2. 江苏地质调查院, 南京 210018
2. Geological Survey of Jiangsu Province, Nanjing 210018, China
大别造山带结构框架的精确标定是理解大别碰撞造山带的俯冲、折返过程及其形成机制的基本前提(图 1中的插图)。由于该造山带发育了世界上规模最大和最完整的榴辉岩,故该地区一直是国内外地质学者研究大陆深俯冲高压-超高压变质作用关键所在,并据此研究提出了诸多的高压-超高压岩石形成和折返模式(Okay and Sengör, 1992; Maruyama et al., 1994, 1996; Ernst et al., 1997; Ernst, 2001; Dong et al., 1998; Faure et al., 1999, 2003; Wang and Cong, 1999; Hacker et al., 2000; Ratschbacher et al., 2000; Liu et al., 2005, 2007; Wang et al., 2008; Zheng, 2008; Lin et al., 2009)。大别造山带岩石单元的划分经历了较长的过程。最初,Okay et al. (1989)将大别碰撞造山带分为南、北两个单元。Cong (1996)则根据岩石组合、变质级别和榴辉岩空间分布,将该造山划分为北淮阳地块、北大别地块、南大别地块和宿松地块。Faure et al.(1999, 2003) 则从构造角度将其分为北大别浅变质单元、中大别混合岩单元、南大别高压-超高压单元和南部前陆褶冲单元。随着研究的不断深入,特别是北大别单元的榴辉岩的发现(Wei et al., 1998; Liu et al., 2005, 2007),南大别单元中超高压岩块中浅变质岩的确定(Dong et al., 1997; Zheng et al., 2005a, b),以及高压岩块中的含柯石英榴辉岩、片麻岩以及白片岩的发现(Rolfo et al. 2000; Liu et al., 2001; Li et al., 2004),使该造山带的结构单元划分仍存在较多的争议(Zhang et al., 2009; Liou et al., 2009; Liu et al., 2011)。最终,Zheng et al.(2003, 2005a) 根据岩石学、年代学、岩石地球化学和构造地质学等研究结果,自北向南,将大别造山带分为北淮阳地块(浅变质)、北大别地块(高温超高压变质)、中大别地块(中温超高压变质)、南大别地块(低温超高压变质) 和宿松杂岩(低温高压变质)5个单元(图 1中的插图)。
![]() |
图 1 研究区地质简图及采样位置(插图据Lin et al., 2009修改) Fig. 1 The geological map across the southeastern area in Dabie Mountains, showing the sample localities in this study (The inset is modified after Lin et al., 2009) |
从空间分布来看,大别山的高压-超高压榴辉岩主要发育在东南缘,即中大别地块和南大别地块(图 1中的插图)。因此,大量的研究主要集中于该地区。然而,直至目前,对于该地区的结构仍存在不同的认识。Okay (1993)和Carswell et al. (1997)认为其由高压和超高压两个块体构成,Zheng (2008)则强调该地区由均经历了超高压变质的中大别和南大别地块构成,只是这两个地块温度上有所差异。然而,Lin et al. (2009)在中大别地块桐城地区和石永红等(2008)在其腹地确定的高压块体,使之结构划分趋于复杂化。同时,我们注意到大别造山带东南地区的结构划分主要是依据区域和点上的变质岩石学研究建立起来的(Okay et al., 1989; Okay, 1993; Wang et al., 1989, 1990, 1992; Carswell et al., 1997, 2000; Tabata et al., 1998; 王清晨等, 1999; Schmid et al., 2000, Rolfo et al., 2000, 2004; Franz et al., 2001; Proyer et al., 2004; Li et al., 2004;图 1),然而,这些研究主要分布在下五河-碧溪岭-五庙-横冲-双河、石马-马龙和朱家冲-黄镇一带(图 1),而对店前-黄岗-牛凸岭-寺前-罗溪则基本无任何研究资料。换言之,对该区域需要进一步展开精细的、全面的区域变质岩石学研究,并较为合理地确定大别造山带中部地区的构成。
为此,本文从区域变质岩石学和年代学的角度,对大别造山带中部地区进行了细致的分析,并探讨了该地区的结构单元构成。
2 研究区地质背景研究区位于大别造山带东南部,面积约38km×50km,其中最北缘为北大别地块,最南缘为宿松杂岩,中部由中大别地块和南大别地块构成(图 1中的插图),彼此之间为水吼-五河断裂和太湖-马庙断裂所分割(图 1)。此次研究的重点主要针对中、南大别地块,对于这两个地块的空间分布,先前的研究认识基本一致,两者以花凉亭断裂为界,并一致认同中大别地块为一个不可再分的超高压块体(Okay et al., 1989; Okay,1993; Carswell et al., 1997, 2000; Tabata et al., 1998; Zheng, 2008)。
根据野外地质观测、岩石组合、榴辉岩岩相学特征及其围岩和热力学评价的结果,本研究将中部地区分为三个单元:(1) 单元-Ⅰ:主要分布在下五河-菖蒲-马庙-横冲-刘家河以北,水吼-五河断裂以南和马龙-石马一带(图 1)。主体由正片麻岩、石榴绿帘黑云斜长片麻岩、大理岩、石英硬玉岩、钙质片麻岩和榴辉岩构成(Wang et al., 1990, 1992; Okay, 1993; Cong, 1996; Carswell et al., 1997; Liou et al., 1996; Shi and Wang, 2006),面理倾向南,线理倾向南东,表现为一单斜层。榴辉岩多呈透镜体或层状产出,大者可达1km2 (Cong, 1996; Liou et al., 1997; Schmid et al., 2000; Rolfo et al., 2004),小者5~10cm,其最显著的特征是与大理岩共生,均经历了超高压变质作用,并达到了金刚石稳定域的变质作用(Xu et al., 1992, 2005; Okay, 1993)。(2) 单元-Ⅱ:主要位于店前-寺前-罗溪一线(图 1),主要由花岗片麻岩、绿帘黑云斜长片麻岩、角闪岩和榴辉岩构成,面理倾向南,线理倾向南东,为一单斜层。榴辉岩呈层状、透镜体、条带状和块状产出,大者百米,小者数厘米,共生围岩为花岗片麻岩和绿帘黑云斜长片麻岩(Okay, 1993; Shi and Wang, 2006)。(3) 单元-Ⅲ:分布于黄岗-牛凸岭-弥陀-黄镇-朱家冲一线(图 1),其最显著的特征是露头规模可见自形程度良好的石榴石单晶,且粒径较大。到目前为止,对于该类榴辉岩的变质性质人们还存在较多的争议(Okay, 1993; Carswell et al., 1997; Li et al., 2004; Shi and Wang, 2006)。
3 榴辉岩岩相学本研究主要是侧重于榴辉岩的峰期变质条件的热力学评价,故文中对退变和进变质作用不予详细论述。矿物简写据Whitney and Evans (2010),其中Grt=石榴石;Omp=绿辉石;Ph=多硅白云母;Coe=柯石英;Ky=蓝晶石;Rt=金红石;Ep=帘石;Amp=角闪石;Brs=冻蓝闪石;Qtz=石英;Dm=金刚石;Gr=石墨。
3.1 单元-Ⅰ榴辉岩该带榴辉岩以含柯石英和金刚石为特征,柯石英十分普遍,主要以包体形式保存于石榴石和绿辉石中(图 2a),但金刚石极为少见(Xu et al., 1992, 2005; Okay, 1993)。峰期矿物组合为石榴石(40%~50%)+绿辉石(35%~40%)+多硅白云母(1%~5%)+金红石(1%~5%)+柯石英+金刚石(图 2b)。其中石榴石多呈他形-半自形,粒径多在0.6~2mm,内部除含柯石英和金红石外,不含其他矿物(图 2b)。绿辉石则为他形,粒径多在0.5~4mm,常见柯石英包体(图 2a, b)。多硅白云母为自形-半自形,粒径多在0.3~3mm,内部均匀,未见矿物包体。金红石则具有两种存在形式,一种存在于石榴石中,颗粒细小;另一种存在于基质中,多呈他形,粒径为0.1~0.5mm (图 2b)。
![]() |
