﻿ 水下射流挖沟机喷冲臂的设计与优化
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2020, Vol. 41 Issue (2): 271-276  DOI: 10.11990/jheu.201901041 0

引用本文

ZOU Li, JIN Guoqing, SUN Zhe, et al. Design and optimization of the spray arm of an underwater jet trencher[J]. Journal of Harbin Engineering University, 2020, 41(2): 271-276. DOI: 10.11990/jheu.201901041.

文章历史

1. 大连理工大学 船舶工程学院, 辽宁 大连 116024;
2. 高技术船舶与深海开发装备协同创新中心, 上海 200240

Design and optimization of the spray arm of an underwater jet trencher
ZOU Li 1,2, JIN Guoqing 1, SUN Zhe 1, XU Weitong 1, YU You 1
1. School of Naval Architecture, Dalian University of Technology, Dalian 116024, People's Republic of China;
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, People's Republic of China
Abstract: To prevent pipelines and cables from being damaged by humans and affected by natural environmental factors, it is generally necessary to bury them. In reference to the shape design and optimization of the spray arm, the influence of different design schemes on the nozzle flow velocity is discussed. Under the same inlet pressure condition, considering the loss along the pipeline and static pressure at the nozzle outlet in different depths, theoretical analysis, and computational fluid dynamic (CFD) numerical simulation are adopted for the design of the jetting arm. The solving scheme and numerical model are established to predict the internal flow. This model is employed to calculate the internal flow field of the three jetting arms, and the optimal design is obtained. The research results provide a reference for the design and development of jet trencher in the future.
Keywords: submarine pipeline and cable    jet trencher    seafloor ditching    spray arm    nozzle    computational fluid dynamic (CFD)    internal flow

1 喷冲臂设计原则

 Download: 图 1 设计沟型截面 Fig. 1 Sectional drawing of design of trench

 $\bar{F}=\frac{p R^{2}}{0.0127 x^{2}}$ (1)

 $x_{O}=\sqrt{2} x_{V}$ (2)

 $R_{O}=\sqrt{2} R_{V}$ (3)

 $Q_{O}=2 Q_{V}$ (4)

 $Q_{O}=2 Q_{V}=72 \mathrm{m}^{3} / \mathrm{h}$ (5)

 $u=\sqrt{\frac{2 p}{\rho}}=31.62 \mathrm{m} / \mathrm{s}$ (6)

 $R_{O}=1.41 \mathrm{cm} \quad R_{V}=1 \mathrm{cm}$ (7)

 Download: 图 2 V1.0版喷冲臂 Fig. 2 V1.0 version of the spray arm
2 CFD数值模型研究

 Download: 图 4 V1.0喷冲臂速度流线图 Fig. 4 Streamline diagram of the spray arm for V1.0

 Download: 图 6 V1.0时间步无关性研究 Fig. 6 Time step dependency study for V1.0
3 喷冲臂优化设计 3.1 V2.0版本喷冲臂

 Download: 图 7 V2.0版喷冲臂 Fig. 7 V2.0 version of the spray arm

1) 喷射臂与水平面的夹角α仍取45°，但将等直径圆管改为上粗下细的圆管形状。这既便于形成坡度约10°的开沟剖面，也可以使得两臂间距上下相等，进而便于将挖沟机从管道上方布放到沟内。此外，这种上粗下细形式也可使得管道内流速较为均匀，其中30 cm向10 cm口径的过渡形式是根据给排水工程中建议的管道内经济流速选取的。

2) 喷嘴布置更改后的V2.0喷冲臂如图 7所示，喷冲臂上共均匀布置15个喷嘴，从上至下前14个喷嘴口径均为2.2 cm，最后一个喷嘴为2.3 cm。之后喷冲臂延伸40 cm后转为水平，并在最后布置口径为3 cm的尾喷嘴。15个喷嘴中，从上到下前2个垂直向下，后13个向内侧倾斜，倾斜角度从20°线性增长到25°。喷嘴采用直接从喷冲臂上开口形式，而非之前设计中的通过喇叭管逐渐过渡形式。喷冲臂总长约3.22 m，可形成沟面深度约2 m。

 Download: 图 8 V2.0喷嘴出口平均速度 Fig. 8 The average velocity of nozzle for V2.0
3.2 V3.0版本喷冲臂

 Download: 图 9 喇叭口管接头研究中的速度流线图 Fig. 9 Streamline diagram for the study of bell mouth fitting
 Download: 图 10 喷嘴出口平均速度 Fig. 10 The average velocity of jet nozzle

 Download: 图 11 V3.0版喷冲臂 Fig. 11 V3.0 version of the spray arm

 Download: 图 12 V3.0喷嘴出口平均速度 Fig. 12 The average velocity of jet nozzle for V3.0
 Download: 图 13 V3.0喷冲臂速度流线图 Fig. 13 Streamline diagram of the spray arm for V3.0
4 结论

