﻿ 原地浸矿单孔注液稳渗流量计算
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2018, Vol. 39 Issue (4): 680-686  DOI: 10.11990/jheu.201705002 0

### 引用本文

GUI Yong, LUO Sihai, WANG Guanshi, et al. Calculation of steady seepage flow from single-hole injection in in-situ leaching mining[J]. Journal of Harbin Engineering University, 2018, 39(4), 680-686. DOI: 10.11990/jheu.201705002.

### 文章历史

1. 江西理工大学 应用科学学院, 江西 赣州 341000;
2. 江西理工大学 建筑与测绘工程学院, 江西 赣州 341000

Calculation of steady seepage flow from single-hole injection in in-situ leaching mining
GUI Yong1, LUO Sihai2, WANG Guanshi2, HONG Bengen2, LONG Ping2
1. College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2. School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract: To determine the seepage flow from single-hole injections in an in-situ leaching process, five sets of single-hole injection field tests were conducted. The test data of water head and radius of influence at different flows were obtained. When the wet surface around the pore is an approximated ellipsoid, the region surrounded by the isosurface of 80% saturability is considered as the research object. The problem of steady infiltration of water in a single-hole injection well is equivalent to the infiltration problem when the water head is inside a hole, where matric suction in the isosurface is as a driving force. A steady infiltration flow model of an injection well with constant head boundaries was established and experimentally tested. The results show that the equivalent hydraulic gradient around the hole for the single-hole injection changed slightly when the water head was inside the hole. The average value was 5.62 for sandy ore surface; the steady seepage flow from single-hole injection is proportional to the water head. The absolute value of the model error is less than 12%, thus indicating that the calculation model of the single-hole injection flow is effective.
Key words: ionic rare earth    in-situ leaching mining    steady seepage flow    field test    single-hole water injection    numerical simulation    water injection head    equivalent hydraulic gradient    calculation model    vadose zone

1 单孔注液现场试验 1.1 试验矿山简介

 Download: 图 1 试验矿山 Fig. 1 Test mine
1.2 基本物理力学参数测试

 Download: 图 2 粒径累计曲线 Fig. 2 Particle size accumulation curve

 $\left\{ \begin{array}{l} \theta \left( \psi \right) = {\theta _{\rm{r}}} + \frac{{{\theta _{\rm{s}}} - {\theta _{\rm{r}}}}}{{{{\left[ {1 + {{\left( {\frac{\mathit{\Psi }}{\lambda }} \right)}^n}} \right]}^m}}}\\ k\left( \theta \right) = {k_s}{S^{0.5}}{\left( {1 - {{\left( {1 - {S^{\frac{1}{m}}}} \right)}^m}} \right)^2} \end{array} \right.$ (1)

 $S = \frac{{\theta - {\theta _{\rm{r}}}}}{{{\theta _{\rm{s}}} - {\theta _{\rm{r}}}}} = \frac{1}{{{{\left[ {1 + {{\left( {\frac{\mathit{\Psi }}{\lambda }} \right)}^n}} \right]}^m}}}$ (2)

 Download: 图 3 基质吸力现场测试 Fig. 3 Matrix suction field test

 Download: 图 4 渗流本构模型拟合曲线 Fig. 4 The seepage constitutive model fitting curve
1.4 单孔注液入渗试验

 Download: 图 5 现场注水试验(3#孔) Fig. 5 Field water injection test (3# hole)
 Download: 图 6 水分传感器埋置孔平面图 Fig. 6 The floor plan of moisture sensor hole
 Download: 图 7 水分传感器布置立面图 Fig. 7 Water sensor layout elevation

 Download: 图 8 单孔注液饱和度云图(3#孔) Fig. 8 Saturation cloud map of single-hole water injection(3# hole)

 Download: 图 9 单孔注液亮蓝染色试验 Fig. 9 Brilliant blue dyeing test of single-hole water injection

2 单孔注液稳渗流量计算模型 2.1 模型的建立

 ${Q_{\rm{s}}} = {K_{\rm{e}}}{I_{\rm{e}}}{A_{\rm{e}}}$ (3)

 ${I_{\rm{e}}} = \frac{{{Z_{\rm{f}}} + {H_0} + {h_{\rm{f}}}}}{{{Z_{\rm{f}}}}}$ (4)

 ${h_{\rm{f}}} = \frac{1}{{{\gamma _{\rm{w}}}}}\int_0^{{\psi _{0.8}}} {{K_{\rm{r}}}\left( \psi \right){\rm{d}}\psi }$ (5)

