﻿ 隔离三端口变换器软开关分析与实验
«上一篇
 文章快速检索 高级检索

 应用科技  2020, Vol. 47 Issue (3): 87-93  DOI: 10.11991/yykj.201911014 0

### 引用本文

ZHAO Junli. Soft switching analysis and experiment of isolated three-port converter[J]. Applied Science and Technology, 2020, 47(3): 87-93. DOI: 10.11991/yykj.201911014.

### 文章历史

Soft switching analysis and experiment of isolated three-port converter
ZHAO Junli
Beijing Research Institute of Mechanical and Electrical Technology, Beijing 100083, China
Abstract: In order to improve the conversion efficiency and power density of the isolated three-port converter and reduce the volume of the power converter, the conditions and scope of the soft turn-on of the isolated three-port converter are analyzed in this paper. The analytical expression for soft switching of full-bridge converter switch in each port is derived and obtained under phase-shift modulation mode, and the correctness of theoretical analysis and simulation results are validated based on the hardware test circuit of isolated three-port converter built in the laboratory. The simulation and experimental results are consistent with the theoretical analysis, which is helpful for the auxiliary design and parameter optimization when the actual system is developed.
Keywords: three-port converter    electrical isolation    voltage matching    soft switching    conversion efficiency    double active bridge    modulation strategy

1 拓扑结构与软开关分析

v1为参考，v2(v2')和v3(v3')与v1之间的移相角分别为φ12φ13，它们之间的关系可以用图1(c)来表示。图1(a)中的L1L2L3分别为3个端口与变压器绕组串联的电感，经变换后得到在图1(b)所示的△连接的等效电路中的L12L13L32，可表示为

 $\left\{ {\begin{array}{*{20}{l}} {{L_{12}} = {L_1} + {L_2}^\prime + {{{L_1}{L_2}^\prime } / {{L_3}^\prime }}} \\ {{L_{32}} = {L_2}^\prime + {L_3}^\prime + {{{L_2}^\prime {L_3}^\prime } / {{L_1}}}} \\ {{L_{13}} = {L_3} + {L_1} + {{{L_1}{L_3}^\prime } / {{L_2}^\prime }}} \end{array}} \right.$

 $\left\{ {\begin{array}{*{20}{c}} {{L_2}^\prime = {{N_1^2L_2^{}} / {N_2^2}}} \\ {{L_3}^\prime = {{N_1^2L_3^{}} / {N_3^2}}} \end{array}} \right.$

 ${i_{12}}\left( t \right) = \left\{ {\begin{array}{*{20}{l}} {\dfrac{{{V_{1{\rm{r}}}} + {V_{2{\rm{r}}}}}}{{{L_{12}}}}\left( {t - {t_0}} \right) + {i_{12}}\left( {{t_0}} \right)\;,\;\;{t_0} \leqslant t < {t_2}} \\ {\dfrac{{{V_{1{\rm{r}}}} - {V_{2{\rm{r}}}}}}{{{L_{12}}}}\left( {t - {t_2}} \right) + {i_{12}}\left( {{t_1}} \right)\;,\;\;{t_2} \leqslant t < {t_3}} \end{array}} \right.$ (1)

 ${i_{13}}\left( t \right) = \left\{ {\begin{array}{*{20}{l}} {\dfrac{{{V_{1{\rm{r}}}} + {V_{3{\rm{r}}}}}}{{{L_{13}}}}\left( {t - {t_0}} \right) + {i_{13}}\left( {{t_0}} \right)\;,\;\;{t_0} \leqslant t < {t_1}} \\ {\dfrac{{{V_{1{\rm{r}}}} - {V_{3{\rm{r}}}}}}{{{L_{13}}}}\left( {t - {t_1}} \right) + {i_{13}}\left( {{t_1}} \right)\;,\;\;{t_1} \leqslant t < {t_3}} \end{array}} \right.$ (2)

 $\left\{ {\begin{array}{*{20}{l}} {{i_{12}}\left( {{t_3}} \right) = - {i_{12}}\left( {{t_0}} \right)} \\ {{i_{13}}\left( {{t_3}} \right) = - {i_{13}}\left( {{t_0}} \right)} \end{array}} \right.$ (3)

 $\left\{ {\begin{array}{*{20}{l}} {{i_{12}}\left( {{t_0}} \right) = - \dfrac{{\left( {{V_{1{\rm{{\rm{r}}}}}} - {V_{2{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{2{\rm{{\rm{r}}}}}}{\varphi _{12}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{{\rm{12}}}}}}} \\ {{i_{12}}\left( {{t_2}} \right) = \dfrac{{\left( {{V_{2{\rm{{\rm{r}}}}}} - {V_{1{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{1{\rm{{\rm{r}}}}}}{\varphi _{12}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{{\rm{12}}}}}}} \end{array}} \right.$
 $\left\{ {\begin{array}{*{20}{l}} {{i_{13}}\left( {{t_0}} \right) = - \dfrac{{\left( {{V_{1{\rm{{\rm{r}}}}}} - {V_{{\rm{3{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{{\rm{3{\rm{r}}}}}}{\varphi _{13}}}}{{4{\text{π}} {f_{\rm{S}}}{L_{{\rm{13}}}}}}} \\ {{i_{13}}\left( {{t_1}} \right) = \dfrac{{\left( {{V_{{\rm{3{\rm{r}}}}}} - {V_{1{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{1{\rm{{\rm{r}}}}}}{\varphi _{13}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{{\rm{13}}}}}}} \end{array}} \right.$

