«上一篇
文章快速检索     高级检索
下一篇»
  哈尔滨工程大学学报  2017, Vol. 38 Issue (6): 843-851  DOI: 10.11990/jheu.201604002
0

引用本文  

齐辉, 张希萌, 陈洪英, 等. 含裂纹的直角域中凸起与衬砌的动态性能分析[J]. 哈尔滨工程大学学报, 2017, 38(6), 843-851. DOI: 10.11990/jheu.201604002.
QI Hui, ZHANG Ximeng, CHEN Hongying, et al. Dynamic performance analysis of a salient and a lining in a quarter space with a crack[J]. Journal of Harbin Engineering University, 2017, 38(6), 843-851. DOI: 10.11990/jheu.201604002.

基金项目

黑龙江省自然科学基金项目(A201404)

通信作者

张希萌, E-mail:zhangximeng2012@163.com

作者简介

齐辉(1963-), 男, 教授, 博士生导师;
张希萌(1989-), 男, 博士研究生

文章历史

收稿日期:2016-04-01
网络出版日期:2017-04-05
含裂纹的直角域中凸起与衬砌的动态性能分析
齐辉, 张希萌, 陈洪英, 丁晓浩    
哈尔滨工程大学 航天与建筑工程学院, 黑龙江 哈尔滨 150001
摘要:为了研究直角域中裂纹附近缺陷对SH波的散射,采用复变函数法、镜像法和裂纹切割法研究直角域中裂纹附近凸起和衬砌的动应力集中问题,给出了圆形衬砌周边的动应力集中系数与裂纹尖端动应力强度因子的解析表达式,并给出了它们随入射波频率、材料的物理常数和结构几何参数变化的计算结果图。结果表明:入射频率、裂纹长度对动应力集中系数影响显著,高频入射时动应力集中系数最大值比低频入射时提高20%,增加衬砌厚度并不一定能使动应力集中系数减小,入射频率对地表位移影响较大。对含缺陷的直角域进行动力学分析非常必要。
关键词直角域    半圆凸起    圆形衬砌    直线裂纹    SH波    动应力集中系数(DSCF)    动应力强度因子(DSIF)    
Dynamic performance analysis of a salient and a lining in a quarter space with a crack
QI Hui, ZHANG Ximeng, CHEN Hongying, DING Xiaohao    
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: To investigate the scattering of SH-wave caused by defects near a crack in a quarter space, the concentration of dynamic stress at the salient and lining near a crack in a quarter space was researched using the complex function method, mirror method, and crack incision method. The analytical expressions of dynamic stress concentration factor (DSCF) around the circular lining edge and dynamic stress intensity factor (DSIF) at the crack tip were obtained. Several calculations were plotted as examples to show the influences of the frequencies of incident wave, the physical constant of medium, and the geometry of structures on DSCF and DSIF. The calculations indicate that the influences of the frequencies of incident wave and length of crack on DSCF were obvious. When high frequency wave is incident, the maximum of DSCF will increase by 20% as compared with the case of low frequency wave. The increase in thickness of lining may not be able to decrease DSCF, and the frequency of incident wave exerts a great influence on surface displacement. Dynamic analysis of the quarter space with defects is critical.
Key words: quarter space    semi-circular salient    circular lining    linear crack    SH wave    dynamic stress concentration factor (DSCF)    dynamic stress intensity factor (DSIF)    

生命线工程对维护城市功能系统和国计民生具有重要意义,众多地下复杂结构均含有缺陷,缺陷使生命线工程的动应力集中问题更加复杂。弹性波动理论是研究含有凸起、裂纹等缺陷的复杂地下结构的弹性动力学问题的重要方法,被广泛应用于地下衬砌结构这一生命线工程的抗震与抗爆设计中,如供水、排水、石油输送管道以及地下隧道工程等,而复杂地形中坡度较缓的山丘,可以简化为半圆凸起。众多学者对裂纹缺陷与凸起问题进行研究并取得大量成果[1-12]。齐辉等对直角域或半空间中圆形凸起与裂纹的动力问题进行了分析[1-8]。南景富等对脱胶衬砌与裂纹的动力响应问题给出了数值解[9]。梁建文等研究了衬砌和地下球形结构的动应力集中问题[10-11]。杨在林等研究了非均匀介质的动力学问题[12-14]

本文采用“分区”思想,将含半圆凸起的直角域进行分区,分成圆形凸起和含半圆凹陷的两个区域。利用“镜像法”,构造出满足水平、垂直边界应力自由的波函数。通过衬砌与凸起周边连续性条件建立方程组,利用裂纹切割法和坐标转换法得到了衬砌周边动应力集中系数和裂纹尖端动应力因子的解析表达式。文章最后给出具体算例和数值结果,讨论了入射角度、入射波数、裂纹长度、裂纹角度、圆形衬砌位置、圆形衬砌厚度比等对动应力集中系数、动应力强度因子与地表位移的影响。

1 直角域中凸起和衬砌模型的描述

天然介质中有很多复杂的地形,这些地形在地震波作用下会出现动应力集中问题。本文模型是直角域地形结构中地下衬砌与坡度缓和的山丘凸起在SH波作用下动应力响应问题的简化。如图 1,介质Ⅰ为含圆形衬砌和直线裂纹的直角域,其水平、垂直边界分别为ΓH、ΓV;介质Ⅱ为圆形衬砌,其质量密度与剪切模量分别为ρ2μ2,中心位置与垂直边界ΓV距离为d,与水平边界ΓH距离为h,内、外半径分别为ba,其内边界、外边界分别为ΓB、ΓA;介质Ⅲ为圆形凸起,其半径为c,边界为ΓC,中心位置与垂直边界ΓV距离为d2。介质Ⅰ与介质Ⅲ质量密度与剪切模量分别为ρ1μ1。裂纹长度为2C,角度为β,裂纹尖端与垂直边界ΓV距离为d1,与衬砌圆点o垂直距离为h1,坐标系x1oy1x1方向与裂纹方向平行,裂纹尖端与y1的垂直距离为c0。本文采用坐标变换法,建立坐标系xoyx1oy1xoy′,所对应的复坐标系分别为:η=x+yi=reiθη1=x1+y1 i =r1 e 1η′=x′+y′ i =r′e,各坐标系关系为

