﻿ 偏导射流式伺服阀前置级流场建模及特性分析
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2017, Vol. 38 Issue (8): 1293-1302  DOI: 10.11990/jheu.201605009 0

### 引用本文

KANG Shuo, YAN Hao, LI Changchun, et al. Modeling of the flow distribution and characteristics analysis of the pilot stage in a deflector jet servo valve[J]. Journal of Harbin Engineering University, 2017, 38(8), 1293-1302. DOI: 10.11990/jheu.201605009.

### 文章历史

Modeling of the flow distribution and characteristics analysis of the pilot stage in a deflector jet servo valve
KANG Shuo, YAN Hao, LI Changchun, WANG Fengju, WANG Shuming
College of Mechanical Electronic and Control Engineering, Beijing JiaoTong University, Beijing 100044, China
Abstract: To analyze the influence of a deflector jet servo valve's structure on the internal flow distribution and its characteristics, a flow distribution model based on wall attachment jet theory was established. The flowage of hydraulic oil in jet plate was analyzed according to the model to obtain the theoretical expressions that describe the oil's wall attachment characteristics. The theoretical formula of pressure gain was derived based on the actual structure of the pilot stage. Then, the jet characteristics of the pilot stage flow distribution were calculated. Its two-dimensional mesh model was established for numerical simulation to analyze the different wall attachment jet phenomena. Meanwhile, the factors that affect pilot stage pressure gain were simulated and verified. An experiment for testing the pressure gain of the pilot stage was designed to obtain the pilot stage pressure gain indirectly. Result shows that the theoretical expressions are consistent with the simulation and test results, thereby proving the rationality of using wall attachment theory to model the pilot stage flow field. The distance between receiver inlets, the inclination angle of the deflector flow channel, and the distance between the deflector and the jet plate nozzle are confirmed to be the key structural parameters that affect pressure gain, thereby providing technical support for the structure optimization and performance improvement of the deflector jet servo valve.
Key words: deflector jet servo valve    pilot stage flow distribution    wall attachment jet theory    pilot stage pressure gain    wall attachment characteristic    numerical simulation    pressure gain test experiment    key structural parameter

1 偏导射流式伺服阀工作原理

 图 1 偏导射流式伺服阀结构原理图 Fig.1 Structural schematics of deflector jet servo valve
2 偏导射流前置级建模及特性分析

 $\frac{Δp} {ρg}=(1+ζ_0)\frac{u_0^2} {2g}$ (2)

2.2 前置级流场附壁特性

2.2.4 射流碰撞距离计算

 $y_c=\frac a 3·\frac 1 {4{\cos}^2\frac{θ+π} 3}·\text{arctanh}\left(2\cos\frac{θ+π} 3\right)$ (18)

 $\overline{AB}=\overline{AB′}－\overline{BB′}=R·(\sinθ－\cosθ·\tanα)$ (19)
 $\overline{AC}=y_c/\sinθ$ (20)

 $x_c=\overline{CD}=\left(d_0－Δx+\frac{Δh} {\tanα}+\frac a 2\right)\frac{\sin(θ－α)} {\cosα－\cosθ}-\\ \frac a 3\frac{\text{arctanh}\left(2\cos\frac{θ+π} 3\right)} {4\sinθ{\cos}^2\frac{θ+π} 3}－\frac{h_0+Δh} {\cosα}$ (21)

2.3 前置级压力特性分析

 $\frac{p_2－p_1} {ρg}=\left[1－(1+ζ_2){\left(\frac{A_1} {A_2}\right)}^2\right]\frac{u^2_1} {2g}$ (22)

 图 6 偏转板喷口与射流盘接收器入口相对位置截面图 Fig.6 Relative position between the nozzle of deflector and the receiver of the jet plate
 $A_3(x_f)=b\left[\frac 1 2(B－e)+x_f\right]$ (27)
 $A_4(x_f)=b\left[\frac 1 2(B－e)－x_f\right]$ (28)
 $A_5(x_f)=b\left[c－\frac 1 2(B－e)+x_f\right]$ (29)
 $A_6(x_f)=b\left[c－\frac 1 2(B－e)－x_f\right]$ (30)