1) 通过理论分析初步确定了喷冲臂喷嘴的布置方案、喷嘴形状和尺寸。

2) 考虑重力和不同深度处喷嘴出口的静压，对数值计算结果进行了网格收敛性验证和时间步无关性验证，建立了一个有效的喷冲臂内部流动问题的解决方案和数值模型。

3) 在优化的过程中，考虑到了中心管道与喷嘴连接处的喇叭口形状，发现设计的喷嘴收缩角度取为25°时出口流速可最大化，基于此设计形成了本研究中最佳的喷冲臂方案。

 [1] 王亮.国内海底管道挖沟装备现状介绍[C]//2016年深海能源大会论文集.海口, 2016: 390-393. WANG Liang. Introduction of submarine pipeline trenching machines in China[C]//Proceedings of the 2016 Deep Sea Energy Conference. Haikou, 2016: 390-393. (0) [2] 熊海荣. 海底管道后挖沟分析[J]. 中国造船, 2009, 50(S1): 645-650. XIONG Hairong. Post trenching analysis of submarine pileline[J]. Shipbuilding of China, 2009, 50(S1): 645-650. (0) [3] 毛宁林. 驳载拖橇式滩海海底挖沟敷缆装置[J]. 石油工程建设, 2001, 27(1): 47-49. MAO Ninglin. Lighterage skid mounted ditching and laying unit for shoal seabed[J]. Petroleum engineering construction, 2001, 27(1): 47-49. DOI:10.3969/j.issn.1001-2206.2001.01.020 (0) [4] 孟然.海底管道后挖沟技术实验研究及数值模拟[D].天津: 天津大学, 2012. MENG Ran. Experimental study and numerical simulation on post trenching of submarine pipelines[D]. Tianjin: Tianjin University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10056-1012022255.htm (0) [5] 张新明, 梁富浩, 田帅.深水海底管线挖沟机的发展现状[C]//第十七届中国科协年会——分6中国海洋工程装备技术论坛论文集.广州, 2015: 108-114. ZHANG Xinming, LIANG Fuhao, TIAN Shuai. The development of deepwater trencher for pipeline[C]//Proceedings of the 17th China Association for Science and Technology. Guangzhou, 2015: 108-114. (0) [6] 周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31. ZHOU Shouwei, LI Qingping, ZHU Haishan, et al. The current state and future of offshore energy exploration and development technology[J]. Engineering science, 2016, 18(2): 19-31. DOI:10.3969/j.issn.1009-1742.2016.02.004 (0) [7] 杜喜军, 赵杰, 王艳涛, 等. 海底管道挖沟方法的选择[J]. 管道技术与设备, 2015(5): 52-54. DU Xijun, ZHAO Jie, WANG Yantao, et al. Contrast of subsea pipeline trenching methods[J]. Pipeline technique and equipment, 2015(5): 52-54. DOI:10.3969/j.issn.1004-9614.2015.05.017 (0) [8] 王喆, 袁庆晴, 马洪新, 等. 射流式挖沟机沟内流场数值计算与分析[J]. 哈尔滨工程大学学报, 2015, 36(3): 292-296. WANG Zhe, YUAN Qingqing, MA Hongxin, et al. Numerical calculation and analysis of the flow field caused by a jetting trencher[J]. Journal of Harbin Engineering University, 2015, 36(3): 292-296. (0) [9] 吴强.用于喷射式挖沟机的喷嘴结构及喷嘴组合的研究[D].青岛: 中国石油大学(华东), 2011. WU Qiang. Study on nozzle configuration and nozzle combination used on jet trencher[D]. Qingdao: China University of Petroleum (East China), 2011. http://cdmd.cnki.com.cn/Article/CDMD-10425-1011287024.htm (0) [10] 李军营, 王克文, 梁浩新. 喷射式挖沟机喷嘴关键参数的设计与优化[J]. 石油工程建设, 2018, 44(3): 27-30. LI Junying, WANG Kewen, LIANG Haoxin. Design and optimization of key parameters for nozzle of jet trencher[J]. Petroleum engineering construction, 2018, 44(3): 27-30. DOI:10.3969/j.issn.1001-2206.2018.03.006 (0) [11] 董玉飞, 张凯, 刘洋. 喷射式海底挖沟机的参数优化和数值模拟研究[J]. 石油工程建设, 2017, 43(2): 85-87, 92. DONG Yufei, ZHANG Kai, LIU Yang. Study on parameters optimization and numerical simulation of submarine jet trencher[J]. Petroleum engineering construction, 2017, 43(2): 85-87, 92. DOI:10.3969/j.issn.1001-2206.2017.02.020 (0) [12] 奉虎, 王艳涛, 杜喜军, 等. 挖沟机喷嘴射流流场的数值模拟[J]. 中国海洋平台, 2016, 31(1): 50-54. FENG Hu, WANG Yantao, DU Xijun, et al. Trenchers of nozzle jet flow field numerical simulation[J]. China offshore platform, 2016, 31(1): 50-54. DOI:10.3969/j.issn.1001-4500.2016.01.009 (0) [13] 戴源, 奉虎, 袁朝纲, 等. 射流式海底管道挖沟机喷嘴选型及布置研究[J]. 中国水运, 2018, 18(4): 96-97, 100. DAI Yuan, FENG Hu, YUAN Chaogang, et al. Study on selection and arrangement of nozzle for underwater jet trencher[J]. China water transport, 2018, 18(4): 96-97, 100. (0) [14] KHAYRULLINA A, VAN HOOFF T, BLOCKEN B, et al. Validation of steady RANS modelling of isothermal plane turbulent impinging jets at moderate Reynolds numbers[J]. European journal of mechanics-B/fluids, 2019, 75: 228-243. DOI:10.1016/j.euromechflu.2018.10.003 (0) [15] 马飞, 宋志辉. 水射流动力特性及破土机理[J]. 北京科技大学学报, 2006, 28(5): 413-416. MA Fei, SONG Zhihui. Dynamic property and breaking soil mechanism of water jet[J]. Journal of University of Science and Technology Beijing, 2006, 28(5): 413-416. DOI:10.3321/j.issn:1001-053X.2006.05.002 (0)