |
[] | Wu YB, Zheng YF, Gong B. 2005. U-Pb dating of marble-associated eclogite in the Dabie-Sulu Orogenic Belt and its geological implications. Acta Geoscientica Sinica, 26(Suppl.1): 118–120. |
[] | Zhang RY, Liou JG, Ernst WG. 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16(1): 1–26. DOI:10.1016/j.gr.2009.03.008 |
[] | Zheng YF, Wu YB, Zhao ZF, Zhang SB, Xu P, Wu FY. 2005. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 240(2): 378–400. DOI:10.1016/j.epsl.2005.09.025 |
[] | Zheng YF, Gao TS, Wu YB, Gong B, Liu XM. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267–283. DOI:10.1111/jmg.2007.25.issue-2 |
[] | Zheng YF. 2008. Research progress of ultrahigh pressure metamorphic and continental collision. Chinese Science Bulletin, 53(18): 2129–2152. |
[] | Zheng YF. 2009. 25 years of continental deep subduction. Chinese Science Bulletin, 54(22): 4266–4270. DOI:10.1007/s11434-009-0707-0 |
[] | 陈道公, DelouleE, 程昊, 夏群科, 吴元保. 2003. 南大别黄镇低温榴辉岩多同位素体系年代学研究. 中国科学(D辑), 33(9): 828–840. |
[] | 陈意, 叶凯, 吴春明. 2005. 榴辉岩常用温压计在应用中应注意的问题. 岩石学报, 21(4): 1067–1080. |
[] | 刘福来, 许志琴, 杨经绥, 薛怀民. 2005. 南苏鲁超高压带和高压带边界的准确限定--来自变质岩锆石中矿物包体的证据. 岩石矿物学杂志, 24(1): 32–46. |
[] | 刘福来, 薛怀民, 许志琴, 梁风华, GerdesA. 2006. 大别超高压变质带的进变质、超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例. 岩石学报, 22(7): 1761–1778. |
[] | 柳小明. 2004.华北克拉通中生代壳幔交换作用的地球化学研究.博士学位论文.西安:西北大学 |
[] | 刘贻灿, 李曙光. 2008. 俯冲陆壳内部的拆离和超高压岩石的多板片差异折返:以大别-苏鲁造山带为例. 科学通报, 53(18): 2153–2165. |
[] | 石永红, 喻根, 赵群. 2007. 南大别高压-超高压过渡类型榴辉岩的确定及其构造意义. 矿物岩石, 27(1): 52–62. |
[] | 石永红, 林伟, 王清晨. 2008. 大别山桐城地区雷庄低温高压榴辉岩的增温退变PT轨迹及其构造含义. 岩石学报, 24(8): 1759–1770. |
[] | 魏春景, 单振刚, 张力飞, 王式洸, 常宗广. 1997. 北大别榴辉岩的确定及其地质意义. 科学通报, 42(2): 1832–1835. |
[] | 魏春景, 苏香丽, 娄玉行, 李艳娟. 2009. 榴辉岩中传统地质温压计新解:来自PT视剖面图的证据. 岩石学报, 25(9): 2078–2088. |
[] | 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589–1604. |
[] | 吴元保, 郑永飞, 龚冰. 2005. 大别-苏鲁造山带大理岩中榴辉岩包体的锆石U-Pb年龄及其地质意义. 地球学报, 26(S1): 118–120. |
[] | 郑永飞. 2008. 超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例. 科学通报, 53(18): 2129–2152. |