«上一篇
文章快速检索     高级检索
下一篇»
  哈尔滨工程大学学报  2019, Vol. 40 Issue (12): 2063-2069  DOI: 10.11990/jheu.201810012
0

引用本文  

黄小琴, 陈力. 基座、臂杆全弹性空间机器人抗死区动态面控制[J]. 哈尔滨工程大学学报, 2019, 40(12): 2063-2069. DOI: 10.11990/jheu.201810012.
HUANG Xiaoqin, CHEN Li. Anti-dead-zone control based on dynamic surface for space robot with flexible links and elastic base[J]. Journal of Harbin Engineering University, 2019, 40(12): 2063-2069. DOI: 10.11990/jheu.201810012.

基金项目

国家自然科学基金项目(11372073,11072061);福建省工业机器人基础部件技术重大研发项目(2014H21010011)

通信作者

黄小琴, E-mail:hxq582p@163.com

作者简介

黄小琴, 女, 博士研究生;
陈力, 男, 教授, 博士生导师

文章历史

收稿日期:2018-10-12
网络出版日期:2019-04-18
基座、臂杆全弹性空间机器人抗死区动态面控制
黄小琴 1,2, 陈力 1,2     
1. 福州大学 机械工程及自动化学院, 福建 福州 350116;
2. 福建省高端装备制造协同创新中心, 福建 福州 350116
摘要:为了抑制漂浮基空间机器人的弹性基座与柔性臂杆的振动及避免关节力矩输出死区的影响,探讨了基座、臂杆全弹性漂浮基空间机器人系统存在关节力矩输出死区时的轨迹跟踪及双重柔性抑振问题。将弹性基座与臂杆间的连接视为弹簧连接,结合假设模态法,推导出系统的动力学方程。应用奇异摄动方法,将系统分解慢变、快变子系统,分别表示刚性运动、基座弹性与双柔杆振动。对于慢变子系统,针对系统存在死区的情况,设计了基于自适应高斯基模糊的动态面控制器。动态面的引入避免了反演法引起的计算膨胀,减少了计算量;模糊逻辑函数逼近了含有死区误差和外部干扰在内的动力学不确定项;针对快变子系统,采用线性二次型最优控制以抑制基座与双杆的柔性振动并利用Matlab进行仿真验证。仿真结果表明:所设计的控制方案使得基座姿态与两臂杆相对转角收敛到期望角度,基座位移与臂杆的一、二阶振动模态收敛到零。
关键词基座弹性    双柔杆空间机器人    奇异摄动法    关节力矩输出死区    动态面控制    双重振动抑制    
Anti-dead-zone control based on dynamic surface for space robot with flexible links and elastic base
HUANG Xiaoqin 1,2, CHEN Li 1,2     
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China;
2. Collaborative Innovation Center of High End Equipment Manufacturing, Fuzhou 350116, China
Abstract: To suppress the vibration generated by the elastic base and flexible arms of a free-floating space robot and avoid being influenced by the joint-torque-output dead zone, in this paper, we discuss the trajectory tracking and double vibration suppression of the floating-space robot system with a joint-torque-output dead zone. By considering the elastic connection between the elastic base and the link as a linear spring and using the assumed mode method, we model the system dynamics. Next, using the singular perturbation theory, we obtain a slow subsystem that describes the rigid motion and a fast subsystem that corresponds to the vibration of an elastic base and two flexible links. For the slow subsystem, we design a dynamic surface control method based on an adaptive Gaussian fuzzy logic function for solving the dead-zone problem of the system. To reduce the amount of calculation required, we introduce a dynamic surface control scheme that avoids the calculation expansion associated with the backstepping method. We apply a fuzzy logic function to approximate the uncertainty term of the dynamic equation, including dead-zone errors and external disturbances. For the fast subsystem, we adopt an optimal linear quadratic controller to dampen any vibration of the two flexible links and elastic base. Using Matlab to perform the simulation, the results show that the designed control scheme makes the base attitude and relative angles of the two arms converge to the desired angles and the base displacement and the first-and second-order vibration modes of the arms converge to zero.
Keywords: base elasticity    two-flexible-link space robot    singular perturbation method    joint-torque-output dead zone    dynamic surface control    double vibration suppression    

空间机器人能够协助或取代宇航员完成太空在轨服务工作,其运用可以大大提升探测外太空的效率,因此学者对各类空间机器人的动力学控制展开了广泛的研究[1-5]。随着对控制精度的要求越来越高,各类柔性问题逐渐凸显[6-7]。空间机器人本身质轻,长臂,因此其在操作过程中具有柔性振动;同时,空间机器人沿着导轨移动的过程中会产生基座的振动,由于整个系统存在耦合关系,故而会降低关节运动的精度[8-9]。因此要实现较高精度的控制,须将臂杆与基座的柔性振动均作为考虑因素。文献[10]推导了多柔杆空间机器人的动力学方程,仿真了双柔杆的轨迹跟踪,并采取LQR方案进行柔性抑振。文献[11]将多连杆柔性机器人的模型不确定性视为参数摄动,设计直接参数更新律来快速抑制柔性振动。文献[12]在结合应用混合轨迹和奇异设动降阶方法,抑制了存在基座弹性的柔性关节空间机器人的基座与关节振动,而杆件柔性未加以考虑。

以上研究均是建立在力矩完全输出的理想条件下,而实际上关节力矩输出死区是执行器常见的非线性特性。影响稳态跟踪误差,产生极限环振荡,甚至造成控制失效等,这些都是“死区”带来的不利后果。因此,为了满足空间机器人的高精度控制,设计合适的“死区”补偿方法是值得研究的。文献[13]以存在死区的空间机械臂为研究对象,设计了递归CMAC控制方法和死区预补偿器来实现关节的轨迹跟踪;文献[14]研究了具有非对称死区机械手的一种自适应反演控制方案和死区估计器。

文献[14]中的反演法是机器人动力学控制领域中一种行之有效的方法,然而这种方法在“后退”的过程中,对虚拟控制部分多次求导将会导致“微分爆炸”问题。因此Swaroop等[15]在研究过程中提出动态面概念,设计一阶低通滤波器估计虚拟控制部分,解决了此问题。文献[16]研究了一种无模型的递归模糊神经网络的动态面控制方案用以控制关节执行器存有动态摩擦的机械臂。文献[17]将气动高超声速飞行器的模型不确定性与干扰应用模糊神经网络干扰观测器来估计,并研制了自适应动态面控制器。

基座、臂杆全弹性空间机器人是强耦合非线性系统,本文将此作为研究对象,并考虑了关节力矩输出死区这一实际工况,研究了其轨迹跟踪以及柔性双重抑振的控制问题。基于2种时间尺度假设,将系统分解为快、慢变子系统:针对慢变子系统,设计了一种抗死区的基于自适应高斯基模糊的动态面控制器。动态面的引入避免了反演法引起的计算膨胀,减少了计算量;模糊逻辑函数逼近了包含死区误差和外部扰动的动力学不确定项,使得基座与两关节铰实现刚性的角度跟踪;对于快变子系统,采用线性二次型调节器(LQR)同时抑制基座与两杆的柔性振动。

1 系统动力学方程

以基座、臂杆全弹性空间机器人为研究对象,其包含自由飘浮的基座B0及柔性臂杆B1B2组成,模型如图 1所示。将基座振动简化为一个不计质量的弹簧的位移χ来描述,弹性系数为kχ,初始位移为0,并且只做沿着轴线的伸缩运动。