图 1 直角域中半圆形凸起和圆形衬砌模型 Fig.1 The model of a semi-circular salient and a circular lining near the linear crack in a quarter space
$ \left\{ \begin{array}{l} {x_1} = x\cos \beta + y\sin \beta \\ {y_1} = y\cos \beta - x\sin \beta \\ x' = x + {d_2} - d\\ y' = y - h\\ {h_2} = \left( {{h_1} + {c_0}\sin \beta } \right)/\cos \beta \\ {d_1} = d - {c_0}\cos \beta - {h_2}\sin \beta \end{array} \right. $ (1)
2 直角域中位移场的基本控制方程

图 2所示,本节采用Green函数法对含圆形衬砌和半圆凸起的直角域进行分析,研究直角域介质Ⅰ在线源荷载δ(η-η0)作用下的动应力响应问题。其中η0=d-d3+(h-h3) i,表示位于介质Ⅰ内部的点。

图 2 受线源荷载作用的直角域模型 Fig.2 The right-angle plane model impacted by a line source force

直角域中由线源荷载引起的位移必然满足控制方程。引入复变量η=x+y i, η=x-y i,在复平面(η, η)中位移控制方程为

$ \frac{{{\partial ^2}G}}{{\partial \eta \partial \bar \eta }} + \frac{1}{4}{k^2}G = 0 $ (2)

式中:k=ω/cs是入射波数,ω为波函数圆频率,${c_s} = \sqrt {\mu /\rho } $为介质的剪切波速。

在复平面令η=reiθ, η=re-iθ上,本构关系为

$ \left\{ \begin{array}{l} {\tau _{rz}} = \mu \left( {\frac{{\partial G}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} + \frac{{\partial G}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right)\\ {\tau _{\theta z}} = i\mu \left( {\frac{{\partial G}}{{\partial \eta }}{{\rm{e}}^{{\rm{i}}\theta }} - \frac{{\partial G}}{{\partial \bar \eta }}{{\rm{e}}^{ - {\rm{i}}\theta }}} \right) \end{array} \right. $ (3)

本节研究的直角域的边界条件可以表示为

$ \left\{ \begin{array}{l} {\Gamma _H}:\tau _{yz}^{\rm{I}} = 0\\ {\Gamma _V}:\tau _{xz}^{\rm{I}} = 0\\ {\Gamma _A}:{G^{\rm{I}}}\left| {_{r = a, - {\rm{\pi }} \le \theta \le {\rm{\pi }}}} \right. = {G^{{\rm{II}}}}\left| {_{r = a, - {\rm{\pi }} \le \theta \le {\rm{\pi }}}} \right.\\ {\Gamma _A}:\tau _{rz}^{\rm{I}}\left| {_{r = a, - {\rm{\pi }} \le \theta \le {\rm{\pi }}}} \right. = \tau _{rz}^{{\rm{II}}}\left| {_{r = a, - {\rm{\pi }} \le \theta \le {\rm{\pi }}}} \right.\\ {\Gamma _B}:\tau _{rz}^{{\rm{II}}}\left| {_{r = b, - {\rm{\pi }} \le \theta \le {\rm{\pi }}}} \right. = 0\\ {\Gamma _C}:\tau _{rz}^{{\rm{III}}}\left| {_{r = c,0 \le \theta \le {\rm{\pi }}}} \right. = 0\\ {\Gamma _C}:{G^{\rm{I}}}\left| {_{r = c, - {\rm{\pi }} \le \theta \le {\rm{0}}}} \right. = {G^{{\rm{III}}}}\left| {_{r = c, - {\rm{\pi }} \le \theta \le {\rm{0}}}} \right.\\ {\Gamma _C}:\tau _{rz}^{\rm{I}}\left| {_{r = c, - {\rm{\pi }} \le \theta \le {\rm{0}}}} \right. = \tau _{rz}^{{\rm{III}}}\left| {_{r = c, - {\rm{\pi }} \le \theta \le {\rm{0}}}} \right. \end{array} \right. $ (4)

式中:τrzτrzτrz分别为介质Ⅰ、介质Ⅱ、介质Ⅲ中径向剪切应力,GGG分别为介质Ⅰ、介质Ⅱ、介质Ⅲ中位移。

由线源荷载δ(η-η0)产生的扰动,可视为已知的入射波Gi与反射波Gr,应满足直角域水平边界ΓH和垂直边界ΓV上应力自由,本文利用“镜像法”,构造其表达式:

$ {G^i} = \frac{{\rm{i}}}{{2{\mu _1}}}\left[ {{\rm{H}}_0^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right) + {\rm{H}}_0^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\eta '}_0}} \right|} \right)} \right] $ (5)
$ \begin{array}{*{20}{c}} {{G^r} = \frac{{\rm{i}}}{{2{\mu _1}}}\left[ {{\rm{H}}_0^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right) + } \right.}\\ {\left. {{\rm{H}}_0^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta '}_0} - 2{\rm{i}}h} \right|} \right)} \right]} \end{array} $ (6)

式中η0=η0-2d

对于介质Ⅲ圆形凸起形成的散射波Gs1和介质Ⅱ圆形衬砌所形成的散射波Gs2,均满足直角域中直线边界应力自由, 利用“镜像法”,构造出其表示式:

$ \begin{array}{l} {G^{s1}} = \sum\limits_{m = - \infty }^{ + \infty } {{A_m}\left\{ {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta '} \right|} \right)\left( {{{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^m} + {{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^{ - m}}} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;{\left( { - 1} \right)^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\left. {\left( {{{\left[ {\frac{{\eta ' - 2{d_2}}}{{\left| {\eta ' - 2{d_2}} \right|}}} \right]}^m} + {{\left[ {\frac{{\eta ' - 2{d_2}}}{{\left| {\eta ' - 2{d_2}} \right|}}} \right]}^{ - m}}} \right)} \right\} \end{array} $ (7)
$ \begin{array}{l} {G^{s2}} = \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\left\{ {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){{\left[ {\frac{\eta }{{\left| \eta \right|}}} \right]}^m} + {\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _2}} \right|} \right) \times } \right.} \\ \;\;\;\;\;\;\;\;\;\;{\left[ {\frac{{{\eta _2}}}{{\left| {{\eta _2}} \right|}}} \right]^m} + {\left( { - 1} \right)^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _3}} \right|} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\left. {{{\left[ {\frac{{{\eta _3}}}{{\left| {{\eta _3}} \right|}}} \right]}^m} + {{\left( { - 1} \right)}^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _4}} \right|} \right){{\left[ {\frac{{{\eta _4}}}{{\left| {{\eta _4}} \right|}}} \right]}^{ - m}}} \right\} \end{array} $ (8)