图 2 三个单元中榴辉岩显微照片 (a)-单元-Ⅰ超高压榴辉岩绿辉石中柯石英包体; (b)-单元-Ⅰ超高压榴辉岩峰期变质矿物石榴石+绿辉石+多硅白云母; (c)-单元-Ⅱ超高压榴辉岩绿辉石中柯石英假象; (d)-单元-Ⅱ超高压榴辉岩峰期变质矿物石榴石+绿辉石+多硅白云母+蓝晶石; (e)-单元-Ⅲ高压榴辉岩石榴石中角闪石+金红石+绿帘石+石英矿物包体; (f)-单元-Ⅲ高压榴辉岩峰期变质矿物石榴石+绿辉石+多硅白云母+蓝晶石 Fig. 2 Microphotos of eclogites from Units Ⅰ, Ⅱ and Ⅲ (a)-cosite in omphacite from UHP-eclogite in Unit-Ⅰ; (b)-the peak metamorphic minerals garnet+omphacite+phengite in UHP-eclogite from Unit-Ⅰ; (c)-polycrystal quartz pseudomorphs after coesite in omphacite from UHP-eclogite in Unit-Ⅱ; (d)-the peak metamorphic minerals garnet+omphacite+phengite+kyanite in UHP-eclogite from Unit-Ⅱ; (e)-the minerals inclusion of amphibole+rutile+quartz+epidote in garnet from HP-eclogite in Unit-Ⅲ; (f)-the peak metamorphic minerals garnet+omphacite+phengite+kyanite in HP-eclogite from Unit-Ⅲ |
该带榴辉岩最显著特征是矿物颗粒细小,具细粒变晶结构,柯石英及其假象少见,主要赋存于绿辉石和石榴石中(图 2c)。峰期组合矿物为石榴石(30%~40%)+绿辉石(25%~30%)+多硅白云母(10%~15%)+金红石(3%~5%)+蓝晶石(3%~8%)(图 2d)。对此类榴辉岩的研究工作,前人极少涉及(Okay, 1995; Tabata et al., 1998; Shi and Wang, 2006),Shi and Wang (2006)认为该类榴辉岩具有HP-UHP过渡性质的榴辉岩。石榴石多为他形-半自形,粒径0.1~0.8mm,其内部偶见一些细小的、无序排布的金红石、角闪石和云母等早期矿物包体。在其边缘常具有薄薄的韭闪石+长石反应边。绿辉石呈他形-半自形,粒径为0.3~0.8mm,发育有透辉石+镁普通角闪石+长石后成合晶。多硅白云母粒径为0.1~0.6mm,多为自形-半自形,边缘具有黑云母+长石后成合晶。蓝晶石则呈自形-半自形,粒径为0.2~1mm。基质中的金红石则为他形,粒径为0.1~0.3mm,并沿矿物粒间生长。
3.3 单元-Ⅲ榴辉岩该单元榴辉岩中的石榴石自形,且颗粒较大(图 2e)。峰期矿物组合为石榴石(30%~40%)、绿辉石(10%~15%)、多硅白云母(1%~8%)、金红石(1%~5%)、绿帘石(细粒)(5%~10%) 和蓝晶石(1%~5%) (图 2f)。其中石榴石粒径多在0.5~5mm,呈自形-半自形,内部含有大量的金红石、角闪石、石英等早期矿物包体,并呈环带排布(图 2e),边缘同样被韭闪石+长石反应边所环绕。绿辉石则呈碎斑状,粒径为0.2~1mm,退变较强烈,发育有透辉石+长石+镁普通角闪石后成合晶。多硅白云母粒径为0.2~1.5mm,多为他形-半自形,常退变为黑云母+长石后成合晶。蓝晶石呈自形-半自形,粒径为0.3~1mm。金红石则为他形,粒径为0.1~0.4mm。细粒的绿帘石为自形-半自形,粒径为0.1~0.3mm,常被解释为硬柱石假象(Castelli et al., 1998; Franz et al., 2001; Li et al., 2004)。
4 榴辉岩峰期变质P-T条件评价本次分析的榴辉岩样品总计16块,其中单元-Ⅰ、-Ⅱ和-Ⅲ的样品分别有5、6和5块(表 1)。矿物成分测试由中国科学院地质与地球物理研究所电子探针分析实验室完成,仪器型号为CAMECA SX51,加速电压15kV,电子束流20nA。石榴石结构式按照ΣCaMnFetotMgAlTiCr=5.00进行计算,其中Ca+Mn+Fe2++Mg=3.00,Al+Ti+Cr+Fe3+=2.00,铁的校正是Fe3+=3.00-(Al+Ti+Cr),Fe2+=Fetot-Fe3+。绿辉石的结构式计算按照6个氧和4个阳离子。多硅白云母的结构式则标准化至ΣSiAlTiCrFeMnMg=12.00,代表性矿物成分见表 2。
![]() |
表 1 研究区榴辉岩峰期矿物组合 Table 1 The peak metamorphic mineral assemblage for eclogites across the study area |
![]() |
表 2 单元-Ⅰ, Ⅱ和Ⅲ榴辉岩中的石榴石、绿辉石和多硅白云母代表性矿物成分(wt%) Table 2 Representative electron-microprobe analyses for garnet, omphacite and phengite in the ecloites from the Units Ⅰ, Ⅱ and Ⅲ respectively (wt%) |
根据上述岩相学分析,研究区榴辉岩峰期组合主要有石榴石、绿辉石、多硅白云母、蓝晶石等矿物(表 1),故本次P-T条件估计应用Ravna and Terry (2004)的Grt-Cpx-Phn-Ky-Qtz地质温压计和Krogh (2000) Grt-Cpx Fe-Mg温度计。其中Ravna and Terry (2004)温压计包含1个压力计和2个温度计。为表述方便,这里分别以数字表示:1=Grt-Cpx-Ph压力计; 2=Grt-Cpx-Ky-Coe温度计; 3=Grt-Cpx-Ky-Qtz温度计; 4=Grt-Cpx Fe-Mg温度计(Krogh, 2000)。依据峰期变质矿物的差异(表 1),单元-Ⅰ中多硅白云母-榴辉岩、单元-Ⅱ和单元-Ⅲ中蓝晶石-多硅白云母-榴辉岩的温压条件分别应用方法1和4、1和2和1和3进行联合求解。在峰期成分选取方面,由于主要矿物石榴石、绿辉石和多硅白云母发育有不同程度和类型的成分环带,从而影响了P-T条件的评价的准确性(Carswell et al., 1997; Shi and Wang, 2006)。为此,本次研究借鉴我们早期的矿物成分剖面分析(石永红等, 2008),并遵循Carswell et al. (1997)、Holland (1980)和Massonne and Schreyer (1987)的建议,选择相邻矿物的边缘部分,石榴石高Mg2+、绿辉石高Na+和多硅白云母高Si4+部分计算,以保证峰期温压估计的合理性。同时,每个样品选取5个矿物对进行计算,以保证统计意义。计算的PT点数总计95个,分析结果见表 3和图 3。
![]() |
图 3 三个单元中榴辉岩峰期变质条件 Fig. 3 The peak metamorphic P-T conditions for eclgites from Units Ⅰ, Ⅱ and Ⅲ |
![]() |
表 3 单元-Ⅰ、-Ⅱ和-Ⅲ榴辉岩峰期变质P(GPa)-T(℃) 条件 Table 3 The peak metamorphic P(GPa)-T(℃) conditions for Units I, Ⅱ and Ⅲ respectively |
从图 3可以看出,3个单元的PT值呈规律性排布,单元-Ⅰ基本位于金刚石稳定域,温压范围为685~770℃和3.43~4.67GPa;单元-Ⅱ则大多数位于柯石英稳定域,温压范围为556~708℃和2.74~3.44GPa;单元-Ⅲ严格位于柯石英/石英相变线之下,温压范围为530~588℃和2.32~1.73GPa。为了客观地进行比较,重新计算的Carswell et al. (1997)的数据也被投影到P-T图解中(Ravna and Terry, 2004),不难看出,Carswell et al. (1997)的PT值主要集中在金刚石和石英稳定域(图 3),且他们的样品也主要分布在单元-Ⅰ和单元Ⅲ中(图 1),两者具有很好的耦合性。而对于单元-Ⅱ前人的变质岩石学研究几乎均没有涉及(Okay et al., 1989; Okay,1993; Wang et al., 1989, 1990, 1992; Carswell et al., 1997, 2000; Wang and Cong, 1999; Schmid et al., 2000, Rolfo et al., 2000, 2004; Franz et al., 2001; Proyer et al., 2004; Li et al., 2004; 图 1),缺乏较为精确的PT条件限定,只是简单地将其归为超高变质块体。仅Tabata et al. (1998)对其进行过较为详细的温度评价,并认为在压力为3.0GPa时,该单元的温度大致在600±50℃。这一结果,与此次确定的单元-Ⅱ的温压范围也基本一致。基于上述分析,我们认为大别山东南缘的高压-超高压地块应当由3个具有不同变质级别的地块构成。
5 榴辉岩锆石U/Pb年龄分析本次锆石年龄分析的榴辉岩样品总计2块,分别为单元-Ⅰ的样品S70和单元-Ⅱ的样品S59 (图 4)。锆石单矿物挑选由河北省地勘局廊坊实验室完成,每个样品重量约4~7kg,每个样品挑选的锆石颗粒数在80~120粒。锆石制靶由中国科学院地质与地球物理研究所离子探针实验室采用Cameca IMS-1280离子探针(SIMS) 完成,并进行了透射光、反射光和阴极发光(CL) 显微照相和锆石包体的拉曼光谱分析。阴极发光(CL) 照射由中国科学院地质与地球物理研究所扫描电镜实验室完成,仪器型号为MiniCL。拉曼光谱分析在西北大学地质系大陆动力学国家重点实验室激光拉曼光谱实验室进行,仪器型号为Renishaw-1000。锆石U-Pb定年由中国科学院地质与地球物理研究所离子探针实验室Cameca IMS-1280离子探针(SIMS) 完成。采用10×15μm的平行光束斑,一次束流约为2~4nA,扫描10个循环,每个分析点大约13min。普通Pb校正采用实测204Pb,单点分析的同位素比值及年龄误差为1σ,加权平均年龄误差为95%置信度。数据处理应用Isoplot/Ex v.3.0软件分析完成(Ludwig, 2003)。分析数据见表 4。