Download:
图 1 基座、臂杆弹性影响的空间机器人系统 Fig. 1 Space robot system with elastic base and flexible links

建立各分体Bi(i=0, 1, 2)的联体坐标Oixiyi,其中O0B0的质心Oc0重合,Oi(i=1, 2)分别为相应的转动铰中心。轻质弹簧连接O1B0x0轴通过O0O1的连线,x1轴与O1O2共线,x2轴与B2始终相切于O2。初始时,O1x0轴上与O0的距离为l0Bi(i=1, 2)沿xi轴的长度为li;基座的质量与绕质心的转动惯量分别为m0J0C为系统的总质心。以空间任意点O为原点,设立平动惯性坐标系(OXY)。

假设两杆为仅考虑弯曲变形,同时在平面内作横向振动的匀质细长杆件。Bi(i=1, 2)的线密度为ρi,截面抗弯刚度为(EI)i。将两杆视为Euler-Bernoulli梁,其弹性变形为:

$ {\sigma _i}\left( {{x_i},t} \right) = \sum\limits_{j = 1}^{{n_i}} {{\omega _{ij}}} \left( {{x_i}} \right){\xi _{ij}}(t) $

式中:σi(xi, t)为Bi在截面xi(0≤xili)处的横向弹性变形;ωij(xi)为Bi的第j阶模态函数;ξij(t)为与之对应的模态坐标,大幅值的振动主要由前几阶模态构成,取截断项数ni=2。将B1B2分别视为简支梁与悬臂梁,具体模态函数可由文献[18]得到。

采用Lagrange第二类方程,可得系统的动力学方程为:

$ \mathit{\boldsymbol{M}}(\mathit{\boldsymbol{\theta }},\mathit{\boldsymbol{\delta }})\left[ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\ddot \theta }}}\\ {\mathit{\boldsymbol{\ddot \delta }}} \end{array}} \right] + \mathit{\boldsymbol{h}}(\mathit{\boldsymbol{\theta }},\mathit{\boldsymbol{\delta }},\mathit{\boldsymbol{\dot \theta }},\mathop {\mathit{\boldsymbol{\delta }}}\limits^. )\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\dot \theta }}}\\ {\mathit{\boldsymbol{\dot \delta }}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ {{\mathit{\boldsymbol{K}}_\xi }\mathit{\boldsymbol{\xi }}}\\ {{\mathit{\boldsymbol{k}}_\chi }\chi } \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} \tau \\ 0 \end{array}} \right] $ (1)

式中:$ \boldsymbol{\theta}=\left[\begin{array}{lll}{\theta_{0}} & {\theta_{1}} & {\theta_{2}}\end{array}\right]^{\mathrm{T}}$为基座姿态和臂杆两关节相对转角的刚性广义坐标列向量,$ \left[\begin{array}{llll}\boldsymbol{\xi}={\xi_{11}} & {\xi_{12}} & {\xi_{21}} & {\xi_{22}}\end{array}\right]^{\mathrm{T}}$为臂杆柔性模态的广义坐标列向量,$\boldsymbol{\delta}=\left[{\xi}^{\mathrm{T}} \quad \mathcal{X}\right]^{\mathrm{T}} \circ \boldsymbol{M}(\boldsymbol{\theta}, \boldsymbol{\delta}) \in \mathbf{R}^{8\times 8} $为对称、正定质量矩阵,$\boldsymbol{h}(\boldsymbol{\theta}, \boldsymbol{\delta}, \dot{\boldsymbol{\theta}}, \dot{\boldsymbol{\delta}})\left[\dot{{\theta}}^{\mathrm{T}} \quad \dot{\delta}^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbf{R}^{8} $为包含科氏力、离心力的列向量,$ \boldsymbol{K}_{\xi} \in \operatorname{diag}\left(k_{\xi 11}, k_{\xi 12}, k_{\xi 21}, k_{\xi 22}\right), \boldsymbol{k}_{\xi i j}=(\mathrm{EI})_{i} \int_{0}^{l_{i}} \omega_{i j}^{\prime \prime T} \omega^{\prime \prime} \mathrm{d} x_{i}(i, j=1, 2)$为柔杆的刚度矩阵。τR3为基座与臂杆两关节的输出力矩列向量。

2 基于奇异摄动方法的快、慢系统分解

此基座、臂杆全弹性空间机器人在运动中不仅两臂杆会发生变形和振动,弹性基座也会发生振动。为了实现空间机器人的高精度控制与柔性振动的抑制,采用奇异摄动方法,将动力学方程分解为慢变、快变子系统,分别表示刚性运动、基座及两杆柔性振动,为此,将式(1)表示成分块矩阵形式:

$ \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{M}}_{ss}}}&{{\mathit{\boldsymbol{M}}_{sf}}}\\ {{\mathit{\boldsymbol{M}}_{fs}}}&{{\mathit{\boldsymbol{M}}_{ff}}} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\ddot \theta }}}\\ {\mathit{\boldsymbol{\ddot \delta }}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{h}}_{ss}}}&{{\mathit{\boldsymbol{h}}_{sf}}}\\ {{\mathit{\boldsymbol{h}}_{fs}}}&{{\mathit{\boldsymbol{h}}_{ff}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\dot \theta }}}\\ {\mathit{\boldsymbol{\dot \delta }}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ {{\mathit{\boldsymbol{K}}_\xi }\mathit{\boldsymbol{\xi }}}\\ {{\mathit{\boldsymbol{k}}_\chi }\chi } \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} \tau \\ 0 \end{array}} \right] $ (2)

式中:$\boldsymbol{M}_{{ss}}、\boldsymbol{H}_{{ss}} \in \mathbf{R}^{3 \times 3} ; \boldsymbol{M}_{f f} 、\boldsymbol{H}_{f f} \in \mathbf{R}^{5 \times 5} ; \boldsymbol{M}_{s f}=\boldsymbol{M}_{fs}^{\mathrm{T}} \in $ $ \mathbf{R}^{3 \times 5} ; \boldsymbol{H}_{s f} \in \mathbf{R}^{3 \times 5}、\boldsymbol{H}_{f s} \in \mathbf{R}^{5 \times 3}$

因为M是对称、正定矩阵,所以它的逆存在:

$ \mathit{\boldsymbol{N}} = {\mathit{\boldsymbol{M}}^{ - 1}} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{N}}_{ss}}}&{{\mathit{\boldsymbol{N}}_{sf}}}\\ {{\mathit{\boldsymbol{N}}_{fs}}}&{{\mathit{\boldsymbol{N}}_{ff}}} \end{array}} \right] $

定义奇异摄动比例因子$ \varepsilon^{2}=1 / \min \left\{k_{\xi^{411}}, k_{\xi 12}\right., \left.k_{\xi 21}, k_{\xi 22}, k_{\chi}\right\}$,新的变量$ \mathit{\boldsymbol{z}}, \mathit{\boldsymbol{\widetilde K}}\left( {\mathit{\boldsymbol{z}}{\varepsilon ^2}1 = \xi , \mathit{\boldsymbol{\widetilde K}} = {\varepsilon ^2}\mathit{\boldsymbol{K}}} \right)$。由式(2)推得系统的奇异摄动模型:

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{\ddot \theta }} = - \left( {{\mathit{\boldsymbol{N}}_{ss}}{\mathit{\boldsymbol{h}}_{ss}} + {\mathit{\boldsymbol{N}}_{sf}}{\mathit{\boldsymbol{h}}_{fs}}} \right)\mathit{\boldsymbol{\dot \theta }} - }\\ {\left( {{\mathit{\boldsymbol{N}}_{ss}}{\mathit{\boldsymbol{h}}_{sf}} + {\mathit{\boldsymbol{N}}_{sf}}{\mathit{\boldsymbol{h}}_{ff}}} \right){\varepsilon ^2}\mathit{\boldsymbol{\dot z}} - {\mathit{\boldsymbol{N}}_{sf}}\mathit{\boldsymbol{\tilde Kz}} + {\mathit{\boldsymbol{N}}_{ss}}\mathit{\boldsymbol{\tau }}}\\ {{\varepsilon ^2}\mathit{\boldsymbol{\ddot z}} = - \left( {{\mathit{\boldsymbol{N}}_{fs}}{\mathit{\boldsymbol{h}}_{ss}} + {\mathit{\boldsymbol{N}}_{ff}}{\mathit{\boldsymbol{h}}_{fs}}} \right)\mathit{\boldsymbol{\dot \theta }} - }\\ {\left( {{\mathit{\boldsymbol{N}}_{fs}}{\mathit{\boldsymbol{h}}_{sf}} + {\mathit{\boldsymbol{N}}_{ff}}{\mathit{\boldsymbol{h}}_{ff}}} \right){\varepsilon ^2}\mathit{\boldsymbol{\dot z}} - {\mathit{\boldsymbol{N}}_{ff}}\mathit{\boldsymbol{\tilde Kz}} + {\mathit{\boldsymbol{N}}_{fs}}\tau } \end{array}} \right. $ (3)

根据式(3)的系统奇异摄动模型,可设计如下组合控制律:

$ \mathit{\boldsymbol{\tau }} = {\mathit{\boldsymbol{\tau }}_s} + {\mathit{\boldsymbol{\tau }}_f} $ (4)

式中:τs控制慢变子系统,实现基座与两关节角度跟踪;τf则控制快变子系统,抑制基座与两杆振动。

ε=0,可得慢变子系统为:

$ {\mathit{\boldsymbol{\overline M}} _{ss}}\mathit{\boldsymbol{\ddot \theta }} + {{\mathit{\boldsymbol{\bar h}}}_{ss}}\mathit{\boldsymbol{\dot \theta }} = {\mathit{\boldsymbol{\tau }}_s} $ (5)

式中矩阵或变量上加上划线意为与之对应的慢变分量。

定义新的变量:${\mathit{\boldsymbol{p}}_1} = \mathit{\boldsymbol{z}} - \mathit{\boldsymbol{\bar z}}, {\mathit{\boldsymbol{p}}_2} = \varepsilon \mathit{\boldsymbol{\dot z}} $,并加入快变时间尺度$\bar{\omega}=t / s $,则快变子系统动力学方程为:

$ \begin{array}{*{20}{c}} {{\rm{d}}{\mathit{\boldsymbol{p}}_1}/{\rm{d}}\bar \omega = {\mathit{\boldsymbol{p}}_2}}\\ {{\rm{d}}{\mathit{\boldsymbol{p}}_2}/{\rm{d}}\bar \omega = - {{\mathit{\boldsymbol{\bar N}}}_{ff}}\mathit{\boldsymbol{\tilde K}}{\mathit{\boldsymbol{p}}_1} + {{\mathit{\boldsymbol{\bar N}}}_{fs}}{\mathit{\boldsymbol{\tau }}_f}} \end{array} $ (6)

式(6)描述的是基座和两杆的柔性振动。

3 控制规律设计 3.1 慢变子系统基于动态面的抗死区自适应模糊控制方法设计

空间机器人的基座位置和姿态的调整通常利用动量轮或反作用喷气装置;而两关节铰为电机驱动,因此其存在关节力矩输出死区。

考虑外部干扰τd和关节力矩输出死区,慢变子系统可写为:

$ {\mathit{\boldsymbol{\overline M}} _{ss}}\mathit{\boldsymbol{\ddot \theta }} + {{\mathit{\boldsymbol{\bar h}}}_{ss}}\mathit{\boldsymbol{\dot \theta }} + {\mathit{\boldsymbol{\tau }}_{\rm{d}}} = {\mathit{\boldsymbol{\tau }}_s} $

式中:${\mathit{\boldsymbol{\tau }}_s}{\left[ {\begin{array}{*{20}{c}} {{{\overline \tau }_0}}&{{\mathit{\boldsymbol{D}}^{\rm{T}}}\left( {{{\overline \tau }_r}} \right)} \end{array}} \right]^{\rm{T}}} \in {{\mathbf{R}}^3} $为慢变子系统中基座输出力矩$ {{{\overline \tau }_0}}$与臂杆两关节铰的输出力矩$ \mathit{\boldsymbol{D}}\left( {{{\overline \tau }_r}} \right) = $ $ [D(\overline{\tau_{1}}) \quad D(\overline{\tau_{2}})]^{\mathrm{T}}, \boldsymbol{D}(\overline{\tau_{r}})$是具有输入为$ {\mathit{\boldsymbol{\overline \tau }} _r} = $ $ \left[\begin{array}{ll}{\bar{\tau}_{1}} & {\bar{\tau}_{2}}\end{array}\right]^{\mathrm{T}}$的关节力矩死区输出列向量。

鉴于通常难以获得系统动力学模型的精确参数,记$ \boldsymbol{v}_{1}=\boldsymbol{\theta}, \dot{\boldsymbol{v}}_{1}=\boldsymbol{v}_{2}=\dot{\boldsymbol{\theta}}$,将慢变子系统写为状态方程:

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{v}}_1} = {\mathit{\boldsymbol{v}}_2}}\\ {{{\mathit{\boldsymbol{\dot v}}}_2} = \mathit{\boldsymbol{\hat {\bar M}}}_{SS}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\mathit{\boldsymbol{\tau }}_s} - \mathit{\boldsymbol{F}}\left( {{\mathit{\boldsymbol{v}}_1},{\mathit{\boldsymbol{v}}_2}} \right) + \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\mathit{\boldsymbol{T}}_\Delta }} \end{array}} \right. $ (7)

式中:$ {\widehat {\mathit{\boldsymbol{\overline M}} }_{ss}}、{\widehat {\mathit{\boldsymbol{\overline H}} }_{ss}} $为名义模型;$\Delta \mathit{\boldsymbol{M}} = \widehat {\mathit{\boldsymbol{\overline M}} }_{ss} - {\widehat {\mathit{\boldsymbol{\overline M}} }_{ss}}, \Delta \mathit{\boldsymbol{h}} = {\widehat {\mathit{\boldsymbol{\overline h}} }_{ss}} - \widehat {\mathit{\boldsymbol{\overline h}} } $$ \boldsymbol{F}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\dot{\widehat {\mathit{\boldsymbol{\overline M}} }_{s s}^{-1}}\left(\boldsymbol{v}_{1}\right) \hat{\bar{h}_{s s}}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \boldsymbol{v}_{2}, \boldsymbol{T}_{\Delta}=$ $ - \Delta \mathit{\boldsymbol{M}}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\mathit{\boldsymbol{\dot v}}}_2} - \Delta \mathit{\boldsymbol{h}}\left( {{\mathit{\boldsymbol{v}}_1}, {\mathit{\boldsymbol{v}}_2}} \right){\mathit{\boldsymbol{v}}_2} - {\mathit{\boldsymbol{\tau }}_d}$为不确定性之和。$ \|\Delta \boldsymbol{M}\| \leqslant \rho_{M}, \|\Delta \boldsymbol{h}\| \leqslant \rho_{h}, \left\|\boldsymbol{\tau}_{d}\right\| \leqslant \rho_{d}$ $ \rho_{i}(i=M, h, d)$为正常数。

