«上一篇
文章快速检索     高级检索
下一篇»
  哈尔滨工程大学学报  2018, Vol. 39 Issue (1): 33-39  DOI: 10.11990/jheu.201611054
0

引用本文  

梁立孚, 周平. Lagrange方程应用于流体动力学[J]. 哈尔滨工程大学学报, 2018, 39(1): 33-39. DOI: 10.11990/jheu.201611054.
LIANG Lifu, ZHOU Ping. Application of Lagrange equation in fluid mechanics[J]. Journal of Harbin Engineering University, 2018, 39(1): 33-39. DOI: 10.11990/jheu.201611054.

基金项目

国家自然科学基金项目(10272034)

通信作者

梁立孚, E-mail:lianglifu@hrbeu.edu.cn

作者简介

梁立孚(1939-), 男, 教授, 博士生导师

文章历史

收稿日期:2016-11-17
网络出版日期:2017-10-26
Lagrange方程应用于流体动力学
梁立孚1, 周平2    
1. 哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001;
2. 黑龙江科技大学 机械工程学院, 黑龙江 哈尔滨 150022
摘要:如何将Lagrange方程应用于流体动力学的问题是一个理论研究的难题。按照从变分学的基本理论研究做起的思想,本文应用变导的概念和运算法则,通过研究Lagrange方程中求导的性质,逐步地将Lagrange方程应用于理想流体动力学。按照从变分学的基本理论研究做起的思想,本文应用Lagrange-Hamilton体系,即非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,进而应用不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程。探讨将Lagrange方程应用于可压缩黏性流体动力学问题中,推导出可压缩黏性流体动力学的控制方程。本文解决了如何将Lagrange方程应用于流体动力学的问题。
关键词Lagrange方程    Lagrange-Hamilton体系    变导    理想流体动力学    黏性流体动力学    
Application of Lagrange equation in fluid mechanics
LIANG Lifu1, ZHOU Ping2    
1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
2. College of Mechanical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
Abstract: The application of the Lagrange equation to fluid dynamics is difficult in theoretical research. In accordance with basic theory research on the calculus of variations, the concept of the variational derivative and algorithm are applied. The Lagrange equation is applied to ideal fluid dynamics gradually by studying the property of derivation from the Lagrange equation. The Lagrange-Hamilton system, which is the Lagrange equation of a non-conservative system, is a quasi-stationary condition of Hamilton-type quasi-variational principle of a non-conservative system. The Lagrange equations for incompressible viscous fluid dynamics are derived from the Hamiltonian quasi-variational principle of the incompressible viscous fluid dynamics successfully. The governing equations of incompressible viscous fluid dynamics are deduced from the Lagrange equation of incompressible viscous fluid dynamics. Finally, application of the Lagrange equation to the questions of compressible viscous fluid dynamics is discussed. This paper comprehensively describes how to apply the Lagrange equation to fluid dynamics.
Key words: Lagrange equation    Lagrange-Hamilton system    variational derivative    ideal fluid dynamics    viscous fluid dynamics    

从18世纪开始,在力学发展史上出现了与牛顿的矢量力学并驾齐驱的另一力学体系,即Lagrange于1755年写出了不朽名著《Mécanique Analytique》(分析力学),但这部专著在巴黎正式出版则迟至1788年[1]。这个体系的特点是对能量与功的分析代替对力与力矩的分析。W.R. Hamilton建立了Hamilton原理和正则方程,把分析力学推进一步[2]。从而在分析动力学中形成了Lagrange体系和Hamilton体系。

如何将经典分析动力学应用于连续介质力学的问题,一直是各国学者关注的研究课题。

我国出版的分析力学专著[3],将分析力学从质点刚体力学扩展到连续介质力学、从离散系统扩展到连续系统的问题。Goldstein H的名著(第三版)《Classical Mechanics》仍然作为一个专题研究连续体分析动力学[4]。我国学者将Lagrange方程应用于机构动力学分析[5-8],应用于振动系统[9]、防护工程[10]、电器系统和机电系统[11]等。研究了如何将Lagrange方程应用于非惯性系统[12-14],研究了弹性力学的Lagrange形式、弹性介质的Lagrange动力学和精确Cosserat弹性杆动力学的分析力学方法[15-17]。研究了完整系统三阶Lagrange方程、状态空间Lagrange函数和运动方程[18-19]。研究了关于Birkhoff方程和Lagrange方程分析力学问题[20]

通过多年的研究,积累了不少成功的和失败的经验,在一定的意义上说,Lagrange方程和Hamilton原理都涉及变分学,Lagrange本人又是变分学的奠基人之一,从变分学的基本理论研究做起,或许是一条可行的途径。本文作者提出变分的逆运算变积概念,建立了变积方法,得到钱伟长的亲自推荐[21]。应用变积方法,与胡海昌一起建立了一般力学三类变量的广义变分原理[22]。刘高联[23]肯定了变积方法的首创性。这些研究使得微积分学中的积分、微分和导数在变分学中都有了对应的概念—变积、变分和变导,从而初步地将变分学扩充为变积分学。文献[24-25]的关于分析力学完整的叙述,成为本文研究的重要基础。