![]() |
图 4 前人榴辉岩变质年龄分布图 Fig. 4 The map of ages of eclogites from previous studies in spatial distribution across this study area |
![]() |
表 4 单元-Ⅰ中榴辉岩样品S70和单元-Ⅱ中榴辉岩样品S59锆石U-Pb数据 Table 4 Zircon U-Pb data for samples S70 and S59 in Units Ⅰ and Ⅱ respectively |
该样品锆石分析点数总计38个(表 4),均为谐和年龄,年龄范围在218.1±3.3Ma~646.0±9.2Ma (图 5、图 6a)。单偏光下这些锆石多呈浑圆状、椭圆状、四方柱状等,为他形-半自形,粒径为40~150μm (图 5a-i)。CL图显示这些锆石普遍具有核、边结构(图 5a, c, e, g, i, j, k, l)。根据Th/U比值,这些锆石年龄可分为两组(表 4):第一组:锆石分析数据有9个,Th/U < 0.1,年龄范围为218.1±3.3Ma~228.9±3.5Ma。CL图显示,该组锆石多为无分带、弱分带、云雾状分带和片状分带(图 5a, c, e, g, i),明显为变质或变质增生锆石。第二组:锆石分析数据共29个,Th/U多大于0.4 (仅分析点10、24和26的Th/U在0.3~0.4之间),年龄范围为264.9±4.1Ma~646.0±9.2Ma,CL图显示该组锆石多具有岩浆振荡环带(图 5i, j, k, l),意味着这组锆石具有岩浆成因特征。鉴于本次研究主要是探讨榴辉岩的变质年龄,故这里对该组年龄不予阐述。依据拉曼光谱测试分析,第一组锆石中,年龄在222.8±3.6Ma~228.9±3.5Ma范围内的7个锆石普遍含有石榴石、绿辉石、多硅白云母和柯石英包体(图 5b, d, f, h; 图 7a-d)。参照岩相学分析(图 2a, b),这些矿物应为峰期矿物,故这些年龄反映的是峰期变质年龄,加权平均年龄为226.4±2.6Ma (图 6b)。而年龄 < 220Ma仅有2个分析数据(分析点9和21,表 4),尽管没有矿物包体限定,但是从CL图可以看出(图 5g),该年龄的锆石以变质增生边形式产出,围绕着峰期锆石生长,据此可以判定该年龄为退变质年龄,其加权平均年龄为218.5±4.6Ma。
![]() |
图 5 样品S70和S59阴极发光图和单偏光照片 (a、c、e、g、i-l)-样品S70中锆石阴极发光图; (b、d、f、h)-样品S70锆石中柯石英、石榴石、绿辉石和多硅白云母包体; (m、o、q、s)-样品S59中锆石阴极发光图; (n、p、r、t)-样品S59中锆石中长石、石榴石、绿辉石和多硅白云母包体 Fig. 5 Cathodoluminescene (CL) images and plane-polarized light photos for zircons of samples S70 and S59 (a, c, e, g, i-l)-the CL images for zircons in sample S70; (b, d, f, h)-the mineral inclusions of coesite, garnet, omphacite and phengite in zircons from sample S70; (m, o, q, s)-the CL images for zircons in sample S59; (n, p, r, t)-the mineral inclusions of plagioclase, garnet, omphacite and phengite in zircons from Sample S59 |
![]() |
图 6 样品S70锆石U-Pb年龄谐和图(a、b)、样品S59锆石U-Pb年龄谐和图(c) 和年龄-压力-地理位置变化图(d) Fig. 6 Concordia plots for zircon from sample S70 (a, b) and from Sample S59 (c), and age-pressure-location variation plot (d) |
![]() |
图 7 样品S59和S70拉曼光谱 (a-d)-样品S70锆石中柯石英、石榴石、绿辉石和多硅白云母拉曼光谱; (e-h)-样品S59锆石中长石、石榴石、绿辉石和多硅白云母拉曼光谱 Fig. 7 Raman spectroscopy of minerals from samples S70 and S59 (a-d)-plots of Raman spectroscopy for coesite, garnet, omphacite and phengite in zircons from sample S70 respectively; (e-h)-plots of Raman spectroscopy for plagioclase, garnet, omphacite and phengite in zircons from sample S59 respectively |
该样品中的锆石多呈椭圆状、浑圆状,为他形-半自形,长宽比为1:1至1:2,粒径为60~100μm。该样品锆石分析点数总计22个,年龄范围为213.9±3.2Ma~237.0±3.5Ma,均为谐和年龄(图 6c),其Th/U为0.023~0.061,均 < 0.1(表 4)。锆石普遍具有核边结构,边部多呈亮洁状,核部则为无分带、弱分带、云雾状和片状分带(图 5m, o, q, r),并含有大量的矿物包体(图 5n, p, r, t)。从拉曼光谱分析结果来看(图 7e-h),这些矿物多为长石、石榴石、绿辉石、多硅白云母和金红石。仔细对比可以看出,含石榴石、绿辉石、多硅白云母和金红石包体的锆石年龄普遍偏老,年龄在226.1Ma~237.0±3.5Ma,共计7颗(图 5o-t; 图 7f-h),而年龄在213.9±3.2Ma~222.4Ma的15颗锆石,主要含长石矿物包体(图 5m, n; 图 7e)。结合榴辉岩的岩相学分析,可以判定前一组年龄为峰期变质年龄,加权平均年龄为230.1±3.5Ma,后一组年龄应为退变年龄,加权平均年龄为217.0±1.7Ma (图 6c)。
至于单元-Ⅲ榴辉岩的变质年龄,已由徐旭峰等(2013)完成(见本期),确定的榴辉岩峰期变质年龄为235.2±4.2Ma,退变质年龄为217.3±3.5Ma。结合这些年龄的空间分布和压力变化,可以看出(图 6d),随着俯冲深度的变化,自单元-Ⅰ (金刚石稳定域)、单元-Ⅱ (柯石英稳定域) 至单元-Ⅲ (石英稳定域),榴辉岩峰期变质年龄逐渐变老226.4±2.6Ma (单元-Ⅰ)→230.1±3.5Ma (单元-Ⅱ)→235.2±4.2Ma (单元-Ⅲ),这一变化趋势与榴辉岩P-T条件空间分布规律十分吻合,同样暗示了大别山东南缘的块体可能是由多个岩片构成的。
6 大别山东南缘的结构单元的划分尽管,现今普遍认同大别造山带东南缘是由两个超高压地块--中大别和南大别构成(Zheng, 2008),但从划分该地块的基础性的研究--变质岩石学和年代学依据来看,这些研究均集中在单元-Ⅰ和单元-Ⅲ中(图 1、图 4),而对研究区腹地单元-Ⅱ中的店前-寺前-罗溪一带没有任何研究资料。这意味着较为全面的P-T条件和年龄变化信息可能被掩盖了,致使该地块的精确结构无法再现。依据本次研究的结果,我们认为该地块应当是由3个岩石-构造单元构成。
6.1 榴辉岩峰期变质P-T条件的空间分布特征为便于阐述和讨论,依据此次岩石学、年代学的研究,我们建立了G (地质)-T(温度)-P(压力)-t(年龄) 剖面(图 8)。从野外地质观测分析,单元-Ⅰ主要由粗粒榴辉岩及其大理岩、硬玉石英岩、绿帘黑云斜长片麻岩和正片麻岩构成,单元-Ⅱ主要由细粒榴辉岩及花岗片麻岩组成,单元-Ⅲ则由具自形石榴石的榴辉岩、黑云母片麻岩和少量的花岗片麻岩构成。三者在榴辉岩特征和共生围岩方面有较大的差异(图 2),在空间分布上依次堆叠而成(图 1、图 8a),分别对应于三个不同的岩石-构造岩片,其中单元-Ⅰ处于最下部,单元-Ⅱ位于中部层位,而单元-Ⅲ则处于最上部。尽管,本次研究未对它们之间的接触关系进行细致分析,但前人的研究表明三者呈构造接触,界线分别位于马龙-石马以北(Xue et al., 1996; Tabata et al., 1998)、大坝以北(Okay, 1993) 和大坝附近(Carswell et al., 1997) (图 8a)。从温度和压力变化看,三个岩片也具有很好的耦合性(图 8b, c),其中单元-Ⅰ处于金刚石稳定域,单元-Ⅱ位于柯石英稳定域,单元-Ⅲ则位于石英稳定域(图 3)。
![]() |