3.1.1 关节力矩输出死区

“死区”是指输入变化对输出没有影响的范围。它体现了在关节力矩的输入大小进入死区之后输出为零的输入-输出关系。当信号进入死区范围时会有一定的损失,进而产生系统控制的偏差。

记死区输入为${\mathit{\boldsymbol{\overline \tau }} _r} $,输出为$\mathit{\boldsymbol{D}}\left( {{{\overline \tau }_r}} \right) $,其简化死区模型[13]可表示为:

$ D\left( {{\tau _i}} \right) = \left\{ {\begin{array}{*{20}{l}} {{m_{ri}}\left( {{\tau _i} - {b_{ri}}} \right),}&{\tau \ge {b_{ri}}}\\ {0,}&{{b_{li}} < {\tau _{di}} < {b_{ri}}}\\ {{m_{li}}\left( {{\tau _i} - {b_{li}}} \right),}&{{\tau _i} \le {b_{li}}} \end{array}} \right. $

式中:bli < 0、bri>0分别为死区的左右宽度。mlimri分别为死区的左右斜率,设定mrimli均大于零。

死区输入与输出的差值表示为:

$ {D_\Delta } = {{\bar \tau }_r} - D\left( {{{\bar \tau }_r}} \right) $

因此把状态方程式(7)改写为:

$ \left\{ {\begin{array}{*{20}{l}} {{{\mathit{\boldsymbol{\dot v}}}_1} = {\mathit{\boldsymbol{v}}_2}}\\ \begin{array}{l} {{\mathit{\boldsymbol{\dot v}}}_2} = \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\mathit{\boldsymbol{\bar \tau }}}_c} - \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\left[ {\begin{array}{*{20}{c}} 0&{D_\Delta ^{\rm{T}}} \end{array}} \right]^{\rm{T}}} - \\ \;\;\;\;\;\;\;\mathit{\boldsymbol{F}}\left( {{\mathit{\boldsymbol{v}}_1},{\mathit{\boldsymbol{v}}_2}} \right) + \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\mathit{\boldsymbol{T}}_\Delta } \end{array} \end{array}} \right. $ (8)

式中:$\overline{\boldsymbol{\tau}}_{c}=\left[\begin{array}{cc}{\overline{\boldsymbol{\tau}}_{0}} & {\overline{\boldsymbol{\tau}}_{r}^{\mathrm{T}}}\end{array}\right]^{\mathrm{T}} $为过“死区”之前基座与两关节的力矩列向量。

3.1.2 控制器设计

针对文中的空间机器人慢变子系统,采用动态面控制方法设计虚拟控制量和控制输入信号,在此基础上设计慢变子系统的控制规律${\mathit{\boldsymbol{\overline \tau }} _c} $,以使此基座、臂杆全弹性空间机器人的刚性运动轨迹θ跟踪期望运动轨迹θd

动态面控制的设计步骤如下:

1) 定义第一个误差面:

$ {\mathit{\boldsymbol{s}}_1} = {\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{\theta }}_d} $

设计一个虚拟控制量υ2

$ {{\mathit{\boldsymbol{\tilde v}}}_2} = {{\mathit{\boldsymbol{\dot \theta }}}_d} - {c_1}{s_1} $ (9)

式中设计常数c1>0。

${{\mathit{\boldsymbol{\tilde \upsilon }}}_2} $为输入,υ2d为新的状态变量输出,引入一阶低通滤波器:

$ {\eta _2}{{\mathit{\boldsymbol{\dot v}}}_{2d}} + {\mathit{\boldsymbol{v}}_{2d}} = {{\mathit{\boldsymbol{\tilde v}}}_2},{\mathit{\boldsymbol{v}}_{2d}}\left( 0 \right) + {\mathit{\boldsymbol{v}}_2}\left( 0 \right) $ (10)

式中时间η2>0。

2) 提出第2个动态面,进而设计慢变子系统的控制规律:

$ {\mathit{\boldsymbol{s}}_2} = {\mathit{\boldsymbol{v}}_2} - {\mathit{\boldsymbol{v}}_{2d}} $ (11)

将式(8)代入s2的一阶导数${{\mathit{\boldsymbol{\dot s}}}_2} $,可得:

$ \begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\dot s}}}_2} = \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\mathit{\boldsymbol{\bar \tau }}}_c} - \mathit{\boldsymbol{\hat {\bar M}}}_{SS}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\left[ {\begin{array}{*{20}{c}} 0&{\mathit{\boldsymbol{D}}_\Delta ^{\rm{T}}} \end{array}} \right]}^{\rm{T}}} - }\\ {\mathit{\boldsymbol{F}}\left( {{\mathit{\boldsymbol{v}}_1},{\mathit{\boldsymbol{v}}_2}} \right) + \mathit{\boldsymbol{\hat {\bar M}}}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\mathit{\boldsymbol{T}}_\Delta } - {\mathit{\boldsymbol{v}}_{2d}}} \end{array} $ (12)

利用模糊逻辑系统来逼近确切值未知的$ \mathit{\boldsymbol{ \boldsymbol{\varTheta} }}(\mathit{\boldsymbol{X}}) = {\left[ {\begin{array}{*{20}{l}} 0&{ - \mathit{\boldsymbol{D}}_\mathit{\Delta} ^{\rm{T}}} \end{array}} \right]^{\rm{T}}} + {\mathit{\boldsymbol{T}}_\mathit{\Delta} }$

Θ(X|W)为Θ(X)的一个逼近,则:

$ \mathit{\boldsymbol{ \boldsymbol{\varTheta} }}\left( {\mathit{\boldsymbol{X}}\left| \mathit{\boldsymbol{W}} \right.} \right) = {\mathit{\boldsymbol{W}}^{\rm{T}}}\mathit{\boldsymbol{O}}\left( \mathit{\boldsymbol{X}} \right) $

式中:W为权值矩阵;$ \boldsymbol{O}(x)=\left[\begin{array}{llll}{O_{1}} & {O_{2}} & {\cdots} & {O_{h}}\end{array}\right]^{\mathrm{T}}$为模糊基向量;h为规则数目。模糊基网络输入$ \mathit{\boldsymbol{X = }}\left[\begin{array}{llll}{\boldsymbol{v}_{1}^{\mathrm{T}}} & {\boldsymbol{v}_{2}^{\mathrm{T}}} & {\boldsymbol{\theta}_{\mathrm{d}}^{\mathrm{T}}} & {\dot{\boldsymbol{\theta}}_{\mathrm{d}}^{\mathrm{T}}}\end{array}\right]^{\mathrm{T}}$,模糊基函数Ok表示为:

$ {O_k}\left( {{X_1},{X_2}, \cdots ,{X_{4n}}} \right) = \prod\limits_{j = 1}^{4n} {{\mu _{F_j^k}}} \left( {{X_j}} \right)/\sum\limits_{k = 1}^h {\prod\limits_{j = 1}^{4n} {{\mu _{F_j^k}}} } \left( {{X_j}} \right) $