 $Q_L=Q_3－Q_6=Q_5－Q_4$ (31)

 $p_3=p_4=\frac 1 {1+{(K－1)}^2}p_2$ (32)

 $p_{3m}=ρ\left[1－{\left(\frac{A_3} {A_{3m}}\right)}^2－ζ_3\right]\frac{u^2_3} 2+p_3$ (33)
 $p_{4m}=ρ\left[1－{\left(\frac{A_4} {A_{4m}}\right)}^2－ζ_4\right]\frac{u^2_4} 2+p_4$ (34)

 $Δp_L=p_{3m}－p_{4m}$ (35)

 $ΔQ_L={\frac{\partial Q_L} {\partial x_f}}\left|_{x_f=0}·Δx_f+{\frac{\partial Q_L} {\partial p_L}}\right|_{x_f=0}·Δp_L$ (36)

 $ΔQ_L=C_db(K－2)\sqrt{\frac 2 ρ\frac{p_2} {1+{(K－1)}^2}}·Δx_f+\frac 1 2C_db·\\ \frac{(K－1)c+ \left(1－\frac K 2\right)(B－e)} {K－1}\sqrt{\frac{1+{(K－1)}^2} {2ρp_2}}·Δp_L$ (37)

 $K_p=\frac{K_{q0}} {K_{c0}}=\\ \frac{4(K－1)(K－2)} {\left[(K－1)c+\frac{1－K} 2 (B－e)\right][1+{(K－1)}^2]}p_2$ (38)

 $Δp_L=p_{3m}－p_{4m}=K_p·Δx_f$ (39)

3 偏导射流前置级特性仿真验证 3.1 前置级射流流场附壁特性仿真验证 3.1.1 前置级流场附壁特性的Matlab仿真计算

 图 7 受偏转板位移影响的射流碰撞角变化曲线 Fig.7 Jet impact angle variation affected by deflector offsets
 图 8 受偏转板位移影响的碰撞距离变化曲线 Fig.8 Collision distance variation affected by deflector offsets

 图 9 受偏转板位移影响的偏转板喷口压力变化曲线 Fig.9 Deflector pressure variation affected by deflector offsets
 图 10 受偏转板位移影响的偏转板喷口流速变化曲线 Fig.10 Deflector fluid velocity variation affected by its offsets
3.1.2 前置级流场附壁特性数值模拟与验证

 图 11 不同偏转板偏移时的前置级压力与速度分布云图 Fig.11 Pressure and velocity contours of the flow in pilot stage with different deflector offsets

3.2 前置级结构参数对伺服阀压力增益影响

 图 12 接收器入口间距变化对压力增益系数的影响 Fig.12 Influence of the distance variation between receiver inlets on pressure gain coefficient

 图 13 偏转板导流槽侧壁倾角变化对压力增益系数的影响 Fig.13 Influence of the inclination angle variation of deflector flow channel on pressure gain coefficient

 图 14 偏转板与射流盘喷口侧间距变化对压力增益的影响 Fig.14 Influence of the distance variation between deflector and jet plate nozzle on pressure gain coefficient

4 偏导射流前置级压力增益测试试验及结果分析 4.1 前置级压力测试试验设计

4.2 前置级压力测试试验结果分析

 图 17 射流盘接收器内的恢复压力变化曲线 Fig.17 Recovery pressure variation at the jet plate receivers

5 结论

1）提出的基于附壁射流理论的偏导射流前置级流场精确数学模型，可完整描述射流在前置级有限空间约束下的复杂流动状态，为后续研究前置级内部流场影响下的整阀特性变化规律提供理论支持。

2）基于实际前置级结构推导得出的前置级压力增益理论表达式，经仿真与试验验证，具有合理性。由此确定：射流盘接收器入口间距、偏转板侧壁倾角及其相对于射流盘喷口侧的间距，为影响伺服阀压力增益的关键结构参数，为设计优化前置级结构，改善此类伺服阀的整体性能提供了理论依据。

