收稿日期: 2017-05-03
基金项目: 国家自然科学基金(编号:61171170)
第一作者简介: 张云鹏,1992年生,男,硕士研究生,研究方向为SAR信号处理及SAR对抗理论研究。E-mail:dayunzyp@126.com
通信作者简介: 毕大平,1965年生,男,教授,研究方向为电子对抗侦察和干扰新技术。E-mail:DAPEEI@163.com
|
摘要
作为多通道合成孔径雷达(SAR)的一种高效便捷的抗干扰方法,SAR多通道对消技术可有效抑制包括散射波干扰在内的多种干扰类型,于是提出采用方位向余弦调相散射波干扰方法来对抗SAR双通道对消的干扰抑制能力。该方法通过对传统散射波干扰慢时间域进行余弦调相,不仅实现了干扰信号的方位向扩展,更使得干扰信号到达各通道之间的相位关系发生严重改变。这种相位差变化会影响干扰对消过程中的自动相位搜索环节,扰乱对消时所需补偿相位的估计结果,进而严重破坏对消后的真实场景成像。以SAR双通道对消系统为例分析了该干扰方法的影响效果,理论分析与实验结果表明:余弦调相散射波干扰可使得补偿相位的估计结果在慢时间上近似正弦分布;在双通道对消成像中,该干扰使得真实场景在方位向上被重复搬移,造成严重的影像重叠,同时在方位向上伴随着密集的明暗条纹;干扰效果可通过设定余弦调制频率、调制指数等参数进行控制。
关键词
合成孔径雷达, 双通道对消, 散射波干扰, 余弦调相, 补偿相位, 电子对抗
Abstract
The development and application of the multi-channel Synthetic Aperture Radar (SAR) have greatly enhanced the information acquisition and anti-jamming capabilities of the imaging radar and led to its development direction. Compared with the traditional SAR, the multi-channel SAR can extract more useful information from the phase of echo signals and has a higher degree of freedom. As one of several types of mature multi-channel techniques, SAR multi-channel cancellation technique can suppress various kinds of jamming signals, including scatter-wave jamming signals, by using the phase relation of jamming signals received by different channels, making it an efficient and direct type of anti-jamming method. In the process of multi-channel cancellation, the phase difference of jamming signals reaching different channels can be generally estimated by the automatic phase searching algorithm, and then the phase difference is used for compensation to finish the jamming signal cancellation. At present, regardless of the channels distributed along the track or across the track, multi-channel SAR systems can employ this anti-jamming technique. However, jamming technology against multi-channel cancellation has rarely been researched. Therefore, a cosinusoidal phase-modulated scatter-wave jamming method aimed at countering the multi-channel cancellation technique is proposed in this paper. First, multi-channel cancellation theory of traditional scatter-wave jamming is analyzed through the dual-channel cancellation technique, and the process of automatic phase searching algorithm based on the rule of minimum energy is summarized. Second, the cosinusoidal phase-modulated signal model is presented and used to improve the traditional scatter-wave jamming signal. Cosinusoidal phase modulation in slow time directly leads to the Doppler spectrum moving and the extension of jamming in the azimuth, according to which the imaging characteristic of the novel jamming signal for SAR is analyzed in detail. Then, the effect of the proposed jamming method working on the dual-channel cancellation system is derived and analyzed. Cosinusoidal phase modulation severely changes the original phase difference, which exerts an effect on the automatic phase searching link to alter the estimated results of the compensation phase in the cancellation process. The changed compensation phase will seriously destroy the real scene imaging. Finally, the simulation experiment results and analysis are presented in which four groups of jamming parameters are set and compared to verify the controllability of jamming. Theoretical analysis and experiment result show that the proposed jamming method can produce multiple false scattering scenes in traditional SAR imaging. In the dual-channel cancellation process, this method causes the estimated compensation phase to vary with slow time sinusoidally. It also causes the real scene image to move repeatedly, which leads to serious image overlapping and produces many dark and bright speckles distributed along the azimuth. The jamming effect can be controlled by setting different jamming parameters, such as modulation frequency and so on. The proposed jamming method is flexible, controllable, and has good stealthiness. It can deactivate the multi-channel cancellation jamming suppression and enhance the jamming effect by utilizing the characteristics of the cancellation process. Importantly, the jamming signal after phase modulation in the azimuth can influence the extraction result of phase information of the signal received by the multi-channel SAR system. Such effect can provide additional ideas and methods for multi-channel SAR jamming research.