 $V = \frac{4}{3}{\rm{ \mathsf{ π} }}{a^2}b$ (6)
 ${A_{{\rm{ell}}}} = 2{\rm{ \mathsf{ π} }}a\sqrt {{a^2} + \frac{2}{3}ab + \frac{7}{3}{b^2}}$ (7)

 ${Z_{\rm{f}}} = \frac{V}{{{A_{{\rm{ell}}}}}} = \frac{{2ab}}{{\sqrt {9{a^2} + 6ab + 21{b^2}} }}$ (8)

 $\begin{array}{*{20}{c}} {{I_{\rm{e}}} = 1 + \frac{{\sqrt {9{a^2} + 6ab + 21{b^2}} }}{{2ab}} \cdot }\\ {\left( {{H_0} + \frac{{\int_0^{{\psi _{0.8}}} {{K_{\rm{r}}}\left( \psi \right){\rm{d}}\psi } }}{{{\gamma _{\rm{w}}}}}} \right)} \end{array}$ (9)

 $\begin{array}{*{20}{c}} {{Q_{\rm{s}}} = 2{\rm{ \mathsf{ π} }}{R_0}\left( {\frac{{{R_0}}}{2} + {H_0}} \right){K_s} \cdot }\\ {\left[ {1 + \frac{{\sqrt {9{a^2} + 6ab + 21{b^2}} }}{{2ab}}\left( {{H_0} + \frac{F}{{{\gamma _{\rm{w}}}}}} \right)} \right]} \end{array}$ (10)

2.2 模型的验证

 Download: 图 10 单孔注液稳渗流量与孔内水头的变化曲线 Fig. 10 The curve of the single-hole injection steady seepage flow vs. water head

 ${Q_{\rm{s}}} = 2{\rm{ \mathsf{ π} }}{R_0}\left( {\frac{{{R_0}}}{2} + {H_0}} \right)\overline {{I_{\rm{e}}}} {K_s}$ (11)

4 结论

1) 非饱和土渗透特征值F0.8是非饱和土总体(不是对个别含水量而言)透水能力的表征，其大小反映了土体非饱和区相对透水能力。将该特征值引入到原地浸矿单孔注液稳渗流量模型，能够很好地考虑非饱和区对原地浸矿单孔入渗规律的影响，提高了模型的准确度。

2) 原地浸矿单孔注液孔周等效水力梯度的计算比较困难，需要确定单孔注液入渗Sr ≥80%椭球体范围的形状。但不同孔内水头条件下等效水力梯度值的变化较小，固可取5次试验的平均值5.62，从而简化了稳渗流量计算模型，并从简化模型得出原地浸矿单孔注液稳渗流量Qs与孔内水头H0近似呈线性关系。

3) 单孔注液入渗基本稳定时，在注液孔附近会形成较小范围的饱和区，这相当于增加了注液孔的直径，但这个范围难以在试验中进行测量，本文稳渗流量模型没有考虑这方面的影响，因此造成模型计算值偏小，模型误差绝对值随着H0/D的增大而增大。对于原地浸矿注液孔而言，孔内水头一般在0.5~1.0 m，模型误差绝对值在12%以内，满足工程要求，表明单孔注液稳渗流量计算模型是有效的。