人们在研究如何将Lagrange方程应用于连续介质力学的问题时,几乎都是以弹性动力学为例展开的,尚未见哪位学者以流体力学为例展开研究。Lagrange在其不朽名著《Mécanique analytique》中用了较大篇幅研究流体力学,可惜的是,由于当时自然科学发展程度的限制,这位分析力学大师未能给出适用于流体力学的Lagrange方程,以至于使得各国学者继续研究了几百年,力图解决这个理论难题。本文应用变导的概念和运算法则,通过研究Lagrange方程中的求导的性质和Lagrange-Hamilton体系,逐步将Lagrange方程应用于理想流体动力学和不可压缩黏性流体动力学中,并探讨了如何将Lagrange方程应用于可压缩黏性流体动力学的问题。

1 Lagrange方程中的求导的性质

为了说明这个问题,首先明确变导的概念。

设有定积分形式的泛函:

$ V = \int_a^b {F\left( {x,y,y'} \right){\rm{d}}x} $ (1)

其边界条件为

$ {y_{x = a}} = \alpha ,{y_{x = b}} = \beta $ (2)

对式(1)进行变分运算可得

$ \delta V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}}\delta y + \frac{{\partial F}}{{\partial y'}}\delta y'} \right){\rm{d}}x} $ (3)

应用分部积分

$ \int_a^b {\frac{{\partial F}}{{\partial y'}}\delta y'{\rm{d}}x} = \frac{{\partial F}}{{\partial y'}}\delta y\left| {_a^b} \right. - \int_a^b {\frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}\delta y{\rm{d}}x} $ (4)

将式(4)代入式(3),考虑到边界条件(2),整理可得

$ \delta V = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right)\delta y{\rm{d}}x} $ (5)

由于δy任意性,式(5)可以变换为

$ \frac{{\delta V}}{{\delta y}} = \int_a^b {\left( {\frac{{\partial F}}{{\partial y}} - \frac{{\rm{d}}}{{{\rm{d}}x}}\frac{{\partial F}}{{\partial y'}}} \right){\rm{d}}x} $ (6)

在微分学中,函数的微分表示为dy,自变量的微分表示为dx,微商表示为$\frac{{{\rm{d}}y}}{{{\rm{d}}x}}{\rm{, }}\frac{{{\rm{d}}y}}{{{\rm{d}}x}}$又称导数。在变分学中,泛函的变分表示为δV,自变函数的变分表示为δy,变商表示为$\frac{{\delta V}}{{\delta y}}, \frac{{\delta V}}{{\delta y}}$又称变导。

接下来,分析Lagrange方程中的求导的性质。经典分析动力学中的Lagrange方程表示为

$ \frac{{\rm{d}}}{{{\rm{d}}z}}\frac{{\partial T}}{{\partial \mathit{\boldsymbol{\dot q}}}} - \frac{{\partial T}}{{\partial \mathit{\boldsymbol{q}}}} + \frac{{\partial U}}{{\partial \mathit{\boldsymbol{q}}}} = 0 $ (7)

其中,q=q(t)为广义坐标,一般分析动力学中均把其处理为广义坐标列阵

$ {\left[ {{q_1}\left( t \right),{q_2}\left( t \right), \cdots ,{q_{n - 1}}\left( t \right),{q_n}\left( t \right)} \right]^{\rm{T}}}\;\;\;i = 1,2, \cdots ,n $ (8)

在变分学中,基本上存在三级变量—自变量、可变函数和泛函。简单函数和泛函的区别在于:简单函数是自变量的函数,而泛函是可变函数的函数,独立自主地变化的可变函数称为自变函数。从不独立的可变函数也是自变函数的函数的角度看问题,不独立的可变函数也是泛函,可称其为子泛函。明确了变分学中的三级变量,对区分微积分中的导数和变积分学中的变导很有帮助。对自变量求导为微积分中的导数,而对可变函数的求导则为变积分中的变导。

在Lagrange方程中,有四个求导运算$\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}, \frac{{\partial T}}{{\partial \boldsymbol{q}}}, \frac{{\partial U}}{{\partial \boldsymbol{q}}}, \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}$。一般说来${\boldsymbol{\dot q}}$q均为可变函数,所以$\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}, \frac{{\partial T}}{{\partial \boldsymbol{q}}}, \frac{{\partial U}}{{\partial \boldsymbol{q}}}$均为变积分学中变导;因为时间t为自变量,所以$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}$中的对时间t求导为微积分学中的导数。

严格说来,变导$\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}, \frac{{\partial T}}{{\partial \boldsymbol{q}}}, \frac{{\partial U}}{{\partial \boldsymbol{q}}}, \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}$应当写为$\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}, \frac{{\partial T}}{{\partial \boldsymbol{q}}}, \frac{{\partial U}}{{\partial \boldsymbol{q}}}, \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}$。但是,照顾到现在的分析力学学术界的习惯,可以仍然沿用原来的符号。变分符号用δ,而变导符号用$\frac{\partial }{\partial }$