式中:η=x+y i,η2=η-2hi,η3=η2-2dη4=η-2d

对于介质Ⅱ中的驻波Gst1,满足边界ΓC上半圆上应力自由条件,按文献[6]中思路,利用坐标系xoy′,构造其表达式如下

$ {G^{st1}} = \sum\limits_{n = - \infty }^{ + \infty } {\sum\limits_{m = - \infty }^{ + \infty } {{C_m}{a_{mn}}{K_{mn}}{J_n}\left( {{k_1}\left| {\eta '} \right|} \right){{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^n}} } $ (9)

其中:

$ \begin{array}{l} {a_{mn}} = \left\{ \begin{array}{l} \frac{1}{2}\\ \frac{{1 - {{\rm{e}}^{ - {\rm{i}}{{\left( {m - n} \right)}^{\rm{\pi }}}}}}}{{2{\rm{\pi i}}\left( {m - n} \right)}} \end{array} \right.\\ {K_{mn}} = \frac{{{J_{m - 1}}\left( {{k_1}a} \right) - {J_{m + 1}}\left( {{k_1}a} \right)}}{{{J_{n - 1}}\left( {{k_1}a} \right) - {J_{n + 1}}\left( {{k_1}a} \right)}},\\ \eta ' = \eta + {d_2} - d - h{\rm{i}} \end{array} $

对于介质Ⅲ内所形成的驻波Gst2,根据文献[5]中思路,构造其表达式如下:

$ {G^{st2}} = \sum\limits_{n = - \infty }^{ + \infty } {\left[ {{D_m}H_m^{\left( 1 \right)}\left( {{k_2}\left| \eta \right|} \right) + {E_m}H_m^{\left( 2 \right)}\left( {{k_2}\left| \eta \right|} \right)} \right] \times {{\left[ {\frac{\eta }{{\left| \eta \right|}}} \right]}^m}} $ (10)

由推导可知:

$ \begin{array}{l} {G^{\rm{I}}} = {G^i} + {G^r} + {G^{s1}} + {G^{s2}},\tau _{rz}^{\rm{I}} = \tau _{rz}^i + \tau _{rz}^r + \tau _{rz}^{s1} + \tau _{rz}^{s2};\\ {G^{{\rm{II}}}} = {G^{st1}},\tau _{rz}^{{\rm{II}}} = \tau _{rz}^{st1};{G^{{\rm{III}}}} = {G^{st2}},\tau _{rz}^{{\rm{III}}} = \tau _{rz}^{st2} \end{array} $ (11)

根据边界条件(4) 列方程,并将方程中等式两边同时乘以exp(-i)或exp(-i1),(n=0, ±1, ±2, ±3…),在相应的区间(-π, π)或(0, π)上进行积分,截取有限项得到方程组:

$ \begin{array}{*{20}{c}} {\sum\limits_{m = - \infty }^{ + \infty } {{A_m}\xi _{mn}^{\left( {11} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\xi _{mn}^{\left( {12} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{D_m}\xi _{mn}^{\left( {14} \right)}} + }\\ {\sum\limits_{m = - \infty }^{ + \infty } {{E_m}\xi _{mn}^{\left( {15} \right)}} = \xi _n^{\left( 1 \right)}}\\ {\sum\limits_{m = - \infty }^{ + \infty } {{A_m}\xi _{mn}^{\left( {21} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\xi _{mn}^{\left( {22} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{D_m}\xi _{mn}^{\left( {24} \right)}} + }\\ {\sum\limits_{m = - \infty }^{ + \infty } {{E_m}\xi _{mn}^{\left( {25} \right)}} = \xi _n^{\left( 2 \right)}}\\ {\sum\limits_{m = - \infty }^{ + \infty } {{D_m}\xi _{mn}^{\left( {34} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{E_m}\xi _{mn}^{\left( {35} \right)}} = \xi _n^{\left( 3 \right)}}\\ {\sum\limits_{m = - \infty }^{ + \infty } {{A_m}\xi _{mn}^{\left( {41} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\xi _{mn}^{\left( {42} \right)}} - }\\ {\sum\limits_{l = - \infty }^{ + \infty } {\sum\limits_{m = - \infty }^{ + \infty } {{C_m}{a_{ml}}{a_{\mathit{ln}}}{K_{ml}}{J_l}\left( {{k_1}c} \right)} } = \xi _n^{\left( 4 \right)}}\\ {\sum\limits_{m = - \infty }^{ + \infty } {{A_m}\xi _{mn}^{\left( {51} \right)}} + \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\xi _{mn}^{\left( {52} \right)}} - }\\ {\frac{{{k_1}{\mu _1}}}{2}\sum\limits_{l = - \infty }^{ + \infty } {\sum\limits_{m = - \infty }^{ + \infty } {{C_m}{a_{ml}}{a_{\mathit{ln}}}\left( {{J_{m - l}}\left( {{k_1}c} \right)} \right.} } - }\\ {\left. {{J_{m + l}}\left( {{k_1}c} \right)} \right) = \xi _n^{\left( 5 \right)}} \end{array} $ (12)

式中:

$ \begin{array}{*{20}{c}} {\xi _{mn}^{\left( {11} \right)} = \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left\{ {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta '} \right|} \right)\left( {{{\left[ {\eta '/\left| {\eta '} \right|} \right]}^m} + {{\left[ {\eta '/\left| {\eta '} \right|} \right]}^{ - m}}} \right) \times } \right.} }\\ {\left( { - 1} \right)m{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times }\\ {{{\left[ {\left( {\eta ' - 2{d_2}} \right)/\left| {\eta ' - 2{d_2}} \right|} \right]}^m} \times }\\ {{{\left( { - 1} \right)}^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times }\\ {\left. {{{\left[ {\left( {\eta ' - 2{d_2}} \right)/\left| {\eta ' - 2{d_2}} \right|} \right]}^{ - m}}} \right\}{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } \end{array} $
$ \xi _{mn}^{\left( {12} \right)} = \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left( {\sum\limits_{j = 1}^4 {S_m^{\left( j \right)}} } \right){{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } $
$ \xi _{mn}^{\left( {14} \right)} = - \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_2}\left| \eta \right|} \right){{\left[ {\eta /\left| \eta \right|} \right]}^m}{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } $
$ \xi _{mn}^{\left( {15} \right)} = - \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {{\rm{H}}_m^{\left( 2 \right)}\left( {{k_2}\left| \eta \right|} \right){{\left[ {\eta /\left| \eta \right|} \right]}^m}{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } $
$ \xi _{mn}^{\left( {21} \right)} = \frac{{{k_1}{\mu _1}}}{2}\int\limits_{ - {\rm{\pi }}}^{ - {\rm{\pi }}} {\left[ {\sum\limits_{j = 1}^4 {v_m^{\left( j \right)}{{\rm{e}}^{{\rm{i}}\theta }}} + \sum\limits_{j = 1}^4 {\psi _m^{\left( j \right)}{{\rm{e}}^{ - {\rm{i}}\theta }}} } \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \xi _{mn}^{\left( {22} \right)} = \frac{{{k_1}{\mu _1}}}{2}\int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\sum\limits_{j = 1}^4 {\chi _m^{\left( j \right)}{{\rm{e}}^{{\rm{i}}\theta }}} + \sum\limits_{j = 1}^4 {\gamma _m^{\left( j \right)}{{\rm{e}}^{ - {\rm{i}}\theta }}} } \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \xi _{mn}^{\left( {24} \right)} = - \frac{{{k_2}{\mu _2}}}{2}\int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\zeta {{\rm{e}}^{i\theta }} + \vartheta {{\rm{e}}^{ - i\theta }}} \right]{{\rm{e}}^{ - {\rm{i}}n\theta '}}{\rm{d}}\theta } , $
$ \xi _{mn}^{\left( {25} \right)} = - \frac{{{k_2}{\mu _2}}}{2}\int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\delta {{\rm{e}}^{i\theta }} + \zeta {{\rm{e}}^{ - i\theta }}} \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \xi _{mn}^{\left( {34} \right)} = \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\zeta {{\rm{e}}^{i\theta }} + \vartheta {{\rm{e}}^{ - i\theta }}} \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \xi _{mn}^{\left( {35} \right)} = \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\delta {{\rm{e}}^{i\theta }} + \zeta {{\rm{e}}^{ - i\theta }}} \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \begin{array}{*{20}{c}} {\xi _{mn}^{\left( {41} \right)} = \int\limits_{ - {\rm{\pi }}}^{\rm{0}} {\left\{ {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta '} \right|} \right)\left( {{{\left[ {\eta '/\left| {\eta '} \right|} \right]}^m} + {{\left[ {\eta '/\left| {\eta '} \right|} \right]}^{ - m}}} \right) \times } \right.} }\\ {\left( { - 1} \right)m{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times }\\ {{{\left[ {\left( {\eta ' - 2{d_2}} \right)/\left| {\eta ' - 2{d_2}} \right|} \right]}^m} \times }\\ {{{\left( { - 1} \right)}^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times }\\ {\left. {{{\left[ {\left( {\eta ' - 2{d_2}} \right)/\left| {\eta ' - 2{d_2}} \right|} \right]}^{ - m}}} \right\}{{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} \end{array} $
$ \xi _{mn}^{\left( {42} \right)} = \int\limits_{ - {\rm{\pi }}}^0 {\left( {\sum\limits_{j = 1}^4 {S_m^{\left( j \right)}} } \right){{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} $
$ \xi _{mn}^{\left( {51} \right)} = \frac{{{k_1}{\mu _1}}}{2}\int\limits_{ - {\rm{\pi }}}^0 {\left[ {\sum\limits_{j = 1}^4 {v_m^{\left( j \right)}{{\rm{e}}^{{\rm{i}}{\theta _1}}}} + \sum\limits_{j = 1}^4 {\psi _m^{\left( j \right)}{{\rm{e}}^{ - {\rm{i}}{\theta _1}}}} } \right]{{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} , $
$ \xi _{mn}^{\left( {52} \right)} = \frac{{{k_1}{\mu _1}}}{2}\int\limits_{ - {\rm{\pi }}}^{\rm{0}} {\left[ {\sum\limits_{j = 1}^4 {\chi _m^{\left( j \right)}{{\rm{e}}^{{\rm{i}}{\theta _1}}}} + \sum\limits_{j = 1}^4 {\gamma _m^{\left( j \right)}{{\rm{e}}^{ - {\rm{i}}{\theta _1}}}} } \right]{{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} , $
$ \xi _n^{\left( 1 \right)} = - \int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left( {{G^i} + {G^\tau }} \right){{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } , $
$ \xi _n^{\left( 2 \right)} = - \frac{{{\rm{i}}{k_1}}}{4}\int\limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\left[ {\sum\limits_{j = 1}^4 {{\varphi ^{\left( j \right)}}{{\rm{e}}^{{\rm{i}}\theta }}} + \sum\limits_{j = 1}^4 {{\varphi ^{\left( j \right)}}{{\rm{e}}^{ - {\rm{i}}\theta }}} } \right]{{\rm{e}}^{ - {\rm{i}}n\theta }}{\rm{d}}\theta } $
$ \xi _n^{\left( 3 \right)} = 0 $
$ \xi _n^{\left( 4 \right)} = - \int\limits_{ - {\rm{\pi }}}^{\rm{0}} {\left( {{G^i} + {G^\tau }} \right){{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} , $
$ \xi _n^{\left( 5 \right)} = - \frac{{{\rm{i}}{k_1}}}{4}\int\limits_{ - {\rm{\pi }}}^{\rm{0}} {\left[ {\sum\limits_{j = 1}^4 {{\varphi ^{\left( j \right)}}{{\rm{e}}^{{\rm{i}}{\theta _1}}}} + \sum\limits_{j = 1}^4 {{\varphi ^{\left( j \right)}}{{\rm{e}}^{ - {\rm{i}}{\theta _1}}}} } \right]{{\rm{e}}^{ - {\rm{i}}n{\theta _1}}}{\rm{d}}{\theta _1}} $

