«上一篇
文章快速检索     高级检索
下一篇»
  应用科技  2020, Vol. 47 Issue (4): 106-110  DOI: 10.11991/yykj.201907015
0

引用本文  

鄢子超, 孟凡亮, 周鸣昊, 等. 汽车侧门开关疲劳瞬态仿真方法研究[J]. 应用科技, 2020, 47(4): 106-110. DOI: 10.11991/yykj.201907015.
YAN Zichao, MENG Fanliang, ZHOU Minghao, et al. Study on the transient simulation method for door slam fatigue[J]. Applied Science and Technology, 2020, 47(4): 106-110. DOI: 10.11991/yykj.201907015.

通信作者

鄢子超,E-mail:yanzichao@mychery.com

作者简介

鄢子超,男,分析师;
孟凡亮,男,主任分析师

文章历史

收稿日期:2019-07-31
网络出版日期:2020-07-13
汽车侧门开关疲劳瞬态仿真方法研究
鄢子超, 孟凡亮, 周鸣昊, 余庆超    
奇瑞汽车股份有限公司 汽车工程技术研发总院,安徽 芜湖 241009
摘要:针对汽车侧门的开关耐久性能,建立了基于瞬态响应的侧门开关疲劳仿真方法。采用Abaqus/Explicit直接积分法对侧门进行瞬态响应分析,得到了侧门在关闭过程中的应力应变历程;基于Ncode焊点S-N及钣金E-N曲线,通过Miner线性累积原理,得到了多次循环下的损伤结果及风险位置。与实验加速度进行相关性分析,改善了侧门关闭过程模拟精度。与开关疲劳实验结果对比,验证了该方法的合理性。并对侧门进行优化改进,最终通过了实验验证。
关键词汽车侧门    耐久性能    仿真方法    加速度    瞬态响应    开关疲劳    相关性    Abaqus    Ncode    
Study on the transient simulation method for door slam fatigue
YAN Zichao, MENG Fanliang, ZHOU Minghao, YU Qingchao    
Chery Automobile Co., Ltd., Wuhu 241009, China
Abstract: A finite element method based on transient response was established to evaluate slam durability of the automobile door. According to the Abaqus/Explicit direct integration method, the door was dynamically simulated using direct integration method, and the time history of the door’s closing stress and strain was obtained. Based on the Ncode welding spot S-N and sheet metal E-N curves, and the Miner linear cumulative theory, the fatigue result and the risk position of the door was predicted through multiple cycles’ tests. The simulation accuracy of the door closing process was improved by carrying out the correlation analysis of test acceleration. Compared with slam fatigue test results, the rationality of this method was verified. And further, the door was optimized and improved, and finally passed through the test.
Keywords: automobile side door    durability    simulation method    acceleration    transient response    slam fatigue    correlation    Abaqus    Ncode    

汽车侧门作为车身系统中的重要组成部分,其性能的好坏直接影响着整车使用性能的高低[1],如噪声、振动与声振粗糙度(noise vibration harshness, NVH)、安全、耐久、关门品质[2-4]等。特别是针对于汽车的轻量化设计,侧门的减重贡献量突出,因此对侧门的性能提出了更高的挑战。通过对侧门结构性能的分析,如模态、刚度、抗凹、下垂、过开等[5-7],能在产品设计前期很好地规避风险,缩短开发周期。但是对于汽车结构中使用频率较高的侧门而言,出现问题主要是以经常开关造成的疲劳损坏为主,而开关疲劳分析能很好地贴合实际工况。

目前,常用的开关模拟方法有惯性释放法和瞬态动力学分析法[8-13]。惯性释放法效率高,但无法精确地模拟侧门在关闭中的真实过程,如接触、密封条、锁冲击振荡等,因此计算结果精度不高[14];瞬态动力学分析更接近实际,但是动态模拟复杂,需要考虑多种非线性边界条件的影响,因此,如何准确地模拟出侧门的运动状态是分析开关疲劳的关键。本文以某车型的前侧门为例,采用Abaqus/Explicit进行瞬态响应分析,通过与实验加速度的对标,修正密封条阻尼参数,使测试和仿真加速度具有较好的相关性,获得准确仿真模型。采用Ncode软件开展疲劳仿真分析,预测出风险位置,并优化改进,最终实验验证满足要求。