这里指出,Lagrange本人已经注意到微分符号用“d”而变分符号用“δ”,而且应用了符号“$\frac{\partial }{\partial }$”。所以,对于变导的概念,Lagrange虽未言明,已经隐含在其著作之中了。例如:在文献[1]中,Lagrange方程表示为

$ {\rm{d}}\frac{{\delta T}}{{\delta \dot \xi }} - \frac{{\delta T}}{{\delta \xi }} + \frac{{\delta U}}{{\delta \xi }} = 0 $ (9)

需要说明的是:当时Lagrange将$\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial \boldsymbol{\dot q}}}$表示为${\rm{d}}\frac{{\delta T}}{{\delta \dot \xi }}$,即应用微分符号“d”,而没有应用求导符号“$\frac{{\rm{d}}}{{{\rm{d}}t}}$”。

如果将ξ表示为q,将d表示为$\frac{{\rm{d}}}{{{\rm{d}}t}}$,则式(9)表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\delta T}}{{\delta \mathit{\boldsymbol{\dot q}}}} - \frac{{\delta T}}{{\delta \mathit{\boldsymbol{q}}}} + \frac{{\delta U}}{{\delta \mathit{\boldsymbol{q}}}} = 0 $ (10)

如果按照现在的习惯,将变导$\frac{\delta }{\delta }$表示为$\frac{\partial }{\partial }$,则式(10)变换为式(7)。

变积分学中的变导和微积分学中的导数的运算法则,有时相同、有时不同,这类问题,在后面研究具体问题时可以明显的表现出来。

2 Lagrange方程应用于理想流体动力学 2.1 一类变量Lagrange方程应用于理想流体动力学

在理想流体动力学中,取流体的位移uq为广义坐标,则一类变量Lagrange方程表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {{\mathit{\boldsymbol{\dot u}}}^q}}} - \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = 0 $ (11)

理想流体动力学的动能可以表示为

$ T = \iiint\limits_V {\frac{1}{2}\rho {{\mathit{\boldsymbol{\dot u}}}^q} \cdot {{\mathit{\boldsymbol{\dot u}}}^q}{\rm{d}}V} $ (12)

理想流体动力学的势能可以表示为

$ \begin{array}{*{20}{c}} {U = \iiint\limits_V {\left[ {\left( { - p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {f^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}V - } \right.}} \\ {\left. {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right]{\rm{d}}t} \end{array} $ (13)

其先决条件

$ {\mathit{\boldsymbol{u}}^q} - \mathit{\boldsymbol{\bar u}} = 0 $ (14)

推导计算Lagrange方程中的各项

$ \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = 0 $ (15)
$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {{\mathit{\boldsymbol{\dot u}}}^q}}} = \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{\partial }{{\partial {{\mathit{\boldsymbol{\dot u}}}^q}}}\iiint\limits_V {\frac{1}{2}\rho {{\mathit{\boldsymbol{\dot u}}}^q} \cdot {{\mathit{\boldsymbol{\dot u}}}^q}{\rm{d}}V} = \iiint\limits_V {\rho {{\mathit{\boldsymbol{\dot u}}}^q}{\rm{d}}V} $ (16)

势能的变导项推导较为复杂

$ \begin{array}{*{20}{c}} {\frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \frac{\partial }{{\partial {u^q}}}\left[ {\iiint\limits_V {\left( { - p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {f^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}V - }} \right.} \\ {\left. {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right]{\rm{d}}t} \end{array} $ (17)
$ \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \iiint\limits_V {\left( { - \frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {f^q}} \right){\rm{d}}V} - \iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q}{\rm{d}}S} $ (18)

应用Green定理,并考虑到先决条件(14),可得

$ \begin{array}{*{20}{c}} {\iiint\limits_V { - \frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = \iiint\limits_V { - p\mathit{\boldsymbol{I}}:\frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = } \\ { - \iint\limits_{{S_w} + {S_f}} {p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} + \iiint\limits_V {\nabla \cdot p\mathit{\boldsymbol{I}}\frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}{\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = } \\ { - \iint\limits_{{S_f}} {p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} + \iiint\limits_V {\nabla \cdot p\mathit{\boldsymbol{I}}{\rm{d}}V}} \end{array} $ (19)

将式(19)代入式(18),则得

$ \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \iiint\limits_V {\left( {\nabla \cdot p\mathit{\boldsymbol{I}} - {f^q}} \right){\rm{d}}V} + \iint\limits_{{S_f}} {\left[ { - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right]{\rm{d}}S} $ (20)

将相关各项代入Lagrange方程, 可得

$ \begin{array}{*{20}{c}} {\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {{\mathit{\boldsymbol{\dot u}}}^q}}} - \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = } \\ {\iiint\limits_V {\left( {\rho {{\mathit{\boldsymbol{\ddot u}}}^q} + \nabla \cdot p\mathit{\boldsymbol{I}} - {f^q}} \right){\rm{d}}V} + } \\ {\iint\limits_{{S_f}} {\left( { - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right){\rm{d}}S} = 0} \end{array} $ (21)

脱去积分号,可得理想流体动力学方程

$ \rho {{\mathit{\boldsymbol{\ddot u}}}^q} + \nabla \cdot p\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q} = 0 $ (22)
$ p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + {\mathit{\boldsymbol{T}}^q} = 0 $ (23)

