﻿ 引水工程深埋长隧洞施工中通风特性数值模拟
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2019, Vol. 40 Issue (7): 1304-1310  DOI: 10.11990/jheu.201804115 0

引用本文

ZHU Zhongrong, LI Xinzhe, CHEN Shu. Numerical simulation of ventilation characteristics in deep-buried long diversion tunnel[J]. Journal of Harbin Engineering University, 2019, 40(7), 1304-1310. DOI: 10.11990/jheu.201804115.

文章历史

Numerical simulation of ventilation characteristics in deep-buried long diversion tunnel
ZHU Zhongrong , LI Xinzhe , CHEN Shu
College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
Abstract: The traditional method cannot accurately simulate the direction of wind flow and temperature distribution in a tunnel; thus, a numerical method for simulating ventilation characteristics in the construction of a deep-buried long water-diversion tunnel is proposed in this paper. According to the condition of its construction, a three-dimensional model was established. The tunnel mesh structure based on the model was divided by the software GAMBIT, and the ventilation characteristics and modes under the mesh structures were analyzed. The ventilation characteristics of the deep-buried long water-diversion tunnel were analyzed using the three-dimensional turbulent RNG k-ε turbulence model. Additionally, these characteristics under different working conditions were analyzed. Thus, the numerical equation of the final ventilation characteristics was obtained, and the numerical simulation was realized. The experimental results show that the method can accurately simulate the direction and temperature distribution of wind flow in tunnels, and its partition accuracy increases considerably with the number of grids, with an average partition accuracy of 85%. Additionally, it can provide a basis for managing the construction projects of deep-buried long water-diversion tunnels.
Keywords: water-diversion project    tunnel    ventilation characteristics    temperature distribution    numerical simulation    finite element    turbulence model    deep-buried    long tunnel

1 隧洞通风数值计算

1.1 构建火灾情况下隧洞施工的三维模型

1.2 网格划分

1.3 施工通风特点和方式

 ${l_1} = (4 \sim 5){A^{\frac{1}{2}}}$ (1)

1) 在引水工程深埋长隧洞中流通空气的特性为不可压缩的三维粘性流体；

2) 气体流动在长隧洞中不生成热能耗散，不考虑长隧洞壁面的传热性；

3) 爆破后生成的有害气体在向长隧洞外扩散和稀释的过程与初始分布之间的关系较小，主要由初始有害气体量决定[15]。在通风前隧洞的掌子面和出风口之间布满了初始有害气体。

1.4 施工通风量

 $U = \max \left( {{U_1}, {U_2}, {U_3}, {U_4}} \right)$ (2)

1) 施工人员所需风量。

 ${U_1} = qmk$

2) 排尘所需风量。

 ${U_2} = 60{V_{\min }}{S_{\max }}$

3) 爆破散烟所需风量。

 ${U_3} = \frac{{7.8}}{t}\sqrt[3]{{G{{\left( {B{L_0}} \right)}^2}}}$

4) 机械废气所需风量：

 ${U_4} = {H_s}{q_s}{\alpha _s}$

1.5 边界条件

1) 进口边界条件。

 ${u_{{\rm{in}}}} = \frac{B}{A}$ (3)
 ${v_{{\rm{in}}}} = 0$ (4)
 ${w_{{\rm{in}}}} = 0$ (5)

 ${k_{{\rm{in}}}} = {\alpha _{{\rm{in}}}}u_{{\rm{in}}}^2$ (6)

 ${\varepsilon _{{\rm{ in }}}} = {C_\mu }k_{{\rm{in}}}^{3/2}0.015{D_e}$ (7)

2) 出口边界条件。

 ${P_{{\rm{ out }}}} = 0$ (8)
1.6 施工通风风压

 ${h_{\rm{J}}} \ge {h_m}$ (9)
 ${h_m} = {h_c} + {h_x}$ (10)

 $p = {\xi _i}\frac{\rho }{2}V_e^2$ (11)

1.7 构建通风特性数值模拟方程

 ${\mathop{\rm div}\nolimits} \left( {\rho {v_i}T} \right) = {\mathop{\rm div}\nolimits} (z \times {\mathop{\rm grad}\nolimits} T) + {Y_T}$ (12)
 $\frac{\partial }{{\partial {x_i}}}\left( {\rho {v_i}{v_j}} \right) = - \frac{{\partial P}}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_i}}}\left[ {\mu \left( {\frac{{\partial {v_i}}}{{\partial {x_j}}} + \frac{{\partial {v_i}}}{{\partial {x_i}}}} \right)} \right] + {Y_i}$ (13)
 ${\mathop{\rm div}\nolimits} {x_i} = 0$ (14)