3）所设计的伺服阀压力增益测试方案，能够间接测得前置级压力增益，且结论与理论计算、仿真模拟一致，证明了该方案的可行性，为伺服阀的动态性能检测提供了工程指导。

 [1] 卢长耿, 李金良. 液压控制系统的分析与设计[M]. 北京: 煤炭工业出版社, 1992: 10-45. (0) [2] 方群, 黄增. 电液伺服阀的发展历史、研究现状及发展趋势[J]. 机床与液压, 2007, 35(11): 162-164. FANG Qun, HUANG Zeng. Developing process, research actuality and trend of electrohydraulic servo valve[J]. Machine tool & hydraulics, 2007, 35(11): 162-164. DOI:10.3969/j.issn.1001-3881.2007.11.053 (0) [3] 王传礼, 丁凡, 李其朋, 等. 射流盘伺服阀控电液位置系统的动态特性[J]. 重庆大学学报, 2003, 26(11): 11-15. WANG Chuanli, DING Fan, LI Qipeng, et al. Dynamic characteristics of electro-hydraulic position system controlled by jet-pan servo valve[J]. Journal of Chongqing University, 2003, 26(11): 11-15. DOI:10.11835/j.issn.1000-582X.2003.11.003 (0) [4] 訚耀保, 张鹏, 张阳. 偏转板伺服阀压力特性研究[J]. 流体传动与控制, 2014, 65(4): 10-15. YIN Yaobao, ZHANG Peng, ZHANG Yang. Analysis of the pressure characteristics of deflector jet servo valve[J]. Fluid power transmission and control, 2014, 65(4): 10-15. (0) [5] 訚耀保, 张鹏, 岑斌. 偏转板射流伺服阀前置级流场分析[J]. 中国工程机械学报, 2015, 13(2): 1-7. YIN Yaobao, ZHANG Peng, CEN Bin. Prestage flow field analysis on deflector jet servo valves[J]. Chinese journal of construction machinery, 2015, 13(2): 1-7. (0) [6] 杨月花. 伺服阀前置级射流流场分析及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. YANG Yuehua. Analysis and experimental research of prestage jet flow field in hydraulic servo valve[D]. Harbin:Harbin Institute of Technology, 2006. http: //cdmd. cnki. com. cn/Article/CDMD-10213-2006171319. htm (0) [7] 江林秋. 新型偏转板射流液压伺服阀的设计与研究[D]. 南京: 东南大学, 2013. JIANG Linqiu. Design andresearch on a new type of deflection plate jet servo valve[D]. Nanjing:Southeast University, 2013. http: //d. wanfangdata. com. cn/Thesis/Y2511490 (0) [8] SANGIAH D K, PLUMMER A R, BOWEN C R, et al. Modelling and experimental validation of a novel piezohydraulic servovalve[C]//Proceedings of the ASME 2011 Dynamic Systems and Control Conference. Arlington, USA, 2011:343-350. (0) [9] ZHU Yuchuan, LI Yuesong. Development of a deflector-jet electrohydraulic servovalve using a giant magnetostrictive material[J]. Smart materials and structures, 2014, 23(11): 1-19. (0) [10] 日本机械学会. 流体力学[M]. 祝宝山, 张信荣, 王世学译. 北京: 北京大学出版社, 2013: 89-107. (0) [11] 董志勇. 射流力学[M]. 北京: 科学出版社, 2005: 15-17. (0) [12] 原田正一, 尾崎省太郎. 射流工程学[M]. 陆润林, 郭秉荣, 译.北京: 科学出版社, 1977: 104-137. (0) [13] LEVIN S G, MANION F M. Jet attachment distance as a function of adjacent wall offset and angle[J]. Advances in fluidics, 1962(9): 1087-1099. (0) [14] 张仁徽, 陈宇里, 耿钊. 网格尺寸对Delft3D有限元水流场仿真精度影响的分析[J]. 应用科技, 2015, 42(1): 57-61. ZHANG Renhui, CHEN Yuli, GENG Zhao. Influence analysis of the mesh size on the precision of flow field simulation of the Delft3D finite element[J]. Applied science and technology, 2015, 42(1): 57-61. (0)