可见,理想流体动力学方程(22)和(23)与其先决条件(14)一起,构成封闭的微分方程组。

2.2 两类变量Lagrange方程应用于理想流体动力学

在理想流体动力学中,取流体的速度${\boldsymbol{v}^q} = {{\boldsymbol{\dot u}}^q}$,则两类变量Lagrange方程表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} - \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = 0 $ (24)

理想流体动力学的动能可以表示为

$ T = \iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} $ (25)

理想流体动力学的势能可以表示为

$ U = \iiint\limits_V {\left[ {\left( { - p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {\mathit{\boldsymbol{f}}^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}V - \iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right]{\rm{d}}t} $ (26)

其先决条件

$ {\mathit{\boldsymbol{v}}^q} - \frac{{{\rm{d}}{\mathit{\boldsymbol{u}}^q}}}{{{\rm{d}}t}} = 0 $ (27)
$ {\mathit{\boldsymbol{u}}^q} - \mathit{\boldsymbol{\bar u}} = 0 $ (28)

推导计算Lagrange方程中的各项

$ \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = 0 $ (29)
$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {v^q}}} = \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{\partial }{{\partial {\mathit{\boldsymbol{v}}^q}}}\iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} = \iiint\limits_V {\rho {{\mathit{\boldsymbol{\dot v}}}^q}{\rm{d}}V} $ (30)

势能的变导项的推导较为复杂,引用2.1节的结果

$ \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \left[ {\iiint\limits_V {\left( {\nabla \cdot p\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q}} \right){\rm{d}}V} + \iint\limits_{{S_f}} {\left[ { - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right]}} \right.{\rm{d}}S $ (31)

将相关各式代入Lagrange方程, 并考虑到先决条件(28),可得

$ \begin{array}{*{20}{c}} {\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} - \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{u}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = } \\ {\iiint\limits_V {\left( {\rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot p\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q}} \right){\rm{d}}V} - \iint\limits_{{S_f}} {\left[ {p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + {\mathit{\boldsymbol{T}}^q}} \right]{\rm{d}}S} = 0} \end{array} $ (32)

脱去积分号,可得理想流体动力学方程

$ \rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot p\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q} = 0 $ (33)
$ p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + {\mathit{\boldsymbol{T}}^q} = 0 $ (34)

可见,理想流体动力学方程(33)和(34)与其先决条件(28)一起构成封闭的微分方程组。

考虑到一类变量的Lagrange方程在流体动力学中应用较少,在以下各节中,不再专门讨论这类问题。

3 Lagrange方程应用于不可压缩黏性流体动力学

由于黏性的存在,使得不可压缩黏性流体动力学成为非保守系统的力学问题。鉴于不可压缩黏性流体动力学的Lagrange方程是不可压缩黏性流体动力学的Hamilton型拟变分原理的拟驻值条件,本节是由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,然后,再由不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程。

不可压缩黏性流体动力学的Hamilton型拟变分原理可以表示为

$ \delta {\mathit{\Pi }_1} + \delta Q = 0 $ (35)

其中

$ \begin{array}{*{20}{c}} {{\mathit{\Pi }_1} = \int_{{t_0}}^{{t_1}} {\left\{ {\iiint\limits_V {\left[ {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q} + p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right):} \right.}} \right.} } \\ {\left. {\left. {\nabla {\mathit{\boldsymbol{u}}^q} + {\mathit{\boldsymbol{f}}^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right]{\rm{d}}V + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right\}{\rm{d}}t} \end{array} $ (36)
$ \delta Q = \int_{{t_0}}^{{t_1}} {\left[ {\iiint\limits_V {\nabla {\mathit{\boldsymbol{u}}^q}:\delta \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right){\rm{d}}V}} \right]{\rm{d}}t} $ (37)

其先决条件

$ {\mathit{\boldsymbol{v}}^q} - \frac{{{\rm{d}}{\mathit{\boldsymbol{u}}^q}}}{{{\rm{d}}t}} = 0 $ (38)
$ {\mathit{\boldsymbol{u}}^q} - \mathit{\boldsymbol{\bar u}} = 0 $ (39)

式中:ρ是密度,为零阶张量(标量);vq为流体速度矢量(一阶张量);fq为单位体积流体所受的体积力矢量;μ为黏性系数标量;I为二阶单位张量;p为流体压强,为零阶张量(标量);nq为流体边界面单位外法向矢量;Tq为流体所受的面积力矢量;uq为流体位移;▽为梯度算子(又称Hamilton算子);V为体积;Sw为固壁边界面;Sf为自由表面。

系统的动能为

$ T = \iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} $ (40)

系统的势能为

$ U = \iiint\limits_V {\left( { - p\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {\mathit{\boldsymbol{f}}^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}V} - \iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S} $ (41)

将黏性阻力引起的流体剪切应力视为非保守力,表示为τNq=μ(▽vq+vq▽),则系统的拟势能为

$ {U_N} = \iiint\limits_V {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right):\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = \iiint\limits_V {{\mathit{\boldsymbol{\tau }}_N}:\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} $ (42)