Key words
synthetic aperture radar (SAR), dual-channel cancellation, scatter-wave jamming, cosinusoidal phase-modulated, compensation phase, electronic countermeasures (ECM)
1 引 言
多通道合成孔径雷达SAR(Synthetic Aperture Radar)的发展和运用使得成像雷达的信息获取能力和抗干扰能力获得了极大提升,已成为成像雷达的重要发展方向(Sjögren 等,2014;常玉林 等,2009)。与常规SAR相比,多通道SAR可从雷达回波信号相位中获取更多的有用信息,并具有更高的系统自由度,充分吸引了各国在民用与军事领域的重点关注和发展,机载与星载多通道SAR的应用已较为广泛。现阶段较为成熟的多通道SAR技术包括相位干涉技术(Krieger 等,2009)、地面动目标检测(Dawidowicz 等,2012)、高分辨率宽测绘带成像(Zhang 等,2015)和多通道对消技术等。其中SAR多通道对消技术可利用各通道接收的干扰信号之间的相位关系实现干扰对消,是一种直接有效的抗干扰方法。
天线沿航迹或垂直航迹分布的多通道SAR系统可利用多通道对消技术抑制有源干扰信号。甘荣兵等人(2005a, 2005b)讨论了散射波干扰信号的双通道对消原理,验证了对消效果并指出该技术会造成真实回波的周期性损失,同时为了解决对消过程中的补偿相位估计问题,依据两路对消后能量最小准则提出了自动相位搜索算法。马晓岩等人(2007)提出抑制压制性干扰的三通道对消方法,通道数的增多扩大了真实回波的损失周期,从而减少了对消成像中对消暗条纹的数量。李晨和朱岱寅(2007)和张双喜等人(2011)分别研究了利用多天线检测和抑制SAR欺骗式干扰的方法。Lin等人(2014)提出一种新的双通道数据采集方式,利用该方式对干扰站进行定位,从而获取较为准确的补偿相位来完成干扰对消。可见,多通道对消能够适应包括散射波在内的多种干扰类型,而且运算量较小,具有较好的抗干扰性能。当前对抗多通道对消技术的方法研究很少,黄龙等人(2015)研究了多天线干扰机对干涉SAR双通道对消系统的干扰效果,采用多天线模拟干扰机的运动,从而改变对消时补偿相位的分布,形成了密集的对消暗条纹遮蔽效果,但该文献只针对噪声压制性干扰进行研究,干扰类型单一。现有文献虽然对SAR散射波干扰进行了深入探究和改进(刘业民 等,2011;杨伟宏 等,2012;Huang 等,2015),但针对多通道SAR系统对抗效果的分析相对较为匮乏。
基于上述背景,本文针对多通道对消技术提出方位向余弦调相散射波干扰方法。首先讨论了双通道对消原理,并构建了余弦调相散射波干扰的信号模型,结合余弦调相信号的频谱搬移特性对干扰信号的SAR成像特性进行分析。然后以双通道对消系统为例,着重分析了该方法对补偿相位估计结果(自动相位搜索结果)和对消输出结果的影响。本文干扰方法可在常规SAR成像中形成多个沿方位向分布的虚假散射场景,在双通道对消成像结果中可使得真实场景被多次复制搬移,同时产生密集的明暗条纹,严重降低干扰对消后的场景成像质量,对多通道SAR系统的工作特点和抗干扰性能具有较强的针对性。
2 SAR双通道对消原理
本节主要以传统散射波干扰的双通道对消为例展开分析,散射波干扰的原理:当干扰站接收到SAR发射的脉冲信号后放大并转发至特定散射区域,信号经过该区域散射后与原始回波信号混合并被SAR接收。在干扰过程中,整个散射区域都相当于干扰源,干扰信号便会携带真实目标的散射信息,因此在频域、时域和极化域都很难被识别,可形成较好的2维相干干扰效果。并且干扰信号从多个连续方向进入雷达主瓣,传统的旁瓣抑制和空域滤波方法很难抑制散射波干扰(甘荣兵 等,2005b;Bucciarelli 等,2008)。
散射波干扰和SAR双通道对消原理如图1所示,两通道子孔径天线沿航迹排列,A天线发射信号,A、B两天线同时接收信号。设两天线间距满足对消条件
$\left\{ {\begin{aligned} & {{Y_{{\rm{az}}}}(n + 1) = 2 \cdot {R_{{\rm{bz}}}}(n) = 2 \cdot {R_{{\rm{az}}}}(n + 1)}\\ & {{Y_{{\rm{aj}}}}(n + 1) = {R_{{\rm{aj}}}}(n + 1) + {R_{{\rm{js}}}} + {R_{{\rm{bs}}}}(n)}\\ & {{Y_{{\rm{bz}}}}(n) = {R_{{\rm{az}}}}(n) + {R_{{\rm{bz}}}}(n)}\\ & {{Y_{{\rm{bj}}}}(n) = {R_{{\rm{aj}}}}(n) + {R_{{\rm{js}}}} + {R_{{\rm{bs}}}}(n)} \end{aligned}} \right.$ | (1) |
式中,