选取高斯型函数:

$ {\mu _{F_j^k}}\left( {{X_j}} \right) = \exp \left[ { - {{\left( {{X_j} - {a_{jk}}} \right)}^2}/2b_{ij}^2} \right] $

式中ajkbjk分别为曲线的中心、宽度。

W的最优值W*是一个常数矩阵且满足:

$ {\mathit{\boldsymbol{W}}^*} = \arg \mathop {\min }\limits_{W \in {\mathit{\Omega }_W}} \left[ {\mathop {\sup }\limits_{X \in {\mathit{\Omega }_X}} \left| {\mathit{\boldsymbol{ \boldsymbol{\varTheta} }}\left( {\mathit{\boldsymbol{X}}\left| \mathit{\boldsymbol{W}} \right.} \right) - \mathit{\boldsymbol{ \boldsymbol{\varTheta} }}\left( \mathit{\boldsymbol{X}} \right)} \right|} \right] $

式中:$\mathit{\Omega}_{w}=\left\{\boldsymbol{W} |\|\boldsymbol{W}\| \leqslant \rho_{w}\right\}, \rho_{w} $为有界正常数。

令:

$ \mathit{\boldsymbol{ \boldsymbol{\varTheta} }}\left( \mathit{\boldsymbol{X}} \right) = {\mathit{\boldsymbol{W}}^{*{\rm{T}}}}\mathit{\boldsymbol{O}}\left( \mathit{\boldsymbol{X}} \right) + {\mathit{\boldsymbol{\mu }}^*} $ (13)

式中μ*为最优逼近误差。

设计慢变子系统的控制规律为:

$ \begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\bar \tau }}}_c} = - {c_2}{\mathit{\boldsymbol{s}}_2} - {\mathit{\boldsymbol{s}}_1} - {{\mathit{\boldsymbol{\hat W}}}^{\rm{T}}}\mathit{\boldsymbol{O}}\left( \mathit{\boldsymbol{X}} \right) - \mathit{\boldsymbol{\hat \mu }} + }\\ {{{\mathit{\boldsymbol{\hat {\bar h}}}}_{ss}}\left( {{\mathit{\boldsymbol{v}}_1},{\mathit{\boldsymbol{v}}_2}} \right){\mathit{\boldsymbol{v}}_{2d}} + {{\mathit{\boldsymbol{\hat {\bar M}}}}_{ss}}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\mathit{\boldsymbol{\dot v}}}_{2d}}} \end{array} $ (14)

式中:$ \mathit{\boldsymbol{\hat W}}、\mathit{\boldsymbol{\hat \varepsilon }}$分别为W*μ*的估计值,c2>0。

设计$ \mathit{\boldsymbol{\hat W}}, \mathit{\boldsymbol{\hat \mu }}$的自适应调节律:

$ \mathit{\boldsymbol{\dot {\hat W}}} = {\mathit{\boldsymbol{\beta }}_1}\mathit{\boldsymbol{O}}\left( \mathit{\boldsymbol{X}} \right)\mathit{\boldsymbol{s}}_2^{\rm{T}} - {\lambda _1}\mathit{\boldsymbol{\hat W}} $ (15)
$ \mathit{\boldsymbol{\dot {\hat \mu} }} = {\mathit{\boldsymbol{\beta }}_2}{\mathit{\boldsymbol{s}}_2} - {\lambda _2}\mathit{\boldsymbol{\hat \mu }} $ (16)

式中:$ {\mathit{\boldsymbol{\beta }}_1} \in {{\mathbf{R}}^{h \times h}}, {\mathit{\boldsymbol{\beta }}_2} \in {{\mathbf{R}}^{3 \times 3}}。{\lambda _1} > 0, {\lambda _2} > 0$为调节参数。

3.1.3 稳定性分析

利用Lyapunov理论分析存在关节力矩输出死区与外部干扰的慢变子系统半全局的稳定性。

定义慢变子系统边界层误差:

$ {\mathit{\boldsymbol{\gamma }}_2} = {\mathit{\boldsymbol{v}}_{2d}} - {{\mathit{\boldsymbol{\tilde v}}}_2} $

代入式(10),可得:

$ {{\mathit{\boldsymbol{\dot v}}}_{2d}} - {\gamma _2}/{\mathit{\boldsymbol{\eta }}_2} $ (17)

由此求解出γ2的一阶导数$ {{\mathit{\boldsymbol{\dot \gamma }}}_2}$

$ \begin{array}{*{20}{c}} {{{\dot \gamma }_2} = - {\gamma _2}/{\eta _2} - {{\mathit{\boldsymbol{\ddot \theta }}}_{\rm{d}}} + {c_1}{{\mathit{\boldsymbol{\dot s}}}_1} = }\\ { - {\gamma _2}/{\eta _2} + \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( {{\mathit{\boldsymbol{s}}_1},{\mathit{\boldsymbol{s}}_2},{\mathit{\boldsymbol{\theta }}_{\rm{d}}},{{\mathit{\boldsymbol{\dot \theta }}}_{\rm{d}}},{{\mathit{\boldsymbol{\ddot \theta }}}_{\rm{d}}},{\mathit{\boldsymbol{\gamma }}_2}} \right)} \end{array} $ (18)

式中:$\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( {{\mathit{\boldsymbol{s}}_1}, {\mathit{\boldsymbol{s}}_2}, {\mathit{\boldsymbol{q}}_d}, {{\mathit{\boldsymbol{\dot q}}}_d}, {{\mathit{\boldsymbol{\ddot q}}}_d}, {\mathit{\boldsymbol{\gamma }}_2}} \right) $为非负连续函数矩阵。

结合式(9)~式(11)与式(17),求出第1个误差面的一阶导数:

$ {{\mathit{\boldsymbol{\dot s}}}_1} = - {c_1}{\mathit{\boldsymbol{s}}_1} + {\mathit{\boldsymbol{s}}_2} + {\mathit{\boldsymbol{\gamma }}_2} $ (19)

综合式(13)与控制规律式(14),代入式(12),${{\mathit{\boldsymbol{\dot s}}}_2} $即为:

$ \begin{array}{*{20}{c}} {{{\dot s}_2} = \hat {\bar M}_{ss}^{ - 1}\left( {{\mathit{\boldsymbol{v}}_1}} \right)\left[ { - {c_2}{\mathit{\boldsymbol{s}}_2} - {\mathit{\boldsymbol{s}}_1} + {{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{O}}\left( \mathit{\boldsymbol{X}} \right) + } \right.}\\ {\left. {\mathit{\boldsymbol{\tilde \mu }} - {{\mathit{\boldsymbol{\hat {\bar h}}}}_{ss}}\left( {{\mathit{\boldsymbol{v}}_1},{\mathit{\boldsymbol{v}}_2}} \right){\mathit{\boldsymbol{s}}_2}} \right]} \end{array} $

式中:$\tilde{\boldsymbol{W}}=\boldsymbol{W}^{*}-\hat{\boldsymbol{W}} ; \tilde{\boldsymbol{\mu}}=\boldsymbol{\mu}^{*}-\hat{\boldsymbol{\mu}} $

假定q与其速度$ {\mathit{\boldsymbol{\dot q}}}$均可测,慢变子系统的跟踪误差为:

$ \mathit{\boldsymbol{e}} = \mathit{\boldsymbol{q}} - {\mathit{\boldsymbol{q}}_d} $

定理  对于式(5)所示的空间机器人慢变子系统,通过调节参数$ {\mathit{\boldsymbol{\beta }}_1}、{\lambda _1}、{\mathit{\boldsymbol{\beta }}_2}、{\lambda _2}、{c_1}、{c_2}$,控制规律式(14)将使系统半全局最终一致有界,即e收敛到零的一个任意小邻域内。

证明:构造李雅普诺夫函数:

$ V + {V_1} + {V_2} $

式中:V满足初始条件V(0)≤ρv(ρv为正实数)。

$ {V_1} = \frac{1}{2}\mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_1} + \frac{1}{2}\mathit{\boldsymbol{s}}_2^{\rm{T}}{{\mathit{\boldsymbol{\hat {\bar M}}}}_{{\rm{ss}}}}\left( {{\mathit{\boldsymbol{v}}_1}} \right){s_2} + \frac{1}{2}\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}{\mathit{\boldsymbol{\gamma }}_2} $
$ {V_2} = \frac{1}{2} tr \left( {{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\tilde W}}} \right) + \frac{1}{2}tg \left( {{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}\mathit{\boldsymbol{\tilde \mu }}} \right) $

V关于时间t的一阶导数:

$ \begin{array}{*{20}{c}} {\dot V = \mathit{\boldsymbol{s}}_1^{\rm{T}}{{\mathit{\boldsymbol{\dot s}}}_1} + \mathit{\boldsymbol{s}}_2^{\rm{T}}{{\mathit{\boldsymbol{\hat {\bar M}}}}_{ass}}\left( {{\mathit{\boldsymbol{v}}_1}} \right){{\mathit{\boldsymbol{\dot s}}}_2} + \frac{1}{2}\mathit{\boldsymbol{s}}_2^{\rm{T}}{{\hat {\bar M}}_{ss}}\left( {{\mathit{\boldsymbol{v}}_1}} \right){\mathit{\boldsymbol{s}}_2} + }\\ {\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}{{\mathit{\boldsymbol{\dot \gamma }}}_2} + tr\left( {{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\dot {\tilde W}}}} \right) + tr\left( {{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}\mathit{\boldsymbol{\dot {\tilde \mu} }}} \right)} \end{array} $

根据$ {{\widehat {\mathit{\boldsymbol{\overline h}} }}_{ss}}\left( {{\mathit{\boldsymbol{v}}_1}, {\mathit{\boldsymbol{v}}_2}} \right)、{\widehat {\mathit{\boldsymbol{\overline M}} }_{ss}}\left( {{\mathit{\boldsymbol{v}}_1}} \right)$满足斜对称性[10]$ \frac{1}{2} \boldsymbol{s}_{2}^{\mathrm{T}} \widehat{\overline{M}}_{s s}\left(\boldsymbol{v}_{1}\right) \boldsymbol{s}_{2}=\boldsymbol{s}_{2}^{\mathrm{T}} \widehat{\overline{h}}_{s s}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right) \boldsymbol{s}_{2}$,并将式(17)~式(19)代入${{\dot V}_1} $,得:

$ \begin{array}{*{20}{c}} {{{\dot V}_1} = - {c_1}\mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_1} + \mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_2} + \mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{\gamma }}_2} + }\\ {\mathit{\boldsymbol{s}}_2^{\rm{T}}\left[ { - {c_2}{\mathit{\boldsymbol{s}}_2} - {\mathit{\boldsymbol{s}}_1} + {{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{O}}(\mathit{\boldsymbol{X}}) + \mathit{\boldsymbol{\tilde \mu }}} \right] - }\\ {\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\frac{{{\mathit{\boldsymbol{\gamma }}_2}}}{{{\mathit{\boldsymbol{\eta }}_2}}} + \mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( {{\mathit{\boldsymbol{s}}_1},{\mathit{\boldsymbol{s}}_2},{\mathit{\boldsymbol{\theta }}_d},{{\mathit{\boldsymbol{\dot \theta }}}_d},{{\mathit{\boldsymbol{\ddot \theta }}}_d},{\mathit{\boldsymbol{\gamma }}_2}} \right)} \end{array} $

将自适应律式(15)、式(16)代入,得:

$ \begin{array}{*{20}{c}} {{{\dot V}_2} = - {\rm{tr}}\left[ {{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{O}}(\mathit{\boldsymbol{X}})\mathit{\boldsymbol{s}}_2^{\rm{T}}} \right] - {\rm{tr}} \left( {{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}{\mathit{\boldsymbol{s}}_2}} \right) + }\\ { {\rm{tr}} \left( {{\lambda _1}{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\hat W}}} \right) + {\rm{tr}} \left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}\mathit{\boldsymbol{\hat \mu }}} \right)} \end{array} $

利用不等式:

$ \begin{array}{*{20}{c}} {{\rm{tr}}\left( {{\lambda _1}{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\hat W}}} \right) \le - \frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\tilde W}}} \right) + }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{\mathit{\boldsymbol{W}}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}{\mathit{\boldsymbol{W}}^*}} \right)} \end{array} $
$ \begin{array}{*{20}{c}} {{\rm{tr}}\left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}\mathit{\boldsymbol{\hat \mu }}} \right) \le - \frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}} \right) + }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{\mathit{\boldsymbol{\mu }}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}{\mathit{\boldsymbol{\mu }}^*}} \right)} \end{array} $

可得$ {\dot V}$的不等式:

$ \begin{array}{*{20}{c}} {\dot V \le - {c_1}\mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_1} - {c_2}\mathit{\boldsymbol{s}}_2^{\rm{T}}{\mathit{\boldsymbol{s}}_2} + \mathit{\boldsymbol{s}}_1^{\rm{T}}{\gamma _2} - }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\tilde W}}} \right) - \frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}} \right) - }\\ {\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\frac{{{\mathit{\boldsymbol{\gamma }}_2}}}{{{\mathit{\boldsymbol{\eta }}_2}}} + \mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( {{\mathit{\boldsymbol{s}}_1},{\mathit{\boldsymbol{s}}_2},{\mathit{\boldsymbol{\theta }}_d},{{\mathit{\boldsymbol{\dot \theta }}}_d},{{\mathit{\boldsymbol{\ddot \theta }}}_d},{\mathit{\boldsymbol{\gamma }}_2}} \right) + }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{\mathit{\boldsymbol{W}}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}{\mathit{\boldsymbol{W}}^*}} \right) + \frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{\mathit{\boldsymbol{\mu }}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}{\mathit{\boldsymbol{\mu }}^*}} \right)} \end{array} $

由Young不等式得:

$ \mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{\gamma }}_2} \le \frac{{\mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_1}}}{2} + \frac{{\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}{\mathit{\boldsymbol{\gamma }}_2}}}{2} $
$ \mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}\left( {{\mathit{\boldsymbol{s}}_1},{\mathit{\boldsymbol{s}}_2},{\mathit{\boldsymbol{\theta }}_d},{{\mathit{\boldsymbol{\dot \theta }}}_d},{{\mathit{\boldsymbol{\ddot \theta }}}_d},{\mathit{\boldsymbol{\gamma }}_2}} \right) \le \frac{{\mathit{\boldsymbol{\gamma }}_2^{\rm{T}}{\mathit{\boldsymbol{\gamma }}_2}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}}}{{2\zeta }} + \frac{\zeta }{2} $