非保守系统的余虚功为

$ \begin{array}{*{20}{c}} {\delta Q = \int_{{t_0}}^{{t_1}} {\left[ {\iiint\limits_V {\nabla {\mathit{\boldsymbol{u}}^q}:\delta \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right){\rm{d}}V}} \right]{\rm{d}}t} = } \\ {\int_{{t_0}}^{{t_1}} {\left[ {\iiint\limits_V {\nabla {\mathit{\boldsymbol{u}}^q}:\delta {\mathit{\boldsymbol{\tau }}_N}{\rm{d}}V}} \right]{\rm{d}}t} } \end{array} $ (43)

经过如上的准备,可以将式(35)变换为

$ \begin{array}{*{20}{c}} {\delta {\mathit{\Pi }_1} + \delta Q = }\\ {\delta \int_{{t_0}}^{{t_1}} {\left( {T - U - {U_N}} \right){\rm{d}}t} + \delta Q = }\\ {\int_{{t_0}}^{{t_1}} {\left( {\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {\mathit{\boldsymbol{v}}^q} - \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q} - \frac{{\partial {U_N}}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {u^q}} \right){\rm{d}}t + \delta Q = 0} } \end{array} $ (44)

进行分部积分,考虑到运动学关系,${\boldsymbol{v}^q}-\frac{{{\rm{d}}{\boldsymbol{u}^q}}}{{{\rm{d}}t}} = 0$,可得

$ \int_{{t_0}}^{{t_1}} {\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {{\mathit{\boldsymbol{\dot u}}}^q}{\rm{d}}t} = \frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q}\left| {_{{t_0}}^{{t_1}}} \right. - \int_{{t_0}}^{{t_1}} {\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q}{\rm{d}}t} $ (45)

将式(45)代入式(44),按惯例在时域边界t=t0t=t1处取δu=0,可得

$ \begin{array}{*{20}{c}} {\int_{{t_0}}^{{t_1}} {\left( { - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q} - \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q} - \frac{{\partial {U_N}}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}t} + }\\ {\delta Q = 0} \end{array} $ (46)

τN有关的两项为

$ \begin{array}{*{20}{c}} {\int_{{t_0}}^{{t_1}} {\left( { - \frac{{\partial {U_N}}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q}} \right){\rm{d}}t} + \delta Q = } \\ {\int_{{t_0}}^{{t_1}} { - \delta {U_N}{\rm{d}}t} + \delta Q = } \\ {\int_{{t_0}}^{{t_1}} {\iiint\limits_V { - {\mathit{\boldsymbol{\tau }}_N}:\delta \nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V{\rm{d}}t}} + \int_{{t_0}}^{{t_1}} {\iiint\limits_V { - \delta {\mathit{\boldsymbol{\tau }}_N}:\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V{\rm{d}}t}} + } \\ {\int_{{t_0}}^{{t_1}} {\iiint\limits_V {\nabla {\mathit{\boldsymbol{u}}^q}:\delta {\tau _N}{\rm{d}}V{\rm{d}}t}} + \int_{{t_0}}^{{t_1}} {\iiint\limits_V { - {\mathit{\boldsymbol{\tau }}_N}:\delta \nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V{\rm{d}}t}} } \end{array} $ (47)

应用Green定理,并考虑到先决条件(39),可得

$ \begin{array}{*{20}{c}} {\iiint\limits_V { - {\mathit{\boldsymbol{\tau }}_N}:\delta \nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = \iint\limits_{{S_f}} { - {\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q} \cdot \delta {\mathit{\boldsymbol{u}}^q}{\rm{d}}S} + } \\ {\iiint\limits_V {\nabla \cdot {\tau _N} \cdot \delta {\mathit{\boldsymbol{u}}^q}{\rm{d}}V}} \end{array} $ (48)

将式(48)代入式(47),然后代入式(46),可得

$ \begin{array}{*{20}{c}} {\int_{{t_0}}^{{t_1}} {\left[ { - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q} - \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} \cdot \delta {\mathit{\boldsymbol{u}}^q} + \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N} \cdot \delta {\mathit{\boldsymbol{u}}^q}dV} - } \right.} } \\ {\left. {\left. {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q} \cdot \delta {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right)} \right]{\rm{d}}t = } \\ {\int_{{t_0}}^{{t_1}} {\left[ { - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} - \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} + \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}dV} - } \right.} } \\ {\left. {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S}} \right] \cdot \delta {u^q}{\rm{d}}t = 0} \end{array} $ (49)

由于δuq的任意性,故由上式可得不可压缩黏性流体动力学的两类变量的Lagrange方程

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} - \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}{\rm{d}}V} + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} = 0 $ (50)

以下,应用不可压缩黏性流体动力学的两类变量的Lagrange方程来推导不可压缩黏性流体动力学的控制方程。

推导计算Lagrange方程中的各项,如前所述,有关动能的项为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} = \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}}\iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} = \iiint\limits_V {\rho {{\mathit{\boldsymbol{\dot v}}}^q}{\rm{d}}V} $ (51)