 ${\mathop{\rm div}\nolimits} \left( {\rho {v_i}z} \right) = {\mathop{\rm div}\nolimits} \left\| {\mu + \frac{{\mu \mathit{\Gamma }}}{{{\sigma _k}}}| \times {\mathop{\rm grad}\nolimits} (\mathit{z})| + P - \rho \varepsilon } \right.$ (15)
 $\begin{array}{l} {\mathop{\rm div}\nolimits} \left( {\rho {v_i}\varepsilon } \right) = {\mathop{\rm div}\nolimits} \left\| {\mu + \frac{{\mu \mathit{\Gamma }}}{{{\sigma _\varepsilon }}}| \times {\mathop{\rm grad}\nolimits} (\varepsilon )| + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{C_{1e}}\frac{\varepsilon }{z}P - {C_{2e}}\rho \frac{{{\varepsilon ^2}}}{z} \end{array}$ (16)
 ${\mathop{\rm dig}\nolimits} \left( {\rho {v_i}c} \right) = {\mathop{\rm div}\nolimits} (\mathit{\Gamma }{\mathop{\rm grad}\nolimits} c) + {R_c}$ (17)

2 实验结果与分析

2.1 确定临界风速

 Download: 图 3 风速为2.5 m/s火源位置隧洞顶部风速 Fig. 3 The top wind speed of the tunnel at the fire source location of 2.5 m/s
 Download: 图 4 风速为2 m/s火源位置隧洞顶部风速 Fig. 4 Wind speed at the top of a tunnel at a fire source location of 2 m/s
2.2 气流流动情况

 Download: 图 5 受横通道内风流影响的模型示意 Fig. 5 Model schematic diagram of the influence of wind flow in a transverse passage

2.3 不同密度网格划分模拟

 Download: 图 6 不同密度网格划分方案的模拟结果对比 Fig. 6 Comparison of simulation results for different density meshing schemes

2.4 隧洞温度分布

3 结论

1) 在不同风速条件下，距离火区较远的上游横通道的风流是由非火区隧洞流向火区隧洞的。

2) 距离火区较近的横通道中的风流方向是不固定的。

3) 在隧洞发生火灾时，距离火区较近的横通道风流是不固定的，在横通道内设置流风机对风流进行调节，控制风流的大小，保证火灾生成的烟气逆流不会对引水工程深埋长隧洞造成危害。