式中:ζ>0。

进一步得到$ {\dot V}$

$ \begin{array}{*{20}{c}} {\dot V \le \left( {\frac{1}{2} - {c_1}} \right)\mathit{\boldsymbol{s}}_1^{\rm{T}}{\mathit{\boldsymbol{s}}_1} - {c_2}\mathit{\boldsymbol{s}}_2^{\rm{T}}{\mathit{\boldsymbol{s}}_2} + \mathit{\boldsymbol{\gamma }}_2^{\rm{T}}\left( {\frac{1}{2} - \frac{1}{{{\eta _2}}} + \frac{{{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}}}{{2\zeta }}} \right){\mathit{\boldsymbol{\gamma }}_2} - }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{{\mathit{\boldsymbol{\tilde W}}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\tilde W}}} \right) - \frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}{{\mathit{\boldsymbol{\tilde \mu }}}^{\rm{T}}}} \right) + }\\ {\frac{1}{2}{\rm{tr}}\left( {{\lambda _1}{\mathit{\boldsymbol{W}}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_1^{ - 1}\mathit{\boldsymbol{\tilde W}}} \right) + \frac{1}{2}{\rm{tr}}\left( {{\lambda _2}{{\mathit{\boldsymbol{\tilde \mu }}}^{*{\rm{T}}}}\mathit{\boldsymbol{\beta }}_2^{ - 1}{\mathit{\boldsymbol{\mu }}^*}} \right) + \frac{\zeta }{2}} \end{array} $

根据‖Φ‖≤ρΦ(ρΦ为正常数)[19],可设计$ \frac{1}{\eta_{2}} \geqslant \frac{1}{2}+\frac{\rho_{\mathit{\Phi} }^{2}}{2 \zeta}+b_{0}$ (b0为正常数),使得:

$ \dot V \le - \alpha V + \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} $ (20)

式中:$\alpha = \min \left\{ {\left( {2{c_1} - 1} \right), 2{c_2}, 2{b_0}, {\lambda _1}, {\lambda _2}} \right\}, \mathit{\boldsymbol{ \boldsymbol{\varPsi} }} = \frac{\zeta }{2} + \frac{1}{2} \operatorname{tr}\left(\lambda_{1} \boldsymbol{W}^{* \mathrm{T}} \boldsymbol{\beta}_{1}^{-1} \boldsymbol{W}^{*}\right)+\frac{1}{2} \operatorname{tr}\left(\lambda_{\boldsymbol{\gamma}} \boldsymbol{\mu}^{* \mathrm{T}} \boldsymbol{\beta}_{2}^{-1} \boldsymbol{\mu}^{*}\right) $

α>Ψ/ρV,则当V=ρV时,$ \dot V \le 0$。由此可知,VρV是一个不变集,即如果V(0)≤ρV,对所有t>0时均有V(t)≤ρV

求解式(20)可得:

$ 0 \le V \le \mathit{\boldsymbol{ \boldsymbol{\varPsi} }}/\alpha + \left[ {V\left( 0 \right) - \psi /\alpha } \right]{{\rm{e}}^{ - \alpha t}} $

表明V最终以Ψ/α为界。因此系统半全局最终一致有界,并且通过调节参数β1λ1β2λ2c1c2的值可使误差收敛到零的一个任意小邻域。

3.2 快变子系统控制器设计

采用LQR来控制系统的快变子系统,以同时主动抑制基座与两杆的振动。先将式(6)写成状态方程形式,令状态变量$\boldsymbol{P}=\left[\begin{array}{ll}{p_{1}} & {p_{2}}\end{array}\right]^{\mathrm{T}} $,则式(6)改为:

$ \mathit{\boldsymbol{\dot P}} = \mathit{\boldsymbol{AP}} + \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{\tau }}_f} $

式中:$ \mathit{\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} 0&\mathit{\boldsymbol{I}}\\ { - {{\bar N}_{ff}}\mathit{\boldsymbol{\tilde K}}}&0 \end{array}} \right], \mathit{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} 0\\ {{{\bar N}_{fs}}} \end{array}} \right]$

由线性二次型最优控制理论,为了使系统性能最优,应最小化状态变量和控制变量二次型函数的积分,则控制量应设计为:

$ {\mathit{\boldsymbol{\tau }}_f} = - {\mathit{\boldsymbol{R}}^{ - 1}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{P \boldsymbol{\varXi} P}} $ (21)

式中:$\mathit{\boldsymbol{ \boldsymbol{\varXi} }} $满足下面的Riccati代数方程:

$ \mathit{\boldsymbol{ \boldsymbol{\varXi} A}} + {\mathit{\boldsymbol{A}}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varXi} }} - \mathit{\boldsymbol{ \boldsymbol{\varXi} B}}{\mathit{\boldsymbol{R}}^{ - 1}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varXi} }} + \mathit{\boldsymbol{Q}} = 0 $

式中:QR10×10为半正定加权对称阵,RR3×3为正定加权对称阵。

4 基座、臂杆全弹性空间机器人仿真算例

图 1所展示的基座、臂杆全弹性空间机器人模型系统为例,根据式(14)、式(21)的控制规律进行数值仿真模拟实验。系统惯性与结构参数取值为:l0=l1=1.5 m, l2=1.0 m, m0=40 kg,J0=34.17 kg·m2ρ1=3.5 kg/m,ρ2=1.1 kg/m,(EI)1=50 N·m2, (EI)2=50 N·m2。弹簧刚度系数kx=500 N/m。系统的外部干扰τd(t)取为:τ0d=2.5[cos(πt/6)-sin(πt/6)],τ1d=2.5cos(πt/6),τ2d=2.5sin(πt/6)

模糊规则数取h=5;慢变子系统调节参数:β1=diag{20, …, 20},β2=diag{0.01, 0.01, 0.01},λ1=λ2=0.01,c1=10,c2=20。LQR控制参数:Q=diag{1, …, 1}, R=diag{1, 1, 1}。

$ \boldsymbol{\theta}_{d}=\left[\begin{array}{lll}{\pi / 6} & {-\pi / 2} & {-\pi / 6}\end{array}\right]^{\mathrm{T}}$

初始θ(0)取为:θ0(0)=0.1 rad,θ1(0)=(π/3-0.2)rad, θ2(0)=(-π/6-0.15)rad。基座弹簧初始位移为χ(0)=0。

设定轨迹追踪过程仿真时间为t=30 s。

图 2为存在关节力矩输出死区与外部干扰的情况下,基座、臂杆全弹性空间机器人采用基于动态面的高斯基模糊控制方案的基座与两关节铰刚性运动实际轨迹与期望轨迹。约12 s之后,基座,关节1和2的稳态误差分别在2×10-4,1×10-3,8×10-4 rad以内。图 3为该控制方案下基座弹性振动情况。弹性位移在0.05 s时为0.067 8 m,15 s后衰减到零。图 4为两柔性臂杆一、二阶模态情况。B1杆一阶模态从初始1.9 s的0.064 3 m衰减到0,二阶模态从初始0.2 s的0.007 5 m衰减到0;B2杆一阶模态从初始0.8 s的0.033 7 m衰减到0,二阶模态从初始0.13 s的0.008 5 m衰减到0。从仿真结果可以看出:基座与两关节铰的实际运动轨迹能很好地跟踪上θd,同时抑制了柔性振动,具有较高的跟踪精度。