有关势能的变导的项为

$ \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \iiint\limits_V {\left( {\nabla \cdot p\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q}} \right){\rm{d}}V} + \iint\limits_{{S_f}} {\left[ { - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right]{\rm{d}}S} $ (52)

τN有关的两项为

$ \begin{array}{*{20}{c}} { - \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}dV} + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} = } \\ { - \iiint\limits_V {\nabla \cdot \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right){\rm{d}}V} + } \\ {\iint\limits_{{S_f}} {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S}} \end{array} $ (53)

将相关各式代入Lagrange方程, 可得

$ \begin{array}{*{20}{c}} {\iiint\limits_{{V^q}} {\left\{ {\rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot \left[ {p\mathit{\boldsymbol{I}} - \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right)} \right] - {f^q}} \right\}{\rm{d}}V} + } \\ {\iint\limits_{{S_f}} {\left[ { - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right]{\rm{d}}S} = 0} \end{array} $ (54)

进一步处理为

$ \rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot \left[ {p\mathit{\boldsymbol{I}} - \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right)} \right] - {\mathit{\boldsymbol{f}}^q} = 0 $ (55)
$ - p\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q} = 0 $ (56)

可见,不可压缩黏性流体动力学方程(55)、(59)和其先决条件(38)、(39)一起构成封闭的微分方程组。

4 关于Lagrange方程应用于可压缩黏性流体动力学的探讨

本节探讨将Lagrange方程应用于可压缩黏性流体动力学的问题。这是研究将Lagrange方程应用于流体动力学的最一般的研究课题,因为物理方面和数学方面的复杂性,本文未能给出全面的、深入的研究,以下给出的仅仅是一个初步的探讨。

两类变量Lagrange方程表示为

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} - \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}{\rm{d}}V} + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} $ (57)

可压缩黏性流体动力学的动能可以表示为

$ T = \iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} $ (58)

可压缩黏性流体动力学的势能可以表示为

$ \begin{array}{*{20}{c}} {U = \iiint\limits_V {\left[ { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{d\rho }}{{dt}}} \right)\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {\mathit{\boldsymbol{f}}^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right]{\rm{d}}V} - } \\ {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \end{array} $ (59)

可压缩黏性流体动力学的非保守应力为

$ \mathit{\boldsymbol{\tau }}_N^q = \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) $ (60)

其先决条件

$ {\mathit{\boldsymbol{v}}^q} - \frac{{{\rm{d}}{\mathit{\boldsymbol{u}}^q}}}{{{\rm{d}}t}} = 0 $ (61)
$ {\mathit{\boldsymbol{u}}^q} - \mathit{\boldsymbol{\bar u}} = 0 $ (62)

推导计算Lagrange方程中的各项

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} = \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{\partial }{{\partial {\mathit{\boldsymbol{v}}^q}}}\iiint\limits_V {\frac{1}{2}\rho {\mathit{\boldsymbol{v}}^q} \cdot {\mathit{\boldsymbol{v}}^q}{\rm{d}}V} = \iiint\limits_V {\rho {{\mathit{\boldsymbol{\dot v}}}^q}{\rm{d}}V} $ (63)

势能的变导项的推导较为复杂

$ \begin{array}{*{20}{c}} {\frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}\left\{ {\iiint\limits_V {\left[ { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - } \right.}} \right.} \\ {\left. {\left. {{\mathit{\boldsymbol{f}}^q} \cdot {\mathit{\boldsymbol{u}}^q}} \right]{\rm{d}}V - \iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q} \cdot {\mathit{\boldsymbol{u}}^q}{\rm{d}}S}} \right\}{\rm{d}}t} \\ {\frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \iiint\limits_V {\left[ { - \frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q} - {\mathit{\boldsymbol{f}}^q}} \right]{\rm{d}}V} - } \\ {\iint\limits_{{S_f}} {{\mathit{\boldsymbol{T}}^q}{\rm{d}}S}} \end{array} $ (65)

应用Green定理,并考虑到先决条件(62),可得

$ \begin{array}{*{20}{c}} {\iiint\limits_V { - \frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}:\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = } \\ {\iiint\limits_V { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}:\frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}\nabla {\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = } \\ { - \iint\limits_{{S_w} + {S_f}} {\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q}\frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}{\mathit{\boldsymbol{u}}^q}{\rm{d}}S} + } \\ {\iiint\limits_V {\nabla \cdot \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}\frac{\partial }{{\partial {\mathit{\boldsymbol{u}}^q}}}{\mathit{\boldsymbol{u}}^q}{\rm{d}}V} = } \\ { - \iint\limits_{{S_f}} {\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} + } \\ {\iiint\limits_V {\nabla \cdot \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}{\rm{d}}V}} \end{array} $ (66)

将式(66)代入式(65),则得

$ \begin{array}{*{20}{c}} {\frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} = \iiint\limits_V {\left( {\nabla \cdot \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{f}}^q}} \right){\rm{d}}V} + } \\ {\iint\limits_{{S_f}} {\left( { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right){\rm{d}}S}} \end{array} $ (67)