 $\left\{ {\begin{array}{*{20}{l}} {{i_1} = {i_{1{\rm{2}}}}{\rm{ + }}{i_{1{\rm{3}}}}} \\ {{i_2}^\prime = - {i_{32}} - {i_{12}}} \\ {{i_3}^\prime = - {i_{13}} + {i_{32}}} \end{array}} \right.$

 ${i_1}({t_3}) = {i_{1{\rm{2}}}}({t_3}){\rm{ + }}{i_{1{\rm{3}}}}({t_3}) > 0$

 $\frac{{\left( {{V_{1{\rm{{\rm{r}}}}}} - {V_{2{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{2{\rm{{\rm{r}}}}}}{\varphi _{12}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{12}}}} + \frac{{\left( {{V_{1{\rm{{\rm{r}}}}}} - {V_{3{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{3{\rm{{\rm{r}}}}}}{\varphi _{13}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{13}}}} > 0$ (4)

 $\left\{ {\begin{array}{*{20}{l}} {{i_2}^\prime ({t_5}) = - {i_{32}}({t_5}) - {i_{12}}({t_5}) > 0} \\ {{i_3}^\prime ({t_4}) = - {i_{13}}({t_4}) + {i_{32}}({t_4}) > 0} \end{array}} \right.$

 $\left\{ {\begin{array}{*{20}{l}} {\dfrac{{\left( {{V_{2{\rm{{\rm{r}}}}}} - {V_{3{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{3{\rm{{\rm{r}}}}}}{\varphi _{32}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{32}}}} + \dfrac{{\left( {{V_{{\rm{2{\rm{r}}}}}} - {V_{{\rm{1{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{{\rm{1{\rm{r}}}}}}{\varphi _{12}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{12}}}} > 0} \\ {\dfrac{{\left( {{V_{3{\rm{{\rm{r}}}}}} - {V_{1{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{1{\rm{{\rm{r}}}}}}{\varphi _{13}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{13}}}} + \dfrac{{\left( {{V_{3{\rm{{\rm{r}}}}}} - {V_{2{\rm{{\rm{r}}}}}}} \right){\rm{{\text{π}} }} + 2{V_{2{\rm{{\rm{r}}}}}}{\varphi _{32}}}}{{4{\rm{{\text{π}} }}{f_{\rm{S}}}{L_{32}}}} > 0} \end{array}} \right.$ (5)

 $\left\{ \begin{array}{l} \left[ {\left( {1 - {d_{12}}} \right){\rm{{\text{π}} }} + 2{d_{12}}{\varphi _{12}}} \right] + \left[ {\left( {1 - {d_{13}}} \right){\rm{{\text{π}} }} + 2{d_{13}}{\varphi _{13}}} \right] > 0 \\ \left[ {\left( {{d_{12}} - 1} \right){\rm{{\text{π}} }} + 2{\varphi _{12}}} \right] + \left[ {\left( {{d_{12}} - {d_{13}}} \right){\rm{{\text{π}} }} + 2{d_{13}}{\varphi _{32}}} \right] > 0 \\ \left[ {\left( {{d_1}_3 - 1} \right){\rm{{\text{π}} }} + 2{\varphi _{13}}} \right] + \left[ {\left( {{d_{13}} - {d_{12}}} \right){\rm{{\text{π}} }} + 2{d_{12}}{\varphi _{32}}} \right] > 0 \end{array} \right.$ (6)

 $\left\{ \begin{array}{l} {d_{12}} < \dfrac{{2{\rm{{\text{π}} }} + {d_{13}}(2{\varphi _{13}} - {\rm{{\text{π}} }})}}{{{\rm{{\text{π}} }} - 2{\varphi _{12}}}} \\ {d_{12}} > \dfrac{{{\rm{{\text{π}} }} - 2{\varphi _{12}} + {\rm{{\text{π}} }}{d_{13}} - 2{d_{13}}({\varphi _{12}} - {\varphi _{13}})}}{{2{\rm{{\text{π}} }}}} \\ {d_{12}} < \dfrac{{2{\varphi _{13}} - {\rm{{\text{π}} }} + 2{\text{π}} {d_{13}}}}{{{\rm{{\text{π}} }} - 2{\varphi _{12}} + 2{\varphi _{13}}}} \end{array} \right.$ (7)

 $\left\{ \begin{array}{l} {d_{13}} < \dfrac{{2{\rm{{\text{π}} }} - {d_{12}}({\rm{{\text{π}} }} - 2{\varphi _{12}})}}{{{\rm{{\text{π}} }} - 2{\varphi _{13}}}} \\ {d_{13}} < \dfrac{{2{d_{12}}{\rm{{\text{π}} }} - ({\rm{{\text{π}} }} - 2{\varphi _{12}})}}{{{\rm{{\text{π}} }} - 2({\varphi _{12}} - {\varphi _{13}})}} \\ {d_{13}} > \dfrac{{({\rm{{\text{π}} }} - 2{\varphi _{13}}) + {d_{12}}({\rm{{\text{π}} }} - ({\varphi _{12}} - {\varphi _{13}}))}}{{2{\rm{{\text{π}} }}}} \end{array} \right.$

2 仿真验证 2.1 仿真模型

2.2 仿真过程

3 实验验证