﻿ 船用聚氯乙烯电缆剩余寿命快速评估方法
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2019, Vol. 40 Issue (7): 1284-1289  DOI: 10.11990/jheu.201805095 0

### 引用本文

XIE Zhanyu, JI Yulong, LIU Hongjia, et al. A rapid evaluation method for residual life of marine PVC cable[J]. Journal of Harbin Engineering University, 2019, 40(7), 1284-1289. DOI: 10.11990/jheu.201805095.

### 文章历史

A rapid evaluation method for residual life of marine PVC cable
XIE Zhanyu , JI Yulong , LIU Hongjia , ZHOU Chuangcheng , SUN Yuqing
College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
Abstract: To conduct a non-destructive and rapid assessment on the residual life of marine polyvinyl chloride (PVC) cables, this paper proposes a method for detecting the residual life of marine PVC cables via the residual hardness retention rate (RHRR). A marine PVC cable was subjected to rapid heat aging test at different temperatures, and its insulation resistance, tensile strength, hardness, and elongation at break were measured. Consequently, the functional relation between aging time and the RHRR at different working temperatures was obtained by fitting, and the prediction model for the residual life of the PVC cables was established based on the RHRR. According to the research results, the RHRR can be used to evaluate the actual aging condition of marine PVC cables, and the non-destructive evaluation of the service condition of marine PVC cables can be achieved by combining the prediction model established. Compared with the traditional evaluation methods, this method is simpler to operate.
Keywords: marine cable    polyvinyl chloride (PVC)    aging analysis    hardness test    residual life    rapid evaluation    predictive model

1 热老化实验及测量

1.1 绝缘电阻测量

1.2 硬度测量

1.3 拉伸试验

1.4 实验结果及分析

 $K = \frac{{{K^\prime }}}{{{K_0}}}$

 $F = \frac{{{F^\prime }}}{{{F_0}}} \times 100\%$ (1)
 ${F_0} = 100 - {H_0}$ (2)
 ${F^\prime } = 100 - {H^\prime }$ (3)

2 老化寿命分析

 Download: 图 2 在不同老化温度下硬度保留率拟合曲线 Fig. 2 The fitting curves of RHRR at different aging temperatures

 Download: 图 3 选取点拟合曲线 Fig. 3 The fitting curve of selected points

3 剩余寿命分析模型

 Download: 图 4 在不同老化温度下剩余硬度保留率与老化时间的拟合曲线 Fig. 4 The fitting curves of RHRR and aging time at different aging temperatures

 $T = - 335.3{F^3} + 62410{F^2} - 3.9 \times {10^6}F + 8.2 \times {10^7}$

F=66%代入该式中即可得出该电缆从装船到目前所使用的年限T=7 a。查表 4可知，按照F=60%为寿命终点，工作条件为50 ℃时的船用聚氯乙烯电缆的使用寿命是27.17 a，因此可以得出它的剩余使用寿命为27.17-7=20.17 a。应该特别注意，本文得到的测试结果和推荐的经验公式，都只适用于与本文研究的绝缘材料类型相同的船用电缆。

4 结论

1) 随着船用聚氯乙烯电缆绝缘层老化时间的增长，也就是老化程度的加深，断裂伸长保留率逐渐减小，相应的剩余硬度保留率也逐渐减小，说明船用聚氯乙烯电缆绝缘层的老化程度可以用剩余硬度保留率进行表征。