图 8 研究区地质(a)-温度(b)-压力(c)-年龄(d) 剖面图 Fig. 8 The profiles of geology (a)-temperature (b)-pressure (c)-age (d) across the study area |
为了客观地地评价P-T条件的变化,温压计算的不确定性需要较为准确的限定。PT值估计的不确定性主要源于成分测试分析误差、组分-活度关系、成分选取、地质温压计和Fe2+的校正。而根据Worley and Powell (2000)和Powell and Holland (2008)的论述,若温压评价主要目的是区分同一类样品的PT差异时,源于前三者的不确定性是可以忽略或极小的。对比本次研究,测试分析对象均为具有大致相同的峰期矿物组合的榴辉岩(图 2),并在同一个实验室完成,峰期成分的选择则是在仔细检查具平衡结构的矿物基础上,遵循Carswell et al. (1997)、Holland (1980)和Massonne and Schreyer (1987)的建议选取的。因此,源于这三方面的不确定性是可以忽略的。而温压计算则是应用Ravna and Terry (2004)的Grt-Cpx-Phn-Ky-Qtz地质温压计和Krogh (2000) Grt-Cpx Fe-Mg温度计。由于单元-Ⅱ和单元-Ⅲ中的榴辉岩具有石榴石+多硅白云母+绿辉石+蓝晶石±柯石英/石英矿物组合,故Ravna and Terry (2004)温压计中的方法1 (压力计) 和方法2、3 (温度计) 被应用,这些温压计因不涉及主要矿物(如石榴石、绿辉石) 的Fe2+校正,故其PT估计被较好地限定。而单元-Ⅰ中榴辉岩因缺乏蓝晶石,其PT评价则应用方法1和方法4 (Krogh (2000) Grt-Cpx Fe-Mg温度计)。如此,主要矿物(特别是绿辉石) 中Fe2+校正势必对温度估计影响较大。然而,根据Ravna and Terry (2004)对Carswell et al. (1997)数据重新评价的结果来看,其计算的PT值与岩相学分析的结果十分吻合(Carswell et al., 1997; Xu et al., 1992)。且温度评价接近于Schmid et al. (2003)应用X射线吸收近边结构分析(XANES:X-ray absorption near-edge structure analysis) 对石榴石、绿辉石中Fe2+精确测量后,应用相同的温度计计算的温度。这暗示了本次应用的方法4和主要矿物Fe2+的校正是可行的。基于以上论述,加之本次研究目的是评价同一类岩石的温压差异,我们认为P-T评价是较为合适的,不确定性可以由每个单元平均P-T条件的误差代表(图 3)。
从计算的结果来看(图 3; 图 8b, c; 表 3),三个单元的平均温压及误差分别是:(1) 单元-Ⅰ:T=723±22℃和P=3.90±0.43GPa;(2) 单元-Ⅱ:T=630±45℃和P=3.10±0.23GPa;(3) 单元-Ⅲ:T=545±24℃和P=2.48±0.11GPa。不难看出,即便考虑到温度、压力的误差,单元-Ⅰ、单元-Ⅱ和单元-Ⅲ之间,仍分别有~25℃、~15℃和~0.15GPa、~0.28GPa的温压差异(图 8b, c)。然而,仅从数值上比较,P-T差异并不是十分明显。对此,我们认为可能两种原因,一是较大的温压误差,使P-T差异无法体现;二是单元-Ⅱ的确定掩盖了温压差异。早期的研究(Okay, 1993; Carswell et al., 1997) 由于缺乏对单元-Ⅱ的研究,致使在单元-Ⅰ和单元-Ⅲ温压差异得以显著的体现,压力差异可达1.0~1.2GPa,并据此形成了大别造山带东南缘由2个不同变质级别的单元构成的认识(Zheng, 2008)。的确,如果排除单元-Ⅱ,本次研究确定的P-T值,在单元-Ⅰ和单元-Ⅲ之间至少有~130℃和~0.9GPa的温压差异(图 3; 图 8c, d),这一结果与Okay (1993)、Carswell et al. (1997)的研究是一致的(图 3; 图 8c, d)。而此次研究对单元-Ⅱ的标定确证了大别造山带东南缘是由3个具有不同变质级别的岩石-构造单元构成,并非简单地由两个单元构成(Okay, 1993; Carswell et al., 1997; Zheng, 2008)。从P-T条件的空间变化来看,总体趋势尽管是自北向南,温度、压力渐次降低(图 1、图 3),但这种变化并不是连续的,而是在各岩片之间存在P-T差异(图 8c, d)。特别是在马龙-石马一线,样品S68、S69和S70的温度、压力急剧上升,明显高于周边的温压(图 1; 图 8c, d),显示了跳跃性的变化。对此,可能的解释是后期的风化剥蚀作用(Wang et al., 2003),使处于中部、上部层位的单元-Ⅱ和单元Ⅲ被剥蚀掉,致使下部层位的单元-Ⅰ被揭露。
6.2 榴辉岩峰期变质年龄空间展布关于大别造山带榴辉岩的变质年龄,前人已进行了大量的分析(Li et al., 1993, 2000; Ames et al., 1996; Chavagnac and Jahn, 1996; Jahn et al., 1996, 2003; Rowley et al., 1997; Ayers et al., 2002; 陈道公等, 2003; Li et al., 2004; Zheng et al., 2005b, 2007; Liu et al., 2007; Wu et al., 2006; Chen et al., 2008; Schmidt et al., 2008; Katsube et al., 2009; Gao et al., 2011; 徐旭峰等, 2013),普遍认同超高压变质作用发生在一个年龄范围内(Wu et al., 2006; Zheng, 2008; Liou et al., 2009; Zhang et al., 2009)。根据Zheng (2008)的论述,超高压变质事件主要发生在240~225Ma之间,而>240Ma属于峰期前变质, < 225Ma为退变质时间。
然而,从这些研究的分析地点来看,所有的年龄均分布在单元-Ⅰ中碧溪岭-菖蒲-五庙-横冲-双河、马龙-石马和单元-Ⅲ中黄镇-朱家冲一带(图 4),单元-Ⅱ店前-寺前-罗溪一线则没有任何年龄资料。仔细对比这些年龄可以看出,按照Zheng (2008)的标准,在榴辉岩的峰期变质年龄范围内的数据实际上较为稀少(Rowley et al., 1997; Li et al., 2000; Ayers et al., 2002; 陈道公等, 2003; Li et al., 2004; Wu et al., 2006; Liu et al., 2007; Chen et al., 2008; 徐旭峰等, 2013) (图 8d)。进一步结合本次的单元划分,可以发现,除Chen et al. (2008)的样品04SM20a (230.8±5.0Ma) 外,单元-Ⅰ的峰期变质年龄均在225~230Ma范围(Rowley et al., 1997; Li et al., 2000; Ayers et al., 2002; Wu et al., 2006; Liu et al., 2007; 图 4、图 8d)。而单元-Ⅲ仅有4个分析数据(陈道公等, 2003; Li et al., 2004; Chen et al., 2008; 徐旭峰等, 2013),且年龄集中在235~240Ma范围,仅陈道公等(2003)的样品00HZ01 (231.6±9.7Ma) 不在这范围内。但从其表 2 (陈道公等, 2003) 可以看出,该年龄是依据12个分析点,年龄跨度在205~257Ma内计算得出的。显然,该年龄可能将峰期前和峰期后的变质年龄包括在期内。实际上,在其表 2 (陈道公等, 2003) 中,年龄在240~225Ma范围内(Zheng, 2008) 总计有5个(232.5±3.0Ma~239.9±3.6Ma),对其重新计算得到的年龄则为236.4±3.2Ma。若如此,这一新的数值则与其他3人研究十分吻合(Li et al., 2004; Chen et al., 2008; 徐旭峰等, 2013)。这暗示了单元-Ⅰ和单元-Ⅲ的峰期变质年龄有明显的差异(图 8d),其时间可能分别 < 230Ma和>235Ma。鉴于此次的年龄分析和热力学研究,我们可以推测单元-Ⅱ的峰期变质年龄可能介于前两个单元之间(230~240Ma)。
目前,将地质事件与年龄准确结合的最有效的方式,是对锆石含矿物包裹体区域进行年龄的直接测定,结合岩相学分析,可以直接判明该年龄所代表的地质含义(Gebauer et al., 1997; Hermann et al., 2001; Liu et al., 2004, 2007, 2011; Zheng, 2008)。本次研究遵循这一原则,对样品S59、S70的锆石中的包体普遍进行拉曼光谱分析,并在其附近区域进行了定年测试。从测定的包体来看,主要为柯石英、石榴石、绿辉石、多硅白云母、金红石和长石(图 7)。根据岩相学的研究可以看出,除长石外(图 5m),其余矿物均为峰期条件下形成,且在其附近区域测定的年龄基本在225~240Ma之间(图 5a, c, e, g, i, o, q, s; 图 6b, c; 表 4)。因此,可以确定这些年龄代表的是榴辉岩的峰期年龄。