 [1] 房俊超, 张成栋, 苟振志, 等. 长大隧道压入式施工通风三维动态数值模拟分析[J]. 公路工程, 2017, 42(1): 139-142, 155. FANG Junchao, ZHANG Chengdong, GOU Zhenzhi, et al. Analysis of three dimensional dynamic numerical simulation of the construction ventilation of long tunnel[J]. Highway engineering, 2017, 42(1): 139-142, 155. DOI:10.3969/j.issn.1674-0610.2017.01.031 (0) [2] 晋良海, 胡瑶, 朱忠荣, 等. 复杂地形条件下供水管线点对间线程的离散优化方法[J]. 水电能源科学, 2015, 33(2): 108-110. JIN Lianghai, HU Yao, ZHU Zhongrong, et al. Discrete optimization method of thread between two points of water pipeline under complex terrain conditions[J]. Water resources and power, 2015, 33(2): 108-110. (0) [3] 史玉晓, 张树平. 竖井对地铁隧道自然排烟影响的数值模拟[J]. 消防科学与技术, 2017, 36(6): 768-771. SHI Yuxiao, ZHANG Shuping. Numerical simulation of the influence of shaft on natural smoke exhaust of subway tunnel[J]. Fire science and technology, 2017, 36(6): 768-771. DOI:10.3969/j.issn.1009-0029.2017.06.012 (0) [4] XIA Yimin, YANG Duan, HU Chenghuan, et al. Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and underground space technology, 2016, 56: 70-78. DOI:10.1016/j.tust.2016.03.003 (0) [5] 胡致远, 谢冰冰, 袁木. 软岩隧洞围岩时效变形与支护结构受力分析[J]. 水力发电, 2016, 42(11): 38-41, 67. HU Zhiyuan, XIE Bingbing, YUAN Mu. Analyses on time-dependent deformation of surrounding rock and stress characteristics of supporting structure in soft rock tunnel[J]. Water power, 2016, 42(11): 38-41, 67. DOI:10.3969/j.issn.0559-9342.2016.11.010 (0) [6] 陈桂友, 赵青, 穆仁会. 引水隧洞进口明满流数值模拟[J]. 南水北调与水利科技, 2016, 14(4): 163-167, 209. CHEN Guiyou, ZHAO Qing, MU Renhui. Water inlet numerical modeling of mixed free-surface-pressurized flow in diversion tunnel[J]. South-to-North water transfers and water science & technology, 2016, 14(4): 163-167, 209. (0) [7] 吴义, 吴立, 周蔚文, 等. 隧洞突水及围岩稳定性受断层位置影响的研究[J]. 施工技术, 2017, 46(13): 123-127. WU Yi, WU Li, ZHOU Weiwen, et al. Study on the effect of fault position on tunnel water inrush and surrounding rock stability[J]. Construction technology, 2017, 46(13): 123-127. (0) [8] 杜翠凤, 徐喆, 唐占信, 等. 掘进巷道通风降温的数值模拟及影响因素分析[J]. 金属矿山, 2016, 45(2): 151-155. DU Cuifeng, XU Zhe, TANG Zhanxin, et al. Numerical simulation of ventilation and cooling in excavation roadway and analysis of influencing factors[J]. Metal mine, 2016, 45(2): 151-155. DOI:10.3969/j.issn.1001-1250.2016.02.033 (0) [9] 貊祖国, 姜海波, 后雄斌. 高地温隧洞温度场三维数值模拟分析[J]. 水利水电技术, 2017, 48(11): 57-62. MO Zuguo, JIANG Haibo, HOU Xiongbin. 3-D numerical simulation analysis on temperature field of tunnel under high ground temperature[J]. Water resources and hydropower engineering, 2017, 48(11): 57-62. (0) [10] 王克忠, 秦绍坤, 梁其东, 等. 沭水东调小断面长距离引水隧洞通风技术研究[J]. 浙江工业大学学报, 2016, 44(5): 533-537. WANG Kezhong, QIN Shaokun, LIANG Qidong, et al. Study on ventilation techniques of small cross-section and long distance water diversion tunnel from Shu river to Rizhao reservoir[J]. Journal of Zhejiang University of Technology, 2016, 44(5): 533-537. DOI:10.3969/j.issn.1006-4303.2016.05.013 (0) [11] 吴素杰, 宗全利, 郑铁刚, 等. 高寒区引水渠道抽水融冰水温变化过程模拟[J]. 农业工程学报, 2016, 32(14): 89-96. WU Sujie, ZONG Quanli, ZHENG Tiegang, et al. Simulation on water temperature change process of diversion channel for pumping well water to melt ice at high altitude and cold regions[J]. Transactions of the Chinese society of agricultural engineering, 2016, 32(14): 89-96. DOI:10.11975/j.issn.1002-6819.2016.14.013 (0) [12] 王玉锁, 冯高飞, 吴浩, 等. 纵向通风下不同坡形隧道火灾烟气温度分布特性研究[J]. 隧道建设, 2016, 36(11): 1317-1324. WANG Yusuo, FENG Gaofei, WU Hao, et al. Study of characteristics of fire smoke temperature distribution in tunnels with different slope shapes under longitudinal ventilation[J]. Tunnel construction, 2016, 36(11): 1317-1324. DOI:10.3973/j.issn.1672-741X.2016.11.005 (0) [13] 石明宇, 马超豪, 宿辉, 等. 