$\left\{ {\begin{aligned} & \begin{aligned} \Delta {\varphi _{\rm{z}}}\left(n \right) = & {{2{\text{π}}\left({{Y_{{\rm{az}}}}(n + 1) - {Y_{{\rm{bz}}}}(n)} \right)}/{\textit{λ}}} = \\ & {{2{\text{π}}\left({{R_{{\rm{bz}}}}(n) - {R_{{\rm{az}}}}(n)} \right)}/{\textit{λ}}} \\ \end{aligned} \\ & \begin{aligned} \Delta {\varphi _{\rm{j}}}\left(n \right) = & {{2{\text{π}}\left({{Y_{{\rm{aj}}}}(n + 1) - {Y_{{\rm{bj}}}}(n)} \right)}/{\textit{λ}}} = \\ & {{2{\text{π}}\left({{R_{{\rm{aj}}}}(n + 1) - {R_{{\rm{aj}}}}(n)} \right)}/{\textit{λ}}} \\ \end{aligned} \end{aligned}} \right.$ | (2) |
记A天线
${s_{{\rm{bj}}}}(n) = {s_{{\rm{aj}}}}(n + 1) \cdot \exp \left({{\rm{j}}\Delta {\varphi _{\rm{j}}}(n)} \right)$ | (3) |
设两天线分别在
$\left\{ \begin{aligned} & {s_{\rm{a}}}(n + 1) = {s_{{\rm{az}}}}(n + 1) + {s_{{\rm{aj}}}}(n + 1) \\ & {s_{\rm{b}}}(n) = {s_{{\rm{bz}}}}(n) + {s_{{\rm{bj}}}}(n) \end{aligned} \right.$ | (4) |
分析式(2)可知相邻慢时刻两通道接收的干扰信号间的相位差
$\begin{aligned} \Delta s(n) = & {s_{\rm{b}}}(n) - {s_{\rm{a}}}(n + 1) \cdot \exp \left({{\rm{j}}\Delta {\varphi _{\rm{j}}}(n)} \right){\kern 1pt} = \\ & {s_{{\rm{bz}}}}(n) \cdot \left( {1 - \exp \left( {{\rm{j}}\left({\Delta {\varphi _{\rm{j}}}(n) - \Delta {\varphi _{\rm{z}}}(n)} \right)} \right)} \right) \approx \\ & {s_{{\rm{bz}}}}(n) \cdot \left( {1 - \exp \left({{\rm{j}}{{2{\text{π}}D({x_{\rm{z}}} - {x_{\rm{j}}})}/{({\textit{λ}} {R_{{\rm{j}}0}})}}} \right)} \right) \end{aligned} $ | (5) |
式中,
准确估计干扰信号的补偿相位
3 方位向余弦调相散射波干扰成像特性分析
双通道对消技术对传统散射波干扰具有较好的抑制性能,因此需要对散射波干扰进行改进。方位向余弦调相可实现干扰信号的方位向扩展(房明星 等,2016),并改变相邻慢时刻干扰信号之间的相位关系,对传统散射波干扰信号进行方位向余弦调相,干扰实施的基本流程如图2所示。
首先对余弦调相散射波干扰的成像特性展开分析。余弦调相信号一般形式为
${p_m}\left(t \right) = \cos \left({2{\text{π}}{f_{\rm{c}}}t + {\beta _m}\cos (2{\text{π}}{f_m}t)} \right)$ | (6) |
式中,
${p_m}\left(t \right) = \sum\limits_{n = - \infty }^{ + \infty } {{J_n}({\beta _m})} \cos \left({2{\text{π}}({f_{\rm{c}}} + n{f_m})t + \frac{{n{\text{π}}}}{2}} \right)$ | (7) |
式中,
$\begin{aligned} {P_m}\left( f \right) = & {\text{π}}\sum\limits_{n = - \infty }^{ + \infty } {{J_n}({\beta _m})} \left( {{e^{ - {\rm{j}}\frac{{n{\text{π}}}}{2}}}\delta \left( {2{\text{π}} (f + {f_{\rm{c}}} + n{f_m})} \right) + } \right.\\ & \left. {{e^{{\rm{j}}\frac{{n{\text{π}}}}{2}}}\delta \left( {2{\text{π}} (f - {f_{\rm{c}}} - n{f_m})} \right)} \right) \end{aligned} $ | (8) |
忽略干扰机转发延时,设未经调制的传统散射波信号形式为