从这两个样品的加权平均年龄可以看出,不同单元的榴辉岩峰期变质年龄存在一定的差异,其中单元-Ⅰ的样品S70为226.4±2.6Ma (图 6b),单元-Ⅱ的样品S59为230.1±3.5Ma,而再结合单元-Ⅲ的样品JS250的235.2±4.2Ma年龄(徐旭峰等, 2013) (图 6d; 图 8d),可以得出榴辉岩的峰期变质年龄自单元-Ⅰ、单元-Ⅱ至单元-Ⅲ,峰期年龄逐渐变老的趋势。这一结果与前人的年龄分析数据在空间上的变化也是十分吻合的。从图 8d可以看出,单元-Ⅰ峰期年龄在在225~230Ma范围(Rowley et al., 1997; Li et al., 2000; Ayers et al., 2002; Wu et al., 2006; Liu et al., 2007),单元-Ⅲ的峰期变质年龄在235~240Ma范围(陈道公等, 2003; Li et al., 2004; Chen et al., 2008; 徐旭峰等, 2013),年龄自北向南逐渐变老(图 4)。遗憾的是由于工作程度所限,前人未对单元-Ⅱ展开相应的年代学研究分析,仅本次研究对其进行了初步的年龄分析,因此,对该单元的进一步肯定需要展开大量的年代学研究给予支持。基于以上论述,我们认为这三个单元形成于不同的时间段,具有一定的穿时性。尽管,由于分析精度的问题,且年龄误差被涉及时,三个单元的年龄界限被模糊,但结合野外观测、榴辉岩岩相学分析以及P-T条件的差异和空间变化,我们认定大别造山带东南缘应当是由3个具不同变质级别和年龄的单元构成。
7 结论(1) 依据野外观测、榴辉岩岩相学和热力学评价的分析,大别造山带东南缘是由3个单元构成,其峰期温压条件分别为:单元-Ⅰ:T=723±22℃和P=3.90±0.43GPa;单元-Ⅱ:T=630±45℃和P=3.10±0.23GPa;单元-Ⅲ:T=545±24℃和P=2.48±0.11GPa。
(2) 锆石U-Pb年代学研究显示,3个单元形成于不同的时间段,具有穿时性,峰期变质年龄分别为:单元-Ⅰ:226.4±2.6Ma;单元-Ⅱ:230.1±3.5Ma;单元-Ⅲ:235.2±4.2Ma年龄(徐旭峰等, 2013)。
[] | Ames L, Zhou GZ, Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472–489. DOI:10.1029/95TC02552 |
[] | Ayers JC, Dunkle S, Gao S, Miller CF. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3-4): 315–331. DOI:10.1016/S0009-2541(02)00008-6 |
[] | Carswell DA, O'Brien PJ, Wilson RN, Zhai M. 1997. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of Central China. Journal of Metamorphic Geology, 15(2): 239–252. DOI:10.1111/jmg.1997.15.issue-2 |
[] | Castelli D, Rolfo F, Compagnoni R, Xu ST. 1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhujiachong eclogite, Dabie Shan, China. Island Arc, 7(1-2): 159–173. DOI:10.1046/j.1440-1738.1998.00185.x |
[] | Chavagnac V, Jahn BM. 1996. Coesite-bearing eclogites from the Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 133(1-4): 29–51. DOI:10.1016/S0009-2541(96)00068-X |
[] | Chen H, King RL, Nakamura E, Vervoort JD, Zhou LZ. 2008. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. Journal of Metamorphic Geology, 26(7): 741–758. DOI:10.1111/jmg.2008.26.issue-7 |
[] | Chen DG, Deloule E, Cheng H, Xia QK, Wu YB. 2003. The investigation on isoptopic geochronology of low-temperature eclogites from Huangzhen in the Southern Dabie Mountains. Science in China (Series D), 33(9): 828–840. |
[] | Cong BL. 1996. Ultrahigh-pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press: 12-14. |
[] | Cuthbert SJ, Carswell DA, Krogh-Ravna EJ, Wain A. 2000. Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52(1-4): 165–195. DOI:10.1016/S0024-4937(99)00090-0 |
[] | Dong SW, Wang XF, Huang DZ. 1997. Discovery of low grade metamorphic volcanic rock sheets within UHP in Dabie Mts. and its implications. Chinese Science Bulletin, 42(14): 1199–1203. DOI:10.1007/BF02882847 |
[] | Dong SW, Chen JF, Huang DZ. 1998. Differential exhumation of tectonic units and ultrahigh-pressure metamorphic rocks in the Dabie Mountains, China. Island Arc, 7(1-2): 174–183. DOI:10.1046/j.1440-1738.1998.00183.x |
[] | Ernst WG, Maruyama S, Wallis S. 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proceedings of the National Academy of Sciences of the United States of America, 94(18): 9532–9537. DOI:10.1073/pnas.94.18.9532 |
[] | Ernst WG. 2001. Subduction, ultrahigh-pressure metamorphism, and regurgitation of buoyant crustal slices-implications for arcs and continental growth. Physics of the Earth and Planetary Interiors, 127(1-4): 253–275. DOI:10.1016/S0031-9201(01)00231-X |
[] | Faure M, Lin W, Shu L, Sun Y, Schärer U. 1999. Tectonics of the Dabieshan (eastern China) and possible exhumation mechanism of ultra high-pressure rocks. Terra Nova, 11(6): 251–258. DOI:10.1046/j.1365-3121.1999.00257.x |
[] | Faure M, Lin W, Schärer U, Shu LS, Sun Y, Arnaud N. 2003. Continental subduction and exhumation of UHP rocks. structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3-4): 213–241. |
[] | Franz L, Romer RL, Klemd R, Schmid R, Oberhaensli R, Wagner T, Dong S. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology, 141(3): 322–346. DOI:10.1007/s004100000233 |