其中,

$ v_m^{\left( 1 \right)} = {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m - 1}}, $
$ v_m^{\left( 2 \right)} = - {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{ - m - 1}} $
$ \begin{array}{*{20}{c}} {v_m^{\left( 3 \right)} = {{\left( { - 1} \right)}^m}{\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| {n - 2d} \right|} \right) \times }\\ {{{\left[ {\left( {\eta - 2d} \right)/\left| {\eta - 2d} \right|} \right]}^{m - 1}}} \end{array} $
$ \begin{array}{*{20}{c}} {v_m^{\left( 4 \right)} = - {{\left( { - 1} \right)}^m}{\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - 2d} \right|} \right) \times }\\ {{{\left[ {\left( {\eta - 2d} \right)/\left| {\eta - 2d} \right|} \right]}^{ - m - 1}}} \end{array} $
$ \psi _m^{\left( 1 \right)} = - {\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m + 1}}, $
$ \psi _m^{\left( 2 \right)} = {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{ - m + 1}}, $
$ \begin{array}{*{20}{c}} {\psi _m^{\left( 3 \right)} = - {{\left( { - 1} \right)}^m}{\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| {n - 2d} \right|} \right) \times }\\ {{{\left[ {\left( {\eta - 2d} \right)/\left| {\eta - 2d} \right|} \right]}^{m + 1}}} \end{array} $
$ \begin{array}{*{20}{c}} {\psi _m^{\left( 4 \right)} = {{\left( { - 1} \right)}^m}{\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - 2d} \right|} \right) \times }\\ {{{\left[ {\left( {\eta - 2d} \right)/\left| {\eta - 2d} \right|} \right]}^{ - m + 1}}} \end{array} $
$ \chi _m^{\left( 1 \right)} = {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m - 1}}, $
$ \chi _m^{\left( 2 \right)} = - {\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _2}} \right|} \right){\left[ {{\eta _2}/\left| {{\eta _2}} \right|} \right]^{ - m - 1}} $
$ \chi _m^{\left( 3 \right)} = {\left( { - 1} \right)^m}{\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _3}} \right|} \right){\left[ {{\eta _3}/\left| {{\eta _3}} \right|} \right]^{m - 1}}, $
$ \chi _m^{\left( 4 \right)} = - {\left( { - 1} \right)^m}{\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _4}} \right|} \right){\left[ {{\eta _4}/\left| {{\eta _4}} \right|} \right]^{ - m - 1}}, $
$ \gamma _m^{\left( 1 \right)} = - {\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m + 1}} $
$ \gamma _m^{\left( 2 \right)} = - {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _2}} \right|} \right){\left[ {{\eta _2}/\left| {{\eta _2}} \right|} \right]^{ - m + 1}}, $
$ \gamma _m^{\left( 3 \right)} = - {\left( { - 1} \right)^m}{\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _3}} \right|} \right){\left[ {{\eta _3}/\left| {{\eta _3}} \right|} \right]^{m + 1}}, $
$ \gamma _m^{\left( 4 \right)} = {\left( { - 1} \right)^m}{\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _4}} \right|} \right){\left[ {{\eta _4}/\left| {{\eta _4}} \right|} \right]^{ - m + 1}}, $
$ \zeta = {\rm{H}}_{m - 1}^{\left( 1 \right)}\left( {{k_2}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m - 1}}, $
$ \vartheta = - {\rm{H}}_{m + 1}^{\left( 1 \right)}\left( {{k_2}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m + 1}}, $
$ \delta = {\rm{H}}_{m - 1}^{\left( 2 \right)}\left( {{k_2}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m - 1}}, $
$ \zeta = - {\rm{H}}_{m - 1}^{\left( 2 \right)}\left( {{k_2}\left| \eta \right|} \right){\left[ {\eta /\left| \eta \right|} \right]^{m + 1}} $
$ {\varphi ^{\left( 1 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right)\left[ {\left( {\bar \eta - {{\bar \eta }_0}} \right)/\left| {\eta - {\eta _0}} \right|} \right], $
$ {\varphi ^{\left( 2 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\eta '}_0}} \right|} \right)\left[ {\left( {\bar \eta - {{\bar \eta '}_0}} \right)/\left| {\eta - {{\eta '}_0}} \right|} \right], $
$ {\varphi ^{\left( 3 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)\left[ {\frac{{\bar \eta - {\eta _0} + 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|}}} \right], $
$ {\varphi ^{\left( 4 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta '}_0} - 2{\rm{i}}h} \right|} \right)\left[ {\frac{{\bar \eta - {{\eta '}_0} + 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta '}_0} - 2{\rm{i}}h} \right|}}} \right], $
$ {\varphi ^{\left( 1 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {\eta _0}} \right|} \right)\left[ {\left( {\eta - {\eta _0}} \right)/\left| {\eta - {\eta _0}} \right|} \right], $
$ {\varphi ^{\left( 2 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\eta '}_0}} \right|} \right)\left[ {\left( {\eta - {{\eta '}_0}} \right)/\left| {\eta - {{\eta '}_0}} \right|} \right], $
$ {\varphi ^{\left( 3 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)\left[ {\frac{{\eta - {{\bar \eta }_0} + 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|}}} \right], $
$ {\varphi ^{\left( 4 \right)}} = {\rm{H}}_{ - 1}^{\left( 1 \right)}\left( {{k_1}\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|} \right)\left[ {\frac{{\eta - {{\bar \eta }_0} - 2{\rm{i}}h}}{{\left| {\eta - {{\bar \eta }_0} - 2{\rm{i}}h} \right|}}} \right] $

式中:θ为坐标系xoy内辐角,θ1为坐标系x1oy1内辐角。

3 直角域中SH波形成的位移场

入射波w(i, e)、反射波w(r, e)、散射波w(s1, e)w(s2, e)均满足直角域中水平边界ΓH和垂直边界ΓV上应力自由条件,利用“镜像法”构造其表达:

$ \begin{array}{l} {w^{\left( {i,e} \right)}} = {w_0}\left\{ {\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {\eta {{\rm{e}}^{ - {\rm{i}}{\alpha _0}}} + \bar \eta {{\rm{e}}^{{\rm{i}}{\alpha _0}}}} \right]} \right\} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\left. {\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {\eta {{\rm{e}}^{{\rm{i}}{\alpha _0}}} + \bar \eta {{\rm{e}}^{ - {\rm{i}}{\alpha _0}}}} \right]} \right\}} \right\} \end{array} $ (13)
$ \begin{array}{l} {w^{\left( {r,e} \right)}} = {w_0}\left\{ {\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {\left( {\eta - 2d} \right){{\rm{e}}^{ - {\rm{i}}{\beta _0}}} + \left( {\bar \eta - 2d} \right){{\rm{e}}^{{\rm{i}}{\beta _0}}}} \right]} \right\} + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\left. {\exp \left\{ {\frac{{{\rm{i}}{k_1}}}{2}\left[ {\left( {\eta - 2d} \right){{\rm{e}}^{{\rm{i}}{\beta _0}}} + \left( {\bar \eta - 2d} \right){{\rm{e}}^{ - {\rm{i}}{\beta _0}}}} \right]} \right\}} \right\} \end{array} $ (14)

式中:β0=π-α0α0为SH波入射角度,在SH波作用下产生的波场与上节中Green函数作用下产生的波场具有相同的形式:

$ \begin{array}{l} {w^{\left( {s1,e} \right)}} = \sum\limits_{m = - \infty }^{ + \infty } {{P_m}\left\{ {H_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta '} \right|} \right)\left( {{{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^m} + {{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^{ - m}}} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;{\left( { - 1} \right)^m}H_m^{\left( 1 \right)}\left( {{k_1}\left| {\eta ' - 2{d_2}} \right|} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\left( {{{\left[ {\frac{{\eta ' - 2{d_2}}}{{\left| {\eta ' - 2{d_2}} \right|}}} \right]}^m} + {{\left[ {\frac{{\eta ' - 2{d_2}}}{{\left| {\eta ' - 2{d_2}} \right|}}} \right]}^{ - m}}} \right)} \right\} \end{array} $
$ \begin{array}{l} {w^{\left( {s2,e} \right)}} = \sum\limits_{m = - \infty }^{ + \infty } {{B_m}\left\{ {{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| \eta \right|} \right){{\left[ {\frac{\eta }{{\left| \eta \right|}}} \right]}^m} + {\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _2}} \right|} \right) \times } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;{\left[ {\frac{{{\eta _2}}}{{\left| {{\eta _2}} \right|}}} \right]^{ - m}} + {\left( { - 1} \right)^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _3}} \right|} \right) \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {{{\left[ {\frac{{{\eta _3}}}{{\left| {{\eta _3}} \right|}}} \right]}^m} + {{\left( { - 1} \right)}^m}{\rm{H}}_m^{\left( 1 \right)}\left( {{k_1}\left| {{\eta _4}} \right|} \right){{\left[ {\frac{{{\eta _4}}}{{\left| {{\eta _4}} \right|}}} \right]}^{ - m}}} \right\} \end{array} $
$ {w^{\left( {st1,e} \right)}} = \sum\limits_{n = - \infty }^{ + \infty } {\sum\limits_{m = - \infty }^{ + \infty } {{R_m}{a_{mn}}{K_{mn}}{J_n}\left( {{k_1}\left| {\eta '} \right|} \right){{\left[ {\frac{{\eta '}}{{\left| {\eta '} \right|}}} \right]}^n}} } $
$ \begin{array}{l} {w^{\left( {st2,e} \right)}} = \sum\limits_{n = - \infty }^{ + \infty } {\left[ {{S_m}H_m^{\left( 1 \right)}\left( {{k_2}\left| \eta \right|} \right) + {T_m}{\rm{H}}_m^{\left( 2 \right)}\left( {{k_2}\left| \eta \right|} \right)} \right] \times } \\ \;\;\;\;\;\;\;\;\;\;\;\;{\left[ {\frac{\eta }{{\left| \eta \right|}}} \right]^m} \end{array} $ (15)

式中:w(s1, e)w(s2, e)分别表示SH波作用下由凸起和衬砌形成散射波位移,w(st1, e)w(st12, e)分别表示SH波作用下凸起和衬砌中的驻波位移,未知量PmQmRmSmTm根据边界条件(4) 确定,所列方程组中已知系数与求解Green函数所列方程组中已知系数相同,求解方法与求解Green函数中未知量的方法一致。

利用裂纹切割法,在欲出现裂纹的区域施加与剪应力τθz对应的大小相等、方向相反的出平面荷载-τθz,则裂纹区域内合应力均为零, 从而构造出裂纹。附加的载荷-τθz作为新波源对区域内的波场产生影响,利用坐标系x1oy1,对应的复坐标系为η1=r1eiθ1,在圆形衬砌与直线裂纹共存的直角域中总波场可以表示为

$ \begin{array}{l} {w^{\rm{I}}} = {w^{\left( {i,e} \right)}} + {w^{\left( {r,e} \right)}} + {w^{\left( {s1,e} \right)}} + {w^{\left( {s2,e} \right)}} - \\ \;\;\;\;\;\;\;\;\int_{\left( {{c_0}, - {h_1}} \right)}^{\left( {{c_0} + 2C, - {h_1}} \right)} {\tau _{\theta z}^{\rm{I}}{G^{\rm{I}}}d{\eta _1}} \end{array} $ (16)

式中:τθz(r1, θ1)=τθz(i, e)(r1, θ1)+τθz(r, e)(r1, θ1)+τθz(s1, e)(r1, θ1)+τθz(s2, e)(r1, θ1),G为格林函数。

利用坐标系x1oy1,在SH波作用下夹杂或圆孔周边的环向剪切应力可以表示为

$ \tau _{\theta z}^ * = \left| {\tau _{\theta z}^ \cdot {\tau _0}} \right| $ (17)

式中:τ0=ikμw0为入射应力最大幅值,$\tau _{\theta z}^ \cdot $为圆形衬砌周边的总应力:

$ \begin{array}{l} \tau _{\theta z}^ \cdot = \tau _{\theta z}^{\left( {i,e} \right)} + \tau _{\theta z}^{\left( {r,e} \right)} + \tau _{\theta z}^{\left( {s1,e} \right)} + \tau _{\theta z}^{\left( {s2,e} \right)} - \\ \;\;\;\;\;\;\;\;\int_{\left( {{c_0}, - {h_1}} \right)}^{\left( {{c_0} + 2C, - {h_1}} \right)} {\tau _{\theta z}^{\rm{I}}\left[ {{\rm{i}}\mu \left( {\frac{{\partial {G^{\rm{I}}}}}{{\partial {\eta _1}}}{{\rm{e}}^{{\rm{i}}{\theta _1}}} - \frac{{\partial {G^{\rm{I}}}}}{{\partial {{\bar \eta }_1}}}{{\rm{e}}^{ - {\rm{i}}{\theta _1}}}} \right)} \right]{\rm{d}}{\eta _1}} \end{array} $ (18)

裂纹尖端对应的值即为动应力强度因子。在计算中, 通常定义一个无量纲的动应力强度因子k3

$ {k_3} = \left| {\frac{{{\tau _{rz}}\left| {_{\bar r = {{\bar r}_0}}} \right.}}{{\left( {{\tau _0}Q} \right)}}} \right| $ (19)