Download:
图 2 基座与两关节姿态角的角度跟踪 Fig. 2 Angle tracking of the base′s attitude and the two links′ joints
Download:
图 3 基座弹性位移 Fig. 3 Elastic displacement of the base
Download:
图 4 两杆的模态 Fig. 4 The mode of two links

为了说明抑振方法的有效性,关闭τf之后,图 5仿真了弹性基座位移情况;图 6则为柔性臂杆一、二阶模态情况。从图 6中可以看出,基座5 s之后在±0.003 m之间振动,无法归零。而B1杆一阶模态4 s之后在±0.038 m之间振动,二阶模态在±0.002 m之间振动;B2杆一阶模态从5 s之后在±0.009 m之间振动,二阶模态在0.000 4 m之间振动,均无法完全停止振动。从而验证了抑振方案的有效性。

Download:
图 5 基座弹性位移(关闭τf) Fig. 5 Elastic displacement of the base (close τf)
Download:
图 6 两杆的模态(关闭τf) Fig. 6 The mode of two links (close τf)

为验证控制方法中死区补偿的有效性,图 7为关闭死区补偿时基座与两关节铰轨迹跟踪误差图。通过比较可知,关闭死区补偿后,关节1的最大跟踪误差约为0.08 rad,关节2的最大跟踪误差约为0.12 rad,两关节铰跟踪误差始终均无法收敛。

Download:
图 7 跟踪轨迹误差(关闭死区补偿) Fig. 7 Tracking trajectory error (closing dead-zone compensation)
5 结论

1) 考虑了弹性基座、两柔性杆之间的多重耦合作用,推导了基座、臂杆全弹性空间机器人的动力学方程。

2) 基于奇异摄动方法,将系统分解为慢变、快变子系统,分别描述刚性的运动、弹性基座与两杆柔性的振动。针对慢变子系统,设计了存在关节力矩输出死区与外部干扰情况时基于动态面的高斯基模糊控制器;快变子系统采用了最优二次型控制器。组合控制方案不仅能克服死区对系统的不良影响,保证基座、臂杆全弹性空间机器人系统跟踪θd,而且能同时主动抑制柔性振动,克服了惯性参数未知的影响,达到控制要求。

3) 本文为理论探索和储备研究,当硬件条件及相关假设达到要求,则本控制方案可以实现对实际系统的指导和应用。经适当推广,可应用于多自由度的一般空间机械臂系统。

参考文献
[1]
FLORES-ABAD A, MA Ou, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in aerospace sciences, 2014, 68: 1-26. DOI:10.1016/j.paerosci.2014.03.002 (0)
[2]
易诗, 张磊, 谢子琼, 等. 基于机器视觉的目标跟随六足机器人[J]. 重庆邮电大学学报(自然科学版), 2017, 29(4): 557-562.
YI Shi, ZHANG Lei, XIE Ziqiong, et al. Target following six-legged robot based on machine vision[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2017, 29(4): 557-562. (0)
[3]
NANOS K, PAPADOPOULOS E. On the use of free-floating space robots in the presence of angular momentum[J]. Intelligent service robotics, 2011, 4(1): 3-15. (0)
[4]
FENG Fei, TANG Lina, XU Jianfeng, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science China technological sciences, 2016, 59(11): 1621-1638. DOI:10.1007/s11431-016-0084-7 (0)
[5]
刘阳, 谢宗武, 王滨, 等. 自由漂浮空间机器人视觉伺服系统研究[J]. 哈尔滨工程大学学报, 2017, 38(2): 153-159.
LIU Yang, XIE Zongwu, WANG Bin, et al. Research on the visual servo system of a free-floating space robot[J]. Journal of Harbin Engineering University, 2017, 38(2): 153-159. (0)
[6]
WANG Congqing, WU Pengfei, ZHOU Xin, et al. Composite sliding mode control for a free-floating space rigid-flexible coupling manipulator system[J]. International journal of advanced robotic systems, 2013, 10(2): 124. DOI:10.5772/54640 (0)
[7]
LIU Xiaofeng, LI Haiquan, WANG Jingsen, et al. Dynamics analysis of flexible space robot with joint friction[J]. Aerospace science and technology, 2015, 47: 164-176. DOI:10.1016/j.ast.2015.09.030 (0)
[8]
EVANS L. Canadian space robotics on board the international space[C]//Proceedings of 2005 CCToMM Symposium on Mechanisms, Machines, and Mechatronics. Montreal, Canada: Canadian Space Agency, 2005: 26-27. (0)
[9]
YANG Bongjun, CALISE A J, CRAIG J I. Adaptive output feedback control of a flexible base manipulator[J]. Journal of guidance, control, and dynamics, 2007, 30(4): 1068-1080. DOI:10.2514/1.23707 (0)
[10]
YU Xiaoyan, CHEN Li. Singular perturbation adaptive control and vibration suppression of free-flying flexible space manipulators[J]. Proceedings of the institution of mechanical engineers, part C:journal of mechanical engineering science, 2015, 229(11): 1989-1997. DOI:10.1177/0954406214551777 (0)
[11]
CHEONG J, CHUNG W K, YOUM Y. Fast suppression of vibration for multi-link flexible robots using parameter adaptive control[C]//Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium. Maui, HI, USA: IEEE, 2001: 913-918. (0)
[12]
梁捷, 陈力, 梁武林, 等. 基座弹性影响下空间站柔性关节机械臂的鲁棒自适应滑模控制及双重弹性振动主动抑制[J]. 载人航天, 2016, 22(6): 788-796.
LIANG Jie, CHEN Li, LIANG Wulin, et al. Robust adaptive sliding mode control and active dual vibration suppression in flexible joint manipulator of space station with elastic foundation[J]. Manned spaceflight, 2016, 22(6): 788-796. DOI:10.3969/j.issn.1674-5825.2016.06.020 (0)
[13]
黄小琴, 陈力. 基于递归小脑神经网络模型控制的空间机器人关节抗死区及摩擦控制[J]. 中国机械工程, 2018, 29(2): 211-217.
HUANG Xiaoqin, CHEN Li. Anti-dead-zones and friction control of space robots with recurrent CMAC[J]. China mechanical engineering, 2018, 29(2): 211-217. DOI:10.3969/j.issn.1004-132X.2018.02.013 (0)
[14]
CHEONG J Y, HAN S I, LEE J M. Adaptive fuzzy dynamic surface sliding mode position control for a robot manipulator with friction and deadzone[J]. Mathematical problems in engineering, 2013, 2013: 161325. (0)
[15]
SWAROOP D, HEDRICK J K, YIP P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE transactions on automatic control, 2000, 45(10): 1893-1899. DOI:10.1109/TAC.2000.880994 (0)
[16]
PARK S H, HAN S I. Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller[J]. IET control theory & applications, 2011, 5(12): 1397-1417. (0)
[17]
ZHOU Li, FEI Shumin. Adaptive dynamic surface control for air-breathing hypersonic vehicle[J]. Journal of systems engineering and electronics, 2013, 24(3): 463-479. DOI:10.1109/JSEE.2013.00055 (0)
[18]
倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1988.
NI Zhenhua. Vibration mechanics[M]. Xi'an: Xi'an Jiao Tong University Press, 1988. (0)
[19]
CHEN W S. Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks[J]. IET control theory & applications, 2009, 3(10): 1383-1394. (0)