τN有关的两项为

$ \begin{array}{*{20}{c}} { - \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}{\rm{d}}V} + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} = } \\ { - \iiint\limits_V {\nabla \cdot \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right){\rm{d}}V} + \iint\limits_{{S_f}} {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S}} \end{array} $ (68)

将相关各式代入Lagrange方程, 可得

$ \begin{array}{*{20}{c}} {\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial T}}{{\partial {\mathit{\boldsymbol{v}}^q}}} + \frac{{\partial U}}{{\partial {\mathit{\boldsymbol{u}}^q}}} - \iiint\limits_V {\nabla \cdot {\mathit{\boldsymbol{\tau }}_N}{\rm{d}}V} + \iint\limits_{{S_f}} {{\mathit{\boldsymbol{\tau }}_N} \cdot {\mathit{\boldsymbol{n}}^q}{\rm{d}}S} = } \\ {\iiint\limits_V {\left\{ {\rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot \left[ {\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}}} \right.} \right.}} \\ {\left. {\left. {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right)} \right] - {\mathit{\boldsymbol{f}}^q}} \right\}{\rm{d}}V + } \\ {\iint\limits_{{S_f}} {\left[ { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)I \cdot {n^q} + } \right.}} \\ {\left. {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q}} \right]{\rm{d}}S = 0} \end{array} $ (69)

进一步处理为

$ \begin{array}{*{20}{c}} {\rho {{\mathit{\boldsymbol{\dot v}}}^q} + \nabla \cdot \left[ {\left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} - \mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right)} \right] - } \\ {{\mathit{\boldsymbol{f}}^q} = 0} \\ { - \left( {p + \frac{2}{3}\mu \frac{1}{\rho }\frac{{{\rm{d}}\rho }}{{{\rm{d}}t}}} \right)\mathit{\boldsymbol{I}} \cdot {\mathit{\boldsymbol{n}}^q} + } \\ {\mu \left( {\nabla {\mathit{\boldsymbol{v}}^q} + {\mathit{\boldsymbol{v}}^q}\nabla } \right) \cdot {\mathit{\boldsymbol{n}}^q} - {\mathit{\boldsymbol{T}}^q} = 0} \end{array} $ (71)

可见,可压缩黏性流体动力学方程(70)、(71)和其先决条件(61)、(62)一起,构成封闭的微分方程组。

5 结论

1) 应用变导运算法则,将Lagrange方程应用于理想流体动力学,得到理想流体动力学控制方程。

2) 应用Lagrange-Hamilton体系,对于非保守系统,Lagrange方程是Hamilton型拟变分原理的拟驻值条件。基于这一理论,借助于不可压缩黏性流体动力学Hamilton型拟变分原理,应用变分方法推导其Lagrange方程,进而应用Lagrange方程推导不可压缩黏性流体动力学的控制方程。