高地温引水隧洞支护混凝土过水试验及数值模拟研究[J]. 科学技术与工程, 2016, 16(33): 302-306. SHI Mingyu, MA Chaohao, SU Hui, et al. High geothermal water diversion tunnel supporting concrete test and numerical simulation research[J]. Science technology and engineering, 2016, 16(33): 302-306. DOI:10.3969/j.issn.1671-1815.2016.33.054 (0) [14] 钟显奇, 易觉, 莫海鸿, 等. 西江引水工程顶管顶进工作井及土体稳定性分析[J]. 地下空间与工程学报, 2016, 12(4): 984-990. ZHONG Xianqi, YI Jue, MO Haihong, et al. Analysis on stability of work well and soil in Xijiang river water diversion project[J]. Chinese journal of underground space and engineering, 2016, 12(4): 984-990. (0) [15] 孙金山, 左昌群, 姜清辉, 等. 高地应力条件下隧洞围岩流变损伤机制数值模拟研究[J]. 现代隧道技术, 2016, 53(5): 35-42. SUN Jinshan, ZUO Changqun, JIANG Qinghui, et al. Numerical simulation of the rheological damage mechanism of a surrounding rock mass with high ground stress[J]. Modern tunnelling technology, 2016, 53(5): 35-42. (0) [16] 钟为, 李艳玲, 莫政宇, 等. 长大隧洞施工通风三维数值模拟及优化设计[J]. 人民黄河, 2017, 39(6): 121-124. ZHONG Wei, LI Yanling, MO Zhengyu, et al. Optimized design for negative pressure air fan in long and large tunnels based on 3D numerical simulation[J]. Yellow River, 2017, 39(6): 121-124. DOI:10.3969/j.issn.1000-1379.2017.06.028 (0) [17] 王晓玲, 刘长欣, 禹旺, 刘震, 等. 基于混合LES/RANS方法的引水隧洞施工通风数值模拟[J]. 水利水电技术, 2018, 49(10): 96-102. WANG Xiaoling, LIU Changxin, YU Wang, LIU Zhen, et al. Hybrid LES/RANS method-based numerical simulation of construction ventilation for water diversion tunnel[J]. Water resources and hydropower engineering, 2018, 49(10): 96-102. (0) [18] 房俊超, 张成栋, 苟振志, 等. 长大隧道压入式施工通风三维动态数值模拟分析[J]. 公路工程, 2017, 42(1): 139-142. FANG Junchao, ZHANG Chengdong, GOU Zhenzhi, et al. Analysis of three dimensional dynamic numerical simulation of the construction ventilation of long tunnel[J]. Highway engineering, 2017, 42(1): 139-142. DOI:10.3969/j.issn.1674-0610.2017.01.031 (0) [19] 常晓珂, 柴军瑞, 许增光, 等. 引汉济渭椒溪河隧洞施工通风数值模拟[J]. 南水北调与水利科技, 2017, 15(6): 137-143. CHANG Xxiaoke, CHAI Junrui, XU Zengguang, et al. Numerical simulation of ventilation in the Jiaoxihe tunnel of the Hanjiang-to-Weihe River Water Transfer Project[J]. South-to-north water transfers and water science & technology, 2017, 15(6): 137-143. (0) [20] 明廷臻, 龚廷睿, 杨威, 等. 带风口屏蔽门地铁车站自然通风特性的数值模拟[J]. 暖通空调, 2017, 47(7): 94-98. MING Tingzhen, GONG Tingrui, YANG Wei, et al. Numerical simulation on natural ventilation performance in underground railway stations with vented platform screen doors[J]. Heating ventilating & air conditioning, 2017, 47(7): 94-98. (0) [21] 史玉晓, 张树平. 竖井对地铁隧道自然排烟影响的数值模拟[J]. 消防科学与技术, 2017, 36(6): 768-771. SHI Yuxiao, ZHANG Shuping. Numerical simulation of the influence of shaft on natural smoke exhaust of subway tunnel[J]. Fire science and technology, 2017, 36(6): 768-771. DOI:10.3969/j.issn.1009-0029.2017.06.012 (0) [22] 貊祖国, 姜海波, 后雄斌. 高地温隧洞温度场三维数值模拟分析[J]. 水利水电技术, 2017, 48(11): 57-62. MO Zuguo, JIANG Haibo, HOU Xiongbin. 3-D numerical simulation analysis on temperature field of tunnel under high ground temperature[J]. Water resources and hydropower engineering, 2017, 48(11): 57-62. (0) [23] 吴凡, 蒋军成, 周汝, 等. 地铁隧道电缆阴燃时优化通风的数值模拟[J]. 工业安全与环保, 2017, 43(1): 51-55. WU Fan, JIANG Juncheng, ZHOU Ru, et al. Numerical simulation on the optimization of the ventilation mode in subway tunnel cable smoldering fire[J]. Industrial safety and environmental protection, 2017, 43(1): 51-55. DOI:10.3969/j.issn.1001-425X.2017.01.014 (0)