2) 对比断裂伸长率和剩余硬度保留率数据库，建议在现场测量过程中以剩余硬度保留率为60%作为船用聚氯乙烯电缆绝缘寿命终点。

3) 针对船用聚氯乙烯电缆，以剩余硬度保留率F为66%，工作温度为50 ℃为例，通过本文所建立的模型及计算方法，可快速预测出其剩余寿命为20.17 a。

 [1] 钱石.机床电缆测试系统及电缆绝缘老化试验研究[D].江门: 五邑大学, 2014: 1-3. QIAN Shi. Test system of machine tool cable and insulation aging test of cable[D]. Jiangmen: Wuyi University, 2014: 1-3. http://cdmd.cnki.com.cn/Article/CDMD-11349-1015500392.htm (0) [2] 胡钰林.电线电缆绝缘检测技术的研究[D].南京: 东南大学, 2004: 2-5. HU Yulin. Research on insulation detection technology of wire and cable[D]. Nanjing: Southeast University, 2004: 2-5. http://cdmd.cnki.com.cn/Article/CDMD-10286-2005034023.htm (0) [3] 苑宏蕾. 中国船用电缆行业的市场分析及发展概况[J]. 科技促进发展, 2011(11): 59-62. YUAN Honglei. The analysis and development overview of Chinese marine cable industry market[J]. Science & technology for development, 2011(11): 59-62. (0) [4] 李培祥, 程一鸣. 聚氯乙烯导线绝缘层的引燃特性研究[J]. 消防科学与技术, 2018, 37(2): 174-176. LI Peixiang, CHENG Yiming. Study on the ignition condition of PVC wire insulation[J]. Fire science and technology, 2018, 37(2): 174-176. (0) [5] XU Yang, LUO Pan, XU Man, et al. Investigation on insulation material morphological structure of 110 and 220 kV XLPE retired cables for reusing[J]. IEEE transactions on dielectrics and electrical insulation, 2014, 21(4): 1687-1696. DOI:10.1109/TDEI.2014.004311 (0) [6] 杨帆, 沈煜, 王彦博, 等. 基于极化/去极化电流法的交联聚乙烯电缆热老化程度判定[J]. 高电压技术, 2016, 42(2): 496-503. YANG Fan, SHEN Yu, WANG Yanbo, et al. Thermal aging status diagnosis of XLPE cable using polarization/depolarization current method[J]. High voltage engineering, 2016, 42(2): 496-503. (0) [7] MOTT P, ROLAND C. Aging of natural rubber in air and seawater[J]. Rubber chemistry and technology, 2001, 74(1): 79-88. (0) [8] 刘敏, 王志强, 王宁会, 等. 船用低压电力电缆绝缘材料老化状态研究与寿命评估[J]. 绝缘材料, 2017, 50(12): 48-53, 59. LIU Min, WANG Zhiqiang, WANG Ninghui, et al. Study on ageing state and life evaluation of marine low voltage power cable insulation materials[J]. Insulating materials, 2017, 50(12): 48-53, 59. (0) [9] 王鹤荀.船舶电缆绝缘老化规律及快速检测方法研究[D].大连: 大连海事大学, 2014. WANG Hexun. Study of the rule of ship cable insulation aging and rapid detection methods[D]. Dalian: Dalian Maritime University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10151-1014249568.htm (0) [10] 王鹤荀, 纪玉龙, 李根, 等. 船用电缆剩余寿命快速检测方法研究[J]. 哈尔滨工程大学学报, 2014, 35(9): 1076-1081, 1123. WANG Hexun, JI Yulong, LI Gen, et al. Study on rapid detection method of marine cable residue lifetime[J]. Journal of Harbin Engineering University, 2014, 35(9): 1076-1081, 1123. (0) [11] WANG Hexun, JI Yulong, LIU Gaishi, et al. Accelerated aging experiment and remaining lifetime analysis of insulation for CXF type cable on vessels[J]. High voltage engineering, 2013, 39(8): 1886-1892. (0) [12] HIROSE H. A method to estimate the lifetime of solid electrical insulation[J]. IEEE transactions on electrical insulation, 1987, EI-22(6): 745-753. DOI:10.1109/TEI.1987.298936 (0) [13] 韩向明.船用低压电缆绝缘状态检测[D].大连: 大连理工大学, 2007. HAN Xiangming. The insulation condition test of low-voltage cable on shipboard[D]. Dalian: Dalian University of Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10141-2007210436.htm (0) [14] BRUNING A M, KASTURE D G, ASCHER H E. Comparative end-of-life age[J]. IEEE transactions on dielectrics and electrical insulation, 1996, 3(4): 567-576. DOI:10.1109/94.536737 (0)