式中:τrz|r=r0表示裂纹尖端附近区域内微小距离处的名义应力;Q为具有长度平方根量纲的特征参数本文取$Q = \sqrt {{\rm{\pi }}C} $

4 直角域中凸起和衬砌对SH波散射的计算

本节研究在SH波作用下含裂纹的直角域中衬砌和凸起的动应力集中问题和裂纹尖端动应力因子问题,并对计算结果图进行分析。根据以上理论推导,本文计算SH波由下方向上垂直入射即入射角α0=π/2时直角域中衬砌与直线裂纹相互作用的模型,可视为地下复杂结构生命线工程的抗震问题。本文令k=k1b*=b/ah*=h/ab1*=b1/ah1*=h1/ad1*=d1/aC*=C/ac0*=c0/a,无量纲化的地表位移|W*|=|W|/a,衬砌厚度比为λ=1-b/a,讨论入射波数ka、基体与衬砌的波数比k*=k1/k2,衬砌与基体的剪切模量比μ*=μ2/μ1、衬砌中心与水平边界Γ H 垂直距离h、裂纹尖端与衬砌中心垂直距离h1等参数对衬砌周边动应力集中系数τθz*、裂纹尖端动应力强度因子k3以及水平地表位移|W*|的影响。

本文分别取:1)k1*=0.5,μ1*=0.25;2)k1*=2,μ1*=4;3)k1*=4,μ1*=16,3种情况作为算例,分别表示夹杂与基体相对较硬、较软、更软。

μ2=0,b=0,本文模型退化为含圆孔的直角域,取与文献[15]中相同参数,得到圆孔周边动应力系数如图 3所示,与文献[15]中结果吻合较好,证明了本文方法精确可行。

图 3 本文方法的验证 Fig.3 The vertifying of the method in this paper

图 45给出了SH波低频和高频入射时衬砌周边动应力集中系数τθz*k*μ*分布情况。图中τθz*基本呈对称分布。由图 4可知,当SH波低频入射时,动应力集中系数最大值分布在衬砌两侧,k1*=4,μ1*=16时τθz*达到最大值2.37(θ=0°)。在图 5(b)k1*=4,μ1*=16时τθz*达到最大值7.45(θ=17°)。所以衬砌相对于基体越软时,τθz*越大。

图 4 SH波低频入射时衬砌周边DSCF随k*μ*的分布 Fig.4 Distribution of DSCF around circular lining edge vs. k* and μ* by low frequency SH-wave
图 5 SH波高频入射时衬砌周边DSCF随k*μ*的分布 Fig.5 Distribution of DSCF around circular lining edge vs. k* and μ* by high frequency SH-wave

图 6给出衬砌周边DSCF随ka的分布情况。由图 6可知,当ka=2时τθz*达到最大值2.22(θ=153°)。

图 6 衬砌周边DSCF随ka的分布 Fig.6 Distribution of DSCF around circular lining edge vs. ka

由以上可知,当SH波高频入射时衬砌相对于基体越软危害越大。

图 7给出了SH波高频入射时衬砌周边DSCF随厚度比λ变化情况。由图 7可知,当λ=30%时τθz*最大值为2.76(θ=166°),但λ=40%时τθz*最大值为3.20(θ=172°),因此增加衬砌的厚度比λ并不一定能使τθz*减小。

图 7 SH波高频入射时衬砌周边DSCF随λ的分布 Fig.7 Distribution of DSCF around circular lining edge vs. λ by high frequency SH-wave

图 8给出了衬砌周边动应力集中系数τθz*C*的分布情况,由图 8可知,C*=2时,τθz*最大值为3.24(θ=-154°),约为C*=0.5时τθz*最大值1.1(θ=-56°)的2.94倍,工程中对于裂纹过长的情况应引起注意。

图 8 SH波高频入射时衬砌周边DSCF随C*的分布 Fig.8 Distribution of DSCF around circular lining edge vs. C* by high frequency SH-wave

图 9给出了衬砌周边动应力集中系数τθz*β的分布情况,由图 9可知,τθz*β的分布基本一致,裂纹角度βτθz*影响较小。

图 9 SH波高频入射时衬砌周边DSCF随β的分布 Fig.9 Distribution of DSCF around circular lining edge vs. β by high frequency SH-wave

利用坐标系xoy′,令θ′=π,得到x′负方向上的地表位移值|W*|,图 1011分别给出了SH波低频与高频入射时地表位移|W*|随k*μ*变化图,横坐标用x′绝对值表示。由图 10可知,当SH波低频入射时,|W*|随k*μ*分布基本一致,当x=20时|W*|达到最大值3.96。由图 11可知,当SH波高频入射时,地表位移|W*|呈现出越来越明显的振荡特征,并沿x方向呈周期性变化,随着x增大振幅越来越小,最终趋于稳定。可见SH波高频入射时k*μ*对|W*|存在影响。

图 10 SH波低频入射时|W*|随k*μ*的分布 Fig.10 Distribution of |W*| vs. k*andμ*by low frequency SH-wave
图 11 SH波高频入射时|W*|随k*μ*的分布 Fig.11 Distribution of |W*| vs. k* and μ* by high frequency SH-wave

图 12给出了k1*=0.5,μ1*=|W*|随ka变化图。由图 9可知,地表位移|W*|受ka影响较大,当ka=2时,|W*|在x=0处达到最大值5.3。

图 12 地表位移|W*|随ka的分布 Fig.12 Distribution of |W*| vs. ka

图 13给出了裂纹尖端动应力因子DSIF随ka变化图。在ka=1时k3达到最大值3.75。

图 13 DSIF随ka变化图 Fig.13 Variation of DSIF vs. ka

图 1415分别给出了SH波低频与高频入射时裂纹尖端动应力因子DSIF随h*变化情况。由图 14可知,SH波低频入射时,当k1*=0.5,μ1*=0.25衬砌相对基体较硬时在h*=20、h*=50、h*=80处k3达到最大值4.2。

图 14 SH波低频入射时DSIF随h*的变化 Fig.14 Variation of DSIF vs. h* by low frequency SH-wave
图 15 SH波高频入射时DSIF随h*变化 Fig.15 Variation of DSIF vs. h* by high frequency SH-wave

图 1617分别给出了SH波低频与高频入射时裂纹尖端动应力因子DSIF随h1*变化情况。由图 16可知,SH波低频入射时,k3h1*出现周期性变化,由图 17可知,SH波高频入射时,k3的振荡性加强,k1*=4,μ1*=16衬砌相对基体较软时k3达到最大值4.2。

图 16 SH波低频入射时DSIF随h1*变化 Fig.16 Variation of DSIF vs. h1* by low frequency SH-wave
图 17 SH波高频入射时DSIF随h1*变化 Fig.17 Variation of DSIF vs. h1* by high frequency SH-wave
5 结论

1)ka、裂纹长度Cτθz*影响显著;衬砌相对于基体越软时,τθz*越大;裂纹角度βτθz*影响较小。增加衬砌的厚度比λ并不一定能使τθz*减小以达到抗震的目的,这在工程中应该引起注意。