1 汽车侧门开关疲劳分析方法

侧门的开关疲劳分析主要分为2步:1) 进行侧门开关过程的瞬态分析,通过有限元建模、材料参数及加载工况的输入,在Abaqus软件中求解得到焊点力与力矩、钣金应力应变的时间历程;2) 将计算结果导入到Ncode Designlife软件中,关联焊点S-N及钣金E-N曲线,通过Miner线性累积原理,得到多次循环下的损伤。最终根据目标,判定是否满足要求,不满足需要优化改进。具体流程如图1所示。

Download:
图 1 汽车侧门开关疲劳分析流程
2 有限元模型

Abaqus/Explicit采用中心差分法对时间进行积分,求解显式运动方程,因为不需要求解线性方程组,所以每个增量步的费用较低,特别适用于求解需要分成许多小的时间增量来达到高精度的动力学仿真,如冲击、碰撞等[15-17]。在Abaqus中,求解应力或位移的单元类型很多,本文中选用的是线性减缩积分单元提高分析效率。但是线性减缩积分单元由于存在“沙漏”问题,采用线性减缩积分单元模拟承受弯曲载荷的结构时,沿厚度方向上至少应划分4个单元[18]

截取1/4车身模型,如图2所示,约束截取位置处全部自由度。控制网格质量如翘曲度、长宽比、倾斜角度、雅克比等,特别是网格尺寸,过小的网格尺寸会导致计算稳定时间增量变小,使计算效率急剧下降。针对此问题,可以采用质量缩放的方法控制时间增量。然而使用时要注意,因为模型质量增加太大会使结果失真,通过能量守恒判断结果的合理性[19]。侧门开关疲劳的过程其实就是门在关闭瞬间从动能转换为内能的过程,关闭时的能量大概30%由密封条吸收,25%由缓冲块吸收,40%由锁吸收,其余5%由其他组件吸收[20],因此密封条、缓冲块、锁的模拟尤为重要。

Download:
图 2 分析模型截取示意

侧门的密封条主要由2部分组成,门洞车身侧与侧门侧。密封条的内部结构非常复杂,如图3所示,在仿真过程中,要进行适当的简化。在建模中,密封条的形貌要保留,用于模拟变形和接触;抽取密封条外表面的中面用壳单元模拟,附上密封条的材料;密封条的刚度在侧门关闭过程中很重要,刚度过大使得关门困难,过小起不到吸能作用,而且不同位置的密封条刚度不一样,因此不同位置需要建立局部坐标系指定方向,刚度以一定数量的弹簧单元模拟,弹簧单元均布在密封条中。

Download:
图 3 密封条实物截面结构及有限元模型

通常,密封条刚度由实验测得。密封条刚度实验样件与实际安装在侧门上的长度不同,需要通过公式将刚度转换到每个弹簧单元上:

$f = \frac{F}{l} \frac{L}{N}$

式中:f为单个弹簧单元在某压缩量下的载荷大小;F代表长度为l的密封条样件在某压缩量下的载荷大小;L为某段密封条的总长度;N为模拟某段密封条弹簧单元的总个数。本文密封条弹簧单元间隔为20 mm,由于实测的刚度非线性段太多,可以选取多个值进行拟合等效,门洞侧的某段密封条原始的及等效后的弹簧单元刚度曲线如图4所示。

Download:
图 4 密封条弹簧刚度曲线

缓冲块的建模规则与密封条类似,如图5所示,建立缓冲块外部表面网格模拟接触,利用弹簧单元模拟其刚度,刚度值由实验测得。

Download:
图 5 缓冲块有限元模型

锁机构的结构比较复杂,在建模中只有准确地模拟锁的运动状态才能准确地模拟门关闭过程。如图6所示,锁机构中背板、锁舌、锁钩、棘爪采用实体单元建模,其中棘爪及锁舌外圈单位需要根据实际材料附上材料属性,在接触上后能更好地吸收内能;销轴以及扭转弹簧分开模拟,销轴通过梁单元B31模拟,截面直径为销轴直径;扭转弹簧用前述弹簧单元模拟,扭转弹簧的刚度同样由实验测得。侧门在关闭过程中,锁钩首先与锁舌碰撞并接触,迫使锁舌转动,从而使锁柱进入到锁舌和棘爪之间,达到半锁状态;锁舌撞击棘爪,使棘爪先向下转动,再向上卡住锁舌进入全锁状态。棘爪和锁舌之间通过自身的特征结构进行限位,使锁钩不能脱出。由于冲击力作用,全锁后锁