[] | Gao XY, Zheng YF, Chen YX. 2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: Constraints on P-T-t path. Journal of metamorphic Geology, 29: 721–740. DOI:10.1111/j.1525-1314.2011.00938.x |
[] | Gebauer D, Schertl HP, Brix M, Schreyer W. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos, 41: 5–24. DOI:10.1016/S0024-4937(97)82002-6 |
[] | Hacker BR, Ratschbacher L, Webb L, McWilliams MO, Ireland T, Calvert A, Dong SW, Wenk HR, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 105(B6): 13339–13364. DOI:10.1029/2000JB900039 |
[] | Hermann J, Rubatto D, Korsakov A, Shatsky V S. 2001. Multiple zircon growth during fast exhumation of diamondiferous deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141: 66–82. DOI:10.1007/s004100000218 |
[] | Holland TJB. 1980. The reaction albite=jadeite+quartz determined experimentally in the range 600~1200℃. American Mineralogist, 65(1-2): 129–134. |
[] | Jahn BM, Cornichet J, Cong BL, Yui TF. 1996. Ultrahigh εNd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology, 127(1-3): 61–79. DOI:10.1016/0009-2541(95)00108-5 |
[] | Jahn BM, Fan QC, Yang JJ, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: Chemical and isotopic constraints. Lithos, 70(3-4): 243–267. DOI:10.1016/S0024-4937(03)00101-4 |
[] | Katsube A, Hayasaka Y, Santosh M, Li SZ, Terada K. 2009. SHRIMP zircon U-Pb ages of eclogite and orthogneiss from Sulu ultrahigh-pressure zone in Yangkou area, eastern China. Gondwana Research, 15(2): 168–177. DOI:10.1016/j.gr.2008.08.002 |
[] | Krogh R. 2000. The garnet-clinopyroxene Fe2+-Mg geothermometer: An updated calibration. Journal of Metamorphic Geology, 18(2): 211–219. DOI:10.1046/j.1525-1314.2000.00247.x |
[] | Li SG, Xiao YL, Liou DL, Chen YZ, Ge NJ, Zhang ZQ, Sun SS, Cong BL, Zhang RY, Hart SR, Wang SS. 1993. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology, 109(1-4): 89–111. DOI:10.1016/0009-2541(93)90063-O |
[] | Li SG, Jagoutz E, Chen YZ, Li QL. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochimica et Cosmochimica Acta, 64(6): 1077–1093. DOI:10.1016/S0016-7037(99)00319-1 |
[] | Li XP, Zheng YF, Wu YB, Chen FK, Gong B, Li YL. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443–470. DOI:10.1007/s00410-004-0616-9 |
[] | Lin W, Shi YH, Wang QC. 2009. Exhumation tectonics of the HP-UHP orogenic belt in eastern China: New structural-petrological insights from the Tongcheng massif, Eastern Dabieshan. Lithos, 109(3-4): 285–303. DOI:10.1016/j.lithos.2008.10.007 |
[] | Liou JG, Zhang RY, Eide EA, Maruyama S and Ernst WG. 1996. Metamorphism and tectonics of high-P and ultrahigh-P belts in the Dabie-Sulu region, eastern central China. In: Harrison M and Yin A (eds.). The Tectonics Evolution of Asia. Cambridge: Cambridge University Press, 300-344 |
[] | Liou JG, Zhang RY, Jahn BM. 1997. Petrology, geochemistry and isotope data on an ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos, 41(1-3): 59–78. DOI:10.1016/S0024-4937(97)82005-1 |
[] | Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes-the view from China. Journal of Asian Earth Sciences, 35(3-4): 199–231. DOI:10.1016/j.jseaes.2008.10.012 |
[] | Liu FL, Liou ZG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40: 1–39. DOI:10.1016/j.jseaes.2010.08.007 |
[] | Liu JB, Ye K, Maruyama S, Cong BL, Fan HR. 2001. Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains, China. Journal of Geology, 109: 523–535. DOI:10.1086/320796 |
[] | Liu XC, Wei C, Li S, Dong S, Liu J. 2004. Thermobaric structure of a traverse across western Dabieshan: Implications for collision tectonics between the Sino-Korean and Yangtze cratons. Journal of Metamorphic Geology, 22(4): 361–379. DOI:10.1111/j.1525-1314.2004.00519.x |
[] | Liu YC, Li SG, Xu ST, Jahn BM, Zheng YF, Zhang ZQ, Jiang LL, Chen GB, Wu WP. 2005. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. Journal of Asian Earth Sciences, 25(3): 431–443. DOI:10.1016/j.jseaes.2004.04.006 |
[] | Liu YC, Li SG, Xu ST. 2007. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: Implications for decoupling within subducted continental crust. Lithos, 96(1-2): 170–185. DOI:10.1016/j.lithos.2006.09.010 |