2)ka对地表位移|W*|影响较大,当SH波高频入射时,|W*|振荡性加强,逐渐趋于稳定。

3) 当SH波低频入射k3h*变化时衬砌相对基体较硬对裂纹尖端危害较大。当SH波高频入射k3h1*变化时衬砌相对基体较软对k3危害较大。

参考文献
[1] 齐辉, 蔡立明, 潘向南, 等. 直角域中凸起和孔洞对SH波的散射与地震动[J]. 岩土力学, 2015, 36(2): 347-353.
QI Hui, CAI Liming, PAN Xiangnan, et al. Scattering and seismic ground motion of circular cavity and salient with SH wave in a quarter space[J]. Rock and soil mechanics, 2015, 36(2): 347-353. (0)
[2] 齐辉, 丁晓浩, 张洋. 垂直界面附近椭圆形夹杂对SH波的散射与地震动研究[J]. 岩土力学, 2016, 37(8): 2151-2158.
QI Hui, DING Xiaohao, ZHANG Yang. Study of scattering of SH-waves by a buried elliptic inclusion near a vertical interface and ground surface vibration[J]. Rock and soil mechanics, 2016, 37(8): 2151-2158. (0)
[3] QI Hui, YANG Jie. Dynamic analysis for circular inclusion of arbitrary positions near interfacial crack impacted by SH-wave in Half-space[J]. European journal of mechanics/a solids, 2012, 36: 18-24. DOI:10.1016/j.euromechsol.2012.02.007 (0)
[4] 丁晓浩, 齐辉, 赵元博. 含有直线裂纹的直角域中椭圆形夹杂对SH波的散射[J]. 天津大学学报, 2016, 49(4): 415-421.
DING Xiaohao, QI Hui, YAO Yuanbo. Scattering of SH-wave by elliptic inclusion in right-angle plane with beeline crack[J]. Journal of Tianjin University, 2016, 49(4): 415-421. (0)
[5] 丁晓浩, 齐辉, 张洋, 等. 双相介质椭圆形孔洞及界面裂纹对SH波的散射[J]. 华中科技大学学报, 2016, 49(4): 415-421.
DING Xiaohao, QI Hui, ZHANG Yang, et al. Scattering of SH waves in bi-material half space with elliptic cavity and interfacial crack[J]. Journal of Huazhong University of Science and Technology, 2016, 49(4): 415-421. (0)
[6] 赵春香, 齐辉. SH波对半空间界面圆孔的动力效应[J]. 振动与冲击, 2016, 35(2): 132-140.
ZHAO chunxiang, QI Hui. Dynamic effect of SH wave on interface circular cavity in half space[J]. Journal of vibration and shock, 2016, 35(2): 132-140. (0)
[7] 丁晓浩, 齐辉, 赵元博. 直角域中椭圆形夹杂对SH波的散射与地震动[J]. 工程力学, 2016, 33(7): 48-54.
DING Xiaohao, QI Hui, ZHAO Yuanbo. Scattering of SH-waves due to an elliptical inclusion and ground motion in a right-angle plane[J]. Engineering mechanics, 2016, 33(7): 48-54. (0)
[8] 杨杰, 齐辉. 含有圆形夹杂的双相介质半空间对SH波的散射与地震动[J]. 振动与冲击, 2016, 35(7): 205-232.
YANG Jie, QI Hui. SH waves scattered by a bi-material half space including circular inclusion and ground motion[J]. Journal of vibration and shock, 2016, 35(7): 205-232. (0)
[9] 南景富, 赵春香, 齐辉, 等. 脱胶圆衬砌及其边缘直裂纹对出平面波的散射[J]. 振动与冲击, 2016, 35(13): 148-152.
NAN Jingfu, ZHAO chunxiang, QI Hui, et al. Scattering of anti-plane wave by a cylindrical lining with a disconnected curve and its edge's linear cracks[J]. Journal of vibration and shock, 2016, 35(13): 148-152. (0)
[10] 梁建文, 胡淞淋, 刘中宪, 等. 平面SV波入射下弹性半空间中三维球形洞室的动力响应[J]. 岩土工程学报, 2016, 38(9): 1559-1568.
LIANG Jianwen, HU Songlin, LIU Zhongxian, et al. Dynamic response of 3D spherical cavity in elastic half-space under plane SV waves[J]. Chinese journal of geotechnical engineering, 2016, 38(9): 1559-1568. (0)
[11] 付佳, 梁建文, 杜金金. 平面SH波激励下的土-隧道动力相互作用的解析解[J]. 岩土工程学报, 2016, 38(4): 588-598.
FU Jia, LIANG Jianwen, DU Jinjin. Analytical solution of dynamic soil-tunnel interaction for incident plane SH wave[J]. Chinese journal of geotechnical engineering, 2016, 38(4): 588-598. DOI:10.11779/CJGE201604002 (0)
[12] 杨在林, 黑宝平, 杨钦友. 径向非均匀介质中圆形夹杂的动应力分析[J]. 力学学报, 2015, 47(3): 539-543.
YANG Zailin, HEI Baoping, YANG Qinyou. Dynamic analysis on a circular inclusion in a radially inhomogeneous medium[J]. Chinese journal of theoretical and applied mechanics, 2015, 47(3): 539-543. DOI:10.6052/0459-1879-14-204 (0)
[13] 杨在林, 黑宝平, 王耀. 指数梯度半无限介质中波的传播[J]. 振动与冲击, 2015, 34(14): 7-10.
YANG Zailin, HEI Baoping, WANG Yao. Wave propagation in exponentially graded semi-infinite medium[J]. Journal of vibration and shock, 2015, 34(14): 7-10. (0)
[14] 杨在林, 王耀, 黑宝平, 等. 基于等效转化关系的一维非均匀介质波动问题解析方法研究[J]. 振动与冲击, 2016, 35(6): 152-155.
YANG Zailin, WANG Yao, HEI Baoping, et al. Analytical solutions to wave motion in a one-dimensional inhomogeneous medium based on an equivalent transformation relationship[J]. Journal of vibration and shock, 2016, 35(6): 152-155. (0)
[15] 折勇, 齐辉, 杨在林. SH波对直角平面区域内圆形孔洞的散射与地震动[J]. 应用力学学报, 2008, 25(3): 392-397.
SHI Yong, QI Hui, YANG Zailin. Scattering of SH-wave by circular cavity in right-angle plane and seismic ground motion[J]. Chinese Journal of solid mechanics, 2008, 25(3): 392-397. (0)