3) 探讨了将Lagrange方程应用于可压缩黏性流体动力学,得到可压缩黏性流体动力学的控制方程。

论文较全面地解决了将Lagrange方程应用于流体动力学的问题。

参考文献
[1]
LAGRANGE J L. Mécanique analytique[M]. Paris:Ve Courcier, 1811(Originally published in l788). (0)
[2]
HAMILTON W R. On a general method in dynamics[M].[S.l.]:Philosophical Transaction of the Royal Society, Part Ⅰ, 1834:247-308. (0)
[3]
汪家訸. 分析动力学[M]. 北京: 高等教育出版社, 1958. (0)
[4]
GOLDSTEIN H. Classical Mechanics[M]. 2nd ed.[S.l.]:Addison-Wesley Publishing Co., 1980. (0)
[5]
赵俊伟, 李雪锋, 陈国强. 基于Lagrange方法的3-PRS并联机构动力学分析[J]. 机械设计与研究, 2015, 31(2): 1-5.
ZHAO Junwei, LI Xuefeng, CHEN Guoqiang. The dynamics equation of A 3-PRS parallel manipulator based on lagrange method[J]. Machine design & research, 2015, 31(2): 1-5. (0)
[6]
林良明, 吴俊. 用Lagrange方程描述假手机构动力学的研究[J]. 中国生物医学工程学报, 1989, 8(1): 1-8.
LIN Liangming, WU Jun. Description of mechanism dynamics of prosthetichand using lagrangian equation[J]. Chinese journal of biomedical engineering, 1989, 8(1): 1-8. (0)
[7]
王启明, 汪劲松, 刘辛军, 等. 二移动自由度并联操作臂的动力学建模[J]. 清华大学学报(自然科学版), 2002, 42(11): 1469-1472.
WANG Qiming, WANG Jinsong, LIU Xinjun, et al. Dynamic modeling of a parallel manipulator with two translational degrees of freedom[J]. Journal of Tsinghua University (science and technology), 2002, 42(11): 1469-1472. DOI:10.3321/j.issn:1000-0054.2002.11.015 (0)
[8]
孙伟, 汪博, 鲁明, 等. 基于拉格朗日方程的直线滚动导轨系统解析建模[J]. 计算机集成制造系统, 2012, 18(4): 781-786.
SUN Wei, WANG Bo, LU Ming, et al. Analytical modeling of linear rolling guide system based on lagrange equation[J]. Computer integrated manufacturing systems, 2012, 18(4): 781-786. (0)
[9]
卢长福, 傅鹏, 黄诚, 等. Lagrange方程在振动系统中的应用[J]. 江西科学, 2013, 3(2): 148-150.
LU Changfu, FU Peng, HUANG Cheng, et al. The application of lagrange equation in vibration systen[J]. Jiangxi science, 2013, 3(2): 148-150. (0)
[10]
赵晓兵, 方秦. Lagrange方程在防护工程中的应用及其相关的力学问题[J]. 防护工程, 2000(2): 28-32.
ZHAO Xiaobing, FANG Qin. Application of Lagrange equation in protection engineering and its related mechanical problems[J]. Protection engineering, 2000(2): 28-32. (0)
[11]
靳希, 鲁炜. Lagrange方程应用于电系统和机电系统运动分析[J]. 上海电力学院学报, 2003, 19(4): 1-4.
JIN Xi, LU Wei. The application of lagrange equation in the analysis of electric and electromechanical system[J]. Journal of Shanghai University of Electric Power, 2003, 19(4): 1-4. (0)
[12]
颜振珏. 非惯性参照系中的Lagrange方程[J]. 黔南民族师范学院学报, 2004, 24(6): 8-11.
YAN Zhenyu. Lagrange equation in uninertia system[J]. Journal of Qiannan Normal University for Nationalities, 2004, 24(6): 8-11. (0)
[13]
廖旭. 非惯性系中的Lagrange方程及其应用[J]. 云南大学学报(自然科学版), 2004, 26(B07): 122-124.
LIAO Xu. Lagrange equation in noninertial frame and application[J]. Journal of Yunnan University(natural sciences edition), 2004, 26(B07): 122-124. (0)
[14]
和兴锁, 宋明, 邓峰岩. 非惯性系下考虑剪切变形的柔性梁的动力学建模[J]. 物理学报, 2011, 60(4): 323-328.
HE Xingsuo, SONG Ming, DENG Fengyan. Dynamic modeling of flexible beam with considering shear deformation in non-inertial reference frame[J]. Acta physica sinica, 2011, 60(4): 323-328. (0)
[15]
沈惠川. 弹性力学的Lagrange形式:用Routh方法建立弹性有限变形问题的基本方程[J]. 数学物理学报, 1998, 18(1): 78-88.
SHEN Huichuan. Lagrange formalism of elasticity:building the basic equations on finite-deformation problems by routh's method[J]. Acta mathematica scientia, 1998, 18(1): 78-88. (0)
[16]
方刚, 张斌. 弹性介质的Lagrange动力学与地震波方程[J]. 物理学报, 2013(15): 248-253.
FANG Gang, ZHANG Bin. Lagrangian dynamics and seismic wave align of elastic medium[J]. Acta physica sinica, 2013(15): 248-253. (0)
[17]
薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法[J]. 物理学报, 2013(4): 312-318.
XUE Yun, WENG Dewei, CHEN Liqun. Methods of analytical mechanics for exact Cosserat elastic rod dynamics[J]. Acta physica sinica, 2013(4): 312-318. (0)
[18]
马善钧, 徐学翔, 黄沛天, 等. 完整系统三阶Lagrange方程的一种推导与讨论[J]. 物理学报, 2004, 53(11): 3648-3651.
MA Shanjun, XU Xuexiang, HUANG Peitian, et al. The discussion on Lagrange equation containing third order derivatives[J]. Acta physica sinica, 2004, 53(11): 3648-3651. (0)
[19]
丁光涛. 状态空间Lagrange函数和运动方程[J]. 中国科学(G辑), 2009(6): 813-820.
DING Guangtao. The state space Lagrange function and the corresponding equation of motion[J]. Science in China (series G), 2009(6): 813-820. (0)
[20]
梅凤翔. 广义Birkhoff系统动力学[M]. 北京: 北京理工大学出版社, 1996.
MEI Fengxiang. Generalized Birkhoff system dynamics[M]. Beijing: Beijing Institute of Technology Press, 1996. (0)
[21]
LIANG Lifu, SHI Zhifei. On the inverse problem in calculus of variations[J]. Applied mathematics and mechanics, 1994, 15(9): 815-830. DOI:10.1007/BF02451631 (0)
[22]
LIANG Lifu, HU Haichang. Generalized variational principle of three kinds of variables in general mechanics[J]. Science in China(A), 2001, 44(6): 770-776. (0)
[23]
梁立孚. 变分原理及其应用[M]. 哈尔滨: 哈尔滨工程大学出版社, 2005.
LIANG Lifu. Variational principles and their applications[M]. Harbin: Harbin Engineering University Press, 2005. (0)
[24]
陈滨. 分析动力学[M]. 2版. 北京: 北京大学出版社, 2010.
CHEN Bin. Analytical mechanics[M]. 2 ed. Beijing: Peking University Press, 2010. (0)
[25]
梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013.
MEI Fengxiang. Analytical mechanics[M]. Beijing: Beijing Institute of Technology Press, 2013. (0)