[] | Ludwig KR. 2003. User's manual for Isoplot/Ex, version 3. 00: A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, 4: 1–70. |
[] | Maruyama S, Liou JG, Zhang RY. 1994. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. The Island Arc, 3(2): 112–121. DOI:10.1111/iar.1994.3.issue-2 |
[] | Maruyama S, Liou JG, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review, 38(6): 485–594. DOI:10.1080/00206819709465347 |
[] | Massonne HJ, Schreyer W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology, 96(2): 212–224. DOI:10.1007/BF00375235 |
[] | Okay AI, Xu ST, Sengör AMC. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1(4): 595–598. DOI:10.1127/ejm/1/4/0595 |
[] | Okay AI, Sengör AMC. 1992. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 20(5): 411–414. DOI:10.1130/0091-7613(1992)020<0411:EFITRE>2.3.CO;2 |
[] | Okay AI. 1993. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China. European Journal of Mineralogy, 5(4): 659–675. DOI:10.1127/ejm/5/4/0659 |
[] | Okay AI. 1995. Paragonite eclogites from Dabie Shan, China: Re-equilibration during exhumation?. Journal of Metamorphic Geology, 13(4): 449–460. DOI:10.1111/jmg.1995.13.issue-4 |
[] | Powell R, Holland TJB. 2008. On thermobarometry. Journal of Metamorphic Geology, 26(2): 155–179. DOI:10.1111/jmg.2008.26.issue-2 |
[] | Proyer A, Dachs E, McCammon C. 2004. Pitfalls in geothermobarometry of eclogites: Fe3+ and changes in the mineral chemistry of omphacite at ultrahigh pressures. Contributions to Mineralogy and Petrology, 147(3): 305–318. DOI:10.1007/s00410-004-0554-6 |
[] | Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong SW, Calvert A, Chateigner D, Wenk HR. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research, 105(B6): 13303–13338. DOI:10.1029/2000JB900040 |
[] | Ravna EJK, Terry MP. 2004. Geothermobarometry of UHP and HP eclogites and schists-an evaluation of equilibria among garnet-clinopyroxene-kyanite-phengite-coesite/quartz. Journal of Metamorphic Geology, 22(6): 579–592. DOI:10.1111/jmg.2004.22.issue-6 |
[] | Rolfo F, Compagnoni R, Xu ST, Jiang LL. 2000. First report of felsic whiteschist in the ultrahigh-pressure metamorphic belt of Dabie Shan, China. European Journal of Mineralogy, 12(4): 883–898. DOI:10.1127/0935-1221/2000/0012-0883 |
[] | Rolfo F, Compagnoni R, Wu WP, Xu ST. 2004. A coherent lithostratigraphic unit in the coesite-eclogite complex of Dabie Shan, China: Geologic and petrologic evidence. Lithos, 73(1-2): 71–94. DOI:10.1016/j.lithos.2003.10.008 |
[] | Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J, Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191–203. DOI:10.1016/S0012-821X(97)81848-1 |
[] | Schmid R, Franz L, Oberhänsli R, Dong SW. 2000. High-Si phengite, mineral chemistry and P-T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China. Geological Journal, 35(3-4): 185–207. DOI:10.1002/gj.v35:3/4 |
[] | Schmid R, Wilke M, Oberhänsli R, Janssensb K, Falkenberg G, Franz L, Gaab A. 2003. Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos, 70(3-4): 381–392. DOI:10.1016/S0024-4937(03)00107-5 |
[] | Schmidt A, Weyer S, Mezger K, Scherer EK, Xiao YL, Hoefs J, Brey GP. 2008. Rapid eclogitisation of the Dabie-Sulu UHP terrane: Constraints from Lu-Hf garnet geochronology. Earth and Planetary Science Letters, 273(1-2): 203–213. DOI:10.1016/j.epsl.2008.06.036 |
[] | Shi Y, Wang Q. 2006. Variation in peak P-T conditions across the upper contact of the UHP terrane, Dabie Shan, China: Gradational or abrupt?. Journal of Metamorphic Geology, 24(9): 803–822. |
[] | Shi YH, Lin W, Wang QC. 2008. The discovery of low-temperature and high-pressure eclogites across Niutuling area in the ultrahigh pressure eclogite unit and its significance. Acta Petrologica Sinica, 24(6): 1288–1296. |
[] | Tabata H, Maruyama S, Shi Z. 1998. Metamorphic zoning and thermal structure of the Dabie ultrahigh-pressure-high-pressure terrane, central China. The Island Arc, 7(1-2): 142–158. DOI:10.1046/j.1440-1738.1998.00186.x |