 [1] 中国有色金属工业长沙勘察设计研究院. YS 5214-2000, 注水试验规程[S]. 北京: 中国计划出版社, 2001. China Nonferrous Metals Survey and Design Institute of Changsha. YS 5214-2000, Specification for injection test[S]. Beijing: China Planning Press, 2001. (0) [2] 中华人民共和国水利部. SL 345-2007, 水利水电工程注水试验规程[S]. 北京: 中国水利水电出版社, 2008. The Ministry of Water Resource of the People's Republic of China. SL 345-2007, Code of water injection test for water and hydropower engineering[S]. Beijing: China Water & Power Press, 2008. (0) [3] 吴兵, 于振江, 王紫薇, 等. 基于饱和-非饱和渗流的煤层注水数值模拟及应用[J]. 中国煤炭, 2015, 41(6): 102-105. WU Bing, YU Zhenjiang, WANG Ziwei, et al. The numerical simulation of coal seam water injection based on saturated-unsaturated seepage and applications[J]. China coal, 2015, 41(6): 102-105. (0) [4] BAGARELLO V, GIORDANO G. Comparison of procedures to estimate steady flow rate in field measurement of saturated hydraulic conductivity by the Guelph permeameter method[J]. Journal of agricultural engineering research, 1999, 74(1): 63-71. DOI:10.1006/jaer.1999.0437 (0) [5] 罗仙平, 翁存建, 徐晶, 等. 离子型稀土矿开发技术研究进展及发展方向[J]. 金属矿山, 2014, 43(6): 83-90. LUO Xianping, WENG Cunjian, XU Jing, et al. Research progress on and development trend of exploitation technique of ion-absorbed type rare earth ore[J]. Metal mine, 2014, 43(6): 83-90. (0) [6] 邓国庆, 杨幼明. 离子型稀土矿开采提取工艺发展述评[J]. 稀土, 2016, 37(3): 129-133. DENG Guoqing, YANG Youming. A review of the mining technologies of ion-absorbed rare earth mineral[J]. Chinese rare earths, 2016, 37(3): 129-133. (0) [7] SMEDEMA L K, RYCROFT D W. Land drainage[M]. Ithaca, New York: Cornell University Press, 1983. (0) [8] CORNWELL F E. Flow from a Short Section of test-hole below ground water level[J]. Theory and problems of water percolation, 1953, 8(2): 66-68. (0) [9] GLOVER R E. Flow from a test-hole located above groundwater level[M]//ZANGAR C N. Theory and Problems of Water Percolation. Denver, Colorado: Bureau of Reclamation, 1953: 69-71. (0) [10] DAY P R, LUTHIN J N. Sand-model experiments on the distribution of water-pressure under an unlined canal[J]. Soil science society of America journal abstract, 1954, 18(2): 133-136. DOI:10.2136/sssaj1954.03615995001800020005x (0) [11] 吴良骥. 非饱和区对地下水埋藏很深井孔入渗的影响[J]. 水利水运科学研究, 1986(3): 33-45. WU Liangji. Effect of unsaturated region on the infiltration of the borehole above the water table far deep from ground surface[J]. Hydro-science and engineering, 1986(3): 33-45. (0) [12] 赵伟霞, 张振华, 蔡焕杰, 等. 恒定水头井入渗Green-Ampt模型的改进与验证[J]. 水利学报, 2010, 41(4): 464-470. ZHAO Weixia, ZHANG Zhenhua, CAI Huanjie, et al. Improvement and verification of the Green-Ampt model for constant-head well permeameter[J]. Journal of hydraulic engineering, 2010, 41(4): 464-470. (0) [13] 工程地质手册编写委员会. 工程地质手册[M]. 3版. 北京: 中国建筑工业出版社, 1992. Committee for the Compilation of Engineering Geology Handbook. The engineering geology manual[M]. 3rd ed.. Beijing: China Architecture & Building Press, 1992. (0) [14] 张贻火. 钻孔注水试验方法浅析[J]. 资源环境与工程, 2008, 22(S1): 203-206. ZHANG Yihuo. Analyses of the borehole water injection test method[J]. Resources environment & engineering, 2008, 22(S1): 203-206. (0) [15] 盛林. 常水头注水试验不同水头对渗透系数的影响[J]. 小水电, 2015, 182(2): 14-16, 31. SHENG Lin. The influence of different head to permeability coefficient in constant head water injection test[J]. Small hydro power, 2015, 182(2): 14-16, 31. (0) [16] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil science society of America journal, 1980, 44(5): 892-898. DOI:10.2136/sssaj1980.03615995004400050002x (0) [17] 东南大学, 浙江大学, 湖南大学, 等. 土力学[M]. 北京: 中国建筑工业出版社, 2010. Southeast University, Zhejiang University, Hunan University, et al. Soil Mechanics[M]. 3rd ed. Beijing: China Architecture & Building Press, 2010. (0) [18] 谢定义. 非饱和土土力学[M]. 北京: 高等教育出版社, 2015. XIE Dingyi. Soil mechanics for unsaturated soils[M]. Beijing: Higher Education Press, 2015. (0) [19] SCHAAP M G, LEIJ F J. Improved prediction of unsaturated hydraulic conductivity with the Mualem-Van Genuchten model[J]. Soil science society of America, 2002, 64(3): 843-851. (0) [20] MEIN R G, FARRELL D A. Determination of wetting front suction in the green-Ampt equation[J]. Soil science society of America, 1974, 38(6): 872-876. DOI:10.2136/sssaj1974.03615995003800060014x (0)