$\begin{aligned} {s_{\rm{j}}}\left({{t_{\rm{r}}}, {t_{\rm{a}}}} \right) = & \sigma \cdot {\rm{rect}}\left({\frac{{{t_{\rm{r}}} - {{{Y_{\rm{j}}}({t_{\rm{a}}})}/c}}}{{{T_{\rm{p}}}}}} \right){\rm{rect}}\left({\frac{{{t_{\rm{a}}}}}{{{T_{\rm{L}}}}}} \right)\; \cdot \\ & \exp \left( {{\rm{j{\text{π}} }}{\mu _{\rm{r}}}{{\left({{t_{\rm{r}}} - \frac{{{Y_{\rm{j}}}({t_{\rm{a}}})}}{c}} \right)}^2}} \right)\exp \left({ - {\rm{j}}2{\text{π}}{f_{\rm{c}}}\frac{{{Y_{\rm{j}}}({t_{\rm{a}}})}}{c}} \right) \end{aligned} $ | (9) |
式中,
${p_m}\left({{t_{\rm{a}}}} \right) = \exp \left({{\rm{j}}{\beta _m}\cos (2{\text{π}}{f_m}{t_{\rm{a}}})} \right)$ | (10) |
则经过余弦调相后的散射波干扰信号为
${s_{{\rm{j}}m}}({t_{\rm{r}}}, {t_{\rm{a}}}) = {s_{\rm{j}}}({t_{\rm{r}}}, {t_{\rm{a}}}) \cdot {p_m}({t_{\rm{a}}})$ | (11) |
结合式(8)和式(11)可得干扰信号的二维频谱为
${S_{{\rm{j}}m}}({f_{\rm{r}}}, {f_{\rm{a}}}) = \sum\limits_{n = - \infty }^{ + \infty } {{J_n}({\beta _m}){S_{\rm{j}}}({f_{\rm{r}}}, {f_{\rm{a}}} - n{f_m})} $ | (12) |
式中,
$\begin{gathered} {y_{{\rm{j}}m}}({t_{\rm{r}}}, {t_{\rm{a}}}) = \left({1 - \frac{{\left| {t_{\rm{r}}^*} \right|}}{{{T_{\rm{p}}}}}} \right){\rm{sinc}}\left({{\mu _{\rm{r}}}t_{\rm{r}}^*({T_{\rm{p}}} - \left| {t_{\rm{r}}^*} \right|)} \right) \cdot {\kern 1pt} \\ \sum\limits_{n = - \infty }^{ + \infty } {{J_n}({\beta _m})} \left({1 - \frac{{\left| {t_{\rm{a}}^ * } \right|}}{{{T_{\rm{L}}}}}} \right){\rm{sinc}}\left({{u_{\rm{a}}}(t_{\rm{a}}^ * + \frac{{n{f_m}}}{{{u_{\rm{a}}}}})({T_{\rm{L}}} - \left| {t_{\rm{a}}^ * } \right|)} \right) \\ \end{gathered} $ | (13) |
式中,
4 对SAR双通道对消系统的影响分析
通过上述分析可知,干扰改进后同时具备余弦调相和散射波的干扰效应和优势,在实现散射波2维相干干扰效果的同时,将虚假散射场景在方位向进行了拓展,进一步提升了干扰性能。但对于双通道系统而言,干扰关键在于方位向调制能够改变干扰信号在相邻慢时刻到达两通道的相位差,从而改变自动相位搜索法对补偿相位的估计结果。现把测绘带内所有点目标纳入分析,记第
$\left\{ \begin{aligned} & \sum\limits_{q = 1}^Q {{s_{a{\rm{j}}m, q}}(n + 1)} = \sum\limits_{q = 1}^Q {{s_{a{\rm{j}}, q}}(n + 1)} \cdot {p_m}(n + 1) = \\ & \sum\limits_{q = 1}^Q {{s_{a{\rm{j}}, q}}(n + 1)} \cdot \exp \left( {{\rm{j}}{\beta _m}\cos \left({2{\text{π}}{f_m}(n + 1)T} \right)} \right) \\ & \sum\limits_{q = 1}^Q {{s_{b{\rm{j}}m, q}}(n)} = \sum\limits_{q = 1}^Q {{s_{b{\rm{j}}, q}}(n)} \cdot {p_m}(n) = \\ & \sum\limits_{q = 1}^Q {{s_{b{\rm{j}}, q}}(n)} \cdot \exp \left({{\rm{j}}{\beta _m}\cos (2{\text{π}}{f_m}nT)} \right) \end{aligned} \right.$ | (14) |
式中,
${s_{b{\rm{j}}, q}}(n) = {s_{a{\rm{j}}, q}}(n + 1) \cdot \exp \left({{\rm{j}}\Delta {\varphi _{\rm{j}}}(n)} \right)$ | (15) |
结合式(4)得
$ \left\{ \begin{aligned} & \sum {{s_a}(n + 1)} = \sum\limits_{p = 1}^P {{s_{az, p}}(n + 1)} + \sum\limits_{q = 1}^Q {{s_{a{\rm{j}}m, q}}(n + 1)} \\ & \sum {{s_b}(n)} = \sum\limits_{p = 1}^P {{s_{bz, p}}(n)} + \sum\limits_{q = 1}^Q {{s_{b{\rm{j}}m, q}}(n)} \end{aligned} \right. $ | (16) |
式中,
$ \begin{aligned} \Delta s\left( n \right) = & \sum {{s_b}\left( n \right)} - \sum {{s_a}(n + 1)} \cdot \exp \left( {{\rm{j}}\Delta {\varphi _j}^\prime (n)} \right) = \\ & \sum\limits_{p = 1}^P {\left( {{s_{b{\textit{z}},p}}(n) - {s_{a{\textit{z}},p}}(n + 1) \cdot \exp \left( {{\rm{j}}\Delta {\varphi _j}^\prime (n)} \right)} \right)} \;\; + \\ & \sum\limits_{q = 1}^Q {{s_{b{\rm{j}},q}}(n)} \cdot \exp \left( {{\rm{j}}{\beta _m}\cos (2{\text{π}} {f_m}nT)} \right) \cdot \\ & \left( {1 - \exp \left( {{\rm{j}}\Delta {\varphi _j}^\prime (n) - {\rm{j}}\Delta {\varphi _j}(n) + } \right.} \right.\\ & \left. {\left. {{\rm{j}}{\beta _m}\cos \left( {2{\text{π}}{f_m}(n + 1)T} \right) - {\rm{j}}{\beta _m}\cos (2{\text{π}} {f_m}nT)} \right)} \right) = \\ & \sum\limits_{p = 1}^P {\left( {{s_{b{\textit{z}},p}}(n)\left( {1 - \exp \left( {{\rm{j}}\Delta {\varphi _j}^\prime (n) - {\rm{j}}\Delta {\varphi _{{\textit{z}},p}}(n)} \right)} \right)} \right)} \; + \\ & \sum\limits_{q = 1}^Q {{s_{bjm,q}}(n)} \left( {1 - \exp \left( {{\rm{j}}\Delta {\varphi _j}^\prime (n) - {\rm{j}}\Delta {\varphi _j}(n) - } \right.} \right.\\ & \left. {\left. {{\rm{j}}2{\beta _m}\sin ({\text{π}}{f_m}T)\sin ({\text{π}}{f_m}nT + {\text{π}}{f_m}T)} \right)} \right) \end{aligned} $ | (17) |
式中,
$\Delta {\varphi _{\rm{j}}}^\prime (n) \!=\! \Delta {\varphi _{\rm{j}}}(n) \!+\! 2{\beta _m}\sin ({\text{π}}{f_m}T)\sin (2{\text{π}}{f_m}Tn \!+\! {\text{π}}{f_m}T) \!+\! 2k{\text{π}}$ | (18) |
当搜索相位
$\left\{ \begin{aligned} &{\beta _m}^\prime = 2{\beta _m}\sin ({\text{π}}{f_m}T) \\ & {f_m}^\prime = {f_m} \end{aligned} \right.$ | (19) |
因此方位向间歇采样虽然能够大幅改变相位差的分布,却并不影响双通道对消系统抑制干扰分量。但当采用式(18)所示的补偿相位代入式(17)进行补偿时,结合
$ \Delta s\left(n \right) = \sum\limits_{p = 1}^P {\left( {{s_{b{\textit{z}}, p}}(n)\left( {1 - \exp \left(\begin{gathered} {\rm{j}}2{\beta _m}\sin ({\text{π}}{f_m}T)\sin (2{\text{π}}{f_m}Tn + {\text{π}}{f_m}T) + {\rm{j}}{{2{\text{π}}D({x_{{\rm{z}}, p}} - {x_{\rm{j}}})}/{({\textit{λ}} {R_{j0}})}} \end{gathered} \right)} \right)} \right)} $ | (20) |
式中,
由于该调制项是关于慢时间
$\Delta x' = \left| {v{f_m}^\prime /{\mu _a}} \right|$ | (21) |
而且第
需要指出的是,由于多通道SAR干扰抑制技术的本质与SAR双通道对消相同,都是通过提取和利用多个通道所接收信号的相位关系来实现对干扰信号的区分和消除,因此方位向相位调制干扰的技术应用及其相关结论同样可以拓展到对抗多通道SAR干扰抑制技术。下面以SAR双通道对消系统为例对本文干扰方法的影响效果进行验证分析。
5 实验结果与分析
设置SAR双通道对消系统工作于正侧视,实验参数设置如表1所示,系统平台高度为6000 m。成像方位向范围为
表 1 仿真实验参数
Table 1 The simulation parameters
参数名称 | 单位 | 数值 |
信号载频 | GHz | 10 |
信号带宽 | MHz | 100 |
平台速度 | m/s | 200 |
信号脉宽 | μs | 20 |
脉冲重复频率 | Hz | 480 |
合成孔径长度 | m | 300 |
下视角 | ° | 40 |
当干扰机对散射区域实施传统的散射波干扰时,SAR成像(未进行双通道对消)结果如图4所示,在原散射区域的左下方形成虚假的面状散射场景。这是因为SAR接收到的散射波干扰信号来自于散射区域的所有点目标,并且携有地物目标的散射信息。并且散射波信号传播路径的变化使得干扰成像中各散射点的相对位置发生了改变,最终形成对散射区域的复制搬移和畸变(刘业民 等,2011;Huang 等,2015),具有较好的欺骗和遮蔽干扰效果。
传统散射波干扰的双通道对消结果如图5所示,比较图4可以看出虚假散射场景已经被完全抑制,散射波干扰失效。同时依据式(5)可知对消后真实目标回波信号受到调制,使得在方位向上接近干扰站的真实目标呈现出幅度的低谷,场景成像沿方位向形成对消暗条纹。仿真结果与理论分析一致,有效验证了系统对散射波干扰的对消性能。
对传统散射波干扰进行方位向余弦调相,设置调制参数为
下面针对本文干扰方法对SAR双通道对消系统的影响进行仿真分析,结合式(19)设置干扰参数:正弦调制指数均为
图8为多种干扰参数下余弦调相散射波干扰的双通道对消成像。从多个图中可以看出,干扰形成的虚假散射场景经过对消处理后被完全抑制,但同时真实场景成像受到了严重破坏。以图8(a)为例分析可知,真实场景在方位向上呈现出多次重复和搬移,移位的重叠影像遮挡了原有地物信息,同时在图像方位向上显现出较为密集的明暗条纹,这些结果均与式(20)理论分析一致。显然,以真实场景信息损失来换取干扰分量抑制是得不偿失的。对比图8(a)和图8(b),由于箭头所指的地物场景特征较为明显,以其为参照物可以充分明确真实场景搬移后的间隔和调制频率
进一步分析调制指数
6 结 论
多通道对消技术对多种类型的干扰信号均具有良好的抑制性能,因此本文对传统散射波干扰信号进行方位向余弦调相改进,并分析了其对双通道对消系统的影响效果。研究结果表明:该干扰方法在SAR单通道成像中可形成多个方位向虚假散射场景;在SAR双通道对消中可改变补偿相位的估计结果,使得真实场景成像在方位向上被重复搬移,造成多个影像重叠的效果,并且通过设置余弦调制频率和指数等干扰参数可有效控制干扰效果。本文干扰方法具有灵活可控、可实施性强、对侦察依赖度低和干扰隐蔽性好的特点,为对抗常规SAR和多通道对消抗干扰技术提供了有效途径。鉴于方位向相位调制的干扰方法能够影响多通道SAR对接收信号相位信息的提取结果,因此可为下一步对抗其他类型多通道SAR系统提供更多具有针对性的干扰思路和具有特定效果的干扰方案。
参考文献(References)
-
Bucciarelli M, Cristallini D, Pastina D, Sedehi M and Lombardo P. 2008. Integrated wideband antenna nulling and focusing technique for multi-channel synthetic aperture radar//Proceedings of 2008 International Radar Symposium. Wroclaw, Poland: IEEE: 1–4 [DOI: 10.1109/IRS.2008.4585749]
-
Chang Y L, Huang X T, Zhou H and Zhou Z M. 2009. A new image domain STAP method for multi-channel SAR with array distortion and non-homogeneity environments. Journal of Remote Sensing, 13 (2): 238–245. [DOI: 10.11834/jrs.20090244] ( 常玉林, 黄晓涛, 周红, 周智敏. 2009. 可适应阵列误差和非均匀杂波环境的多通道SAR图像域STAP方法. 遥感学报, 13 (2): 238–245. [DOI: 10.11834/jrs.20090244] )
-
Dawidowicz B, Kulpa K S, Malanowski M, Misiurewicz J, Samczynski P and Smolarczyk M. 2012. DPCA detection of moving targets in airborne passive radar. IEEE Transactions on Aerospace and Electronic Systems, 48 (2): 1347–1357. [DOI: 10.1109/TAES.2012.6178066]
-
Fang M X, Bi D P and Shen A G. 2016. Cosinusoidal phase-modulated repeater jamming to SAR-GMTI based on a moving jamming station. Journal of Remote Sensing, 20 (6): 1361–1370. [DOI: 10.11834/jrs.20166037] ( 房明星, 毕大平, 沈爱国. 2016. 运动干扰站的SAR-GMTI余弦调相转发干扰. 遥感学报, 20 (6): 1361–1370. [DOI: 10.11834/jrs.20166037] )
-
Gan R B, Wang J G and He C. 2005a. Rebound jamming suppression by two-channel SAR. Signal Processing, 21 (1): 27–30. [DOI: 10.3969/j.issn.1003-0530.2005.01.006] ( 甘荣兵, 王建国, 何川. 2005a. 双路对消抑制对合成孔径雷达的弹射式干扰. 信号处理, 21 (1): 27–30. [DOI: 10.3969/j.issn.1003-0530.2005.01.006] )
-
Gan R B, Wang J G and He C. 2005b. Phase estimation in rebound jamming suppression by two-channel SAR. Acta Electronica Sinica, 33 (9): 1691–1693. [DOI: 10.3321/j.issn:0372-2112.2005.09.037] ( 甘荣兵, 王建国, 何川. 2005b. 双天线对消弹射式干扰中的相位估计. 电子学报, 33 (9): 1691–1693. [DOI: 10.3321/j.issn:0372-2112.2005.09.037] )
-
Huang L, Dong C X, Shen Z B and Guo Z Q. 2015. The influence of rebound jamming on SAR GMTI. IEEE Geoscience and Remote Sensing Letters, 12 (2): 399–403. [DOI: 10.1109/LGRS.2014.2345091]
-
Huang L, Dong C X, Shen Z B and Zhao G Q. 2015. Investigation on countermeasure against InSAR dual-channel cancellation technique with multi-antenna jammer. Journal of Electronics and Information Technology, 37 (4): 913–918. [DOI: 10.11999/JEIT140769] ( 黄龙, 董春曦, 沈志博, 赵国庆. 2015. 多天线干扰机对抗InSAR双通道干扰对消的研究. 电子与信息学报, 37 (4): 913–918. [DOI: 10.11999/JEIT140769] )
-
Krieger G, Hajnsek I, Papathanassiou K, Eineder M, Younis M, De Zan F, Prats P, Huber S, Werner M, Fiedler H, Freeman A, Rosen P, Hensley S, Johnson W, Veilleux L, Grafmueller B, Werninghaus R, Bamler R and Moreira A. 2009. The TanDEM-L mission proposal: monitoring earth’s dynamics with high resolution SAR interferometry//Proceedings of 2009 IEEE Radar Conference. Pasadena: IEEE: 1–6 [DOI: 10.1109/RADAR.2009.4977077]
-
Li C and Zhu D Y. 2007. The detection of deception jamming against SAR based on dual-aperture antenna interferometry. Journal of Electronics and Information Technology, 29 (6): 1412–1415. [DOI: 10.3724/SP.J.1146.2005.01349] ( 李晨, 朱岱寅. 2007. 利用双天线干涉检测针对SAR的欺骗干扰. 电子与信息学报, 29 (6): 1412–1415. [DOI: 10.3724/SP.J.1146.2005.01349] )
-
Lin X H, Xue G Y and Liu P. 2014. Novel data acquisition method for interference suppression in dual-channel SAR. Progress in Eletromagnetics Research, 144 : 79–92. [DOI: 10.2528/PIER13111207]
-
Liu Y M, Liu Z, Dai D H and Wang X S. 2011. Analysis of jamming effect on scatter wave jamming to SAR imaging. Chinese Journal of Radio Science, 26 (2): 400–406, 414. [DOI: 10.3969/j.issn.1005-0388.2011.02.032] ( 刘业民, 刘忠, 代大海, 王雪松. 2011. 散射波干扰对合成孔径雷达成像干扰效果的分析. 电波科学学报, 26 (2): 400–406, 414. [DOI: 10.3969/j.issn.1005-0388.2011.02.032] )
-
Ma X Y, Qin J M, He Z H, Yang J and Lu Q H. 2007. Three-channel cancellation of SAR blanketing jamming suppression. Acta Electronica Sinica, 35 (6): 1015–1020. [DOI: 10.3321/j.issn:0372-2112.2007.06.002] ( 马晓岩, 秦江敏, 贺照辉, 杨军, 鲁千红. 2007. 抑制SAR压制性干扰的三通道对消方法. 电子学报, 35 (6): 1015–1020. [DOI: 10.3321/j.issn:0372-2112.2007.06.002] )
-
Sjögren T K, Vu T V, Pettersson M I, Wang F, Murdin D J G, Gustavsson A and Ulander L M H. 2014. Suppression of clutter in multichannel SAR GMTI. IEEE Transactions on Geoscience and Remote Sensing, 52 (7): 4005–4013. [DOI: 10.1109/TGRS.2013.2278701]
-
Yang W H, Liu J and Wang T. 2012. Intermittent sampling scatter-wave jamming against SAR. Journal of Astronautics, 33 (3): 367–373. [DOI: 10.3873/j.issn.1000-1328.2012.03.013] ( 杨伟宏, 刘进, 王涛. 2012. SAR间歇采样散射波干扰. 宇航学报, 33 (3): 367–373. [DOI: 10.3873/j.issn.1000-1328.2012.03.013] )
-
Zhang S X, Sun G C, Liu Y Y, Zhou F and Xing M D. 2011. Deception interference supression algorithm based on four-channel for SAR. Modern Radar, 33 (2): 22–26, 30. [DOI: 10.3969/j.issn.1004-7859.2011.02.006] ( 张双喜, 孙光才, 刘艳阳, 周峰, 邢孟道. 2011. 基于四通道SAR欺骗式干扰抑制算法. 现代雷达, 33 (2): 22–26, 30. [DOI: 10.3969/j.issn.1004-7859.2011.02.006] )
-
Zhang S X, Xing M D, Xia X G, Guo R, Liu Y Y and Bao Z. 2015. Robust clutter suppression and moving target imaging approach for multichannel in azimuth high-resolution and wide-swath synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 53 (2): 687–709. [DOI: 10.1109/TGRS.2014.2327031]