[] | Wang QC, Cong BL. 1999. Exhumation of UHP Terranes: A case study from the Dabie Mountains, eastern China. International Geology Review, 41(11): 994–1004. DOI:10.1080/00206819909465185 |
[] | Wang QC, Cong BL, Massonne HJ. 1999. Temperature increase metamorphism along the south boundary of the Dabie eclogite terrain, China. Acta Petrologica Sinica, 15(3): 339–349. |
[] | Wang QC, Li RW, Wang DX, Li SY. 2003. Eclogites preserved as pebbles in Jurassic conglomerate, Dabie Mountains, China. Lithos, 70(3-4): 345–357. DOI:10.1016/S0024-4937(03)00105-1 |
[] | Wang QC, Shi YH, Lin W, Guo JH. 2008. Exhumation of the Dabie UHP Terrane, China. International Geology Review, 50(1): 15–31. DOI:10.2747/0020-6814.50.1.15 |
[] | Wang X, Jing Y, Liou JG, Pan G, Liang W, Xia M, Maruyama S. 1990. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, Central China. Lithos, 25(1-3): 119–131. DOI:10.1016/0024-4937(90)90010-X |
[] | Wang XM, Liou JG, Mao HK. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085–1088. DOI:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2 |
[] | Wang XM, Liou JG, Marruyama S. 1992. Coesite-bearing eclogites from the Dabie Mountains, central China: Petrogenesis, P-T paths, and implications for regional tectonics. Journal of Geology, 100(2): 231–250. DOI:10.1086/629585 |
[] | Wei CJ, Shan ZG, Zhang LF, Wang SG, Chang ZG. 1998. Determination and geological significance of the eclogites from the northern Dabie Mountains, central China. Chinese Science Bulletin, 43(3): 253–256. DOI:10.1007/BF02898924 |
[] | Whitney DL, Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. DOI:10.2138/am.2010.3371 |
[] | Worley B, Powell R. 2000. High-precision relative thermobarometry: Theory and a worked example. Journal of Metamorphic Geology, 18(1): 91–102. DOI:10.1046/j.1525-1314.2000.00239.x |
[] | Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM, Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743–3761. DOI:10.1016/j.gca.2006.05.011 |
[] | Xu ST, Su W, Liu YC, Jiang LL, Ji SY, Okay AI, Sengör AMC. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80–82. DOI:10.1126/science.256.5053.80 |
[] | Xu ST, Liu YC, Chen GB, Ji SY, Ni P, Xiao WS. 2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineralogical Magazine, 69(4): 509–520. DOI:10.1180/0026461056940267 |
[] | Xu XF, Shi YH, Ji WB, Lin W. 2013. Zircon U-Pb geochronology and typological classification of eclogites in the hinterland of the central Dabie. Acta Petrologica Sinica, 29(5): 1559–1572. |
[] | Xue F, Rowley DB, Baker J. 1996. Refolded syn-ultrahigh-pressure thrust sheets in the south Dabie complex, China: Field evidence and tectonic implications. Geology, 24(5): 455–458. DOI:10.1130/0091-7613(1996)024<0455:RSUPTS>2.3.CO;2 |
[] | Zhang RY, Liou JG, Ernst WG. 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16(1): 1–26. DOI:10.1016/j.gr.2009.03.008 |
[] | Zheng YF, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Lithos, 62(1-2): 105–161. |
[] | Zheng YF, Zhou JB, Wu YB, Xie Z. 2005a. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851–871. DOI:10.2747/0020-6814.47.8.851 |
[] | Zheng YF, Wu YB, Zhao ZF, Zhang SB, Xu P, Yu FY. 2005b. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 240(2): 378–400. DOI:10.1016/j.epsl.2005.09.025 |
[] | Zheng YF, Gao TS, Wu YB, Gong B, Liu XM. 2007. Fluid flow during exhumation of deeply subducted continental crust: Zircon U-Pb age and O-isotope studies of a quartz vein within ultrahigh-pressure eclogite. Journal of Metamorphic Geology, 25(2): 267–283. DOI:10.1111/jmg.2007.25.issue-2 |
[] | Zheng YF. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(20): 3081–3104. |
[] | 陈道公, DelouleE, 程昊, 夏群科, 吴元保. 2003. 南大别黄镇低温榴辉岩多同位素体系年代学研究. 中国科学(D辑), 33(9): 828–840. |
[] | 石永红, 林伟, 王清晨. 2008. 大别山超高压变质带中牛凸岭地区低温-高压榴辉岩的发现及其意义. 岩石学报, 24(6): 1288–1296. |
[] | 王清晨, 从柏林, MassonneHJ. 1999. 大别山太湖-马庙断裂带两侧变质地体的增温变质作用. 岩石学报, 15(3): 339–349. |
[] | 徐旭峰, 石永红, 冀文冰, 林伟. 2013. 中大别腹地榴辉岩锆石U-Pb年龄及其类型归属. 岩石学报, 29(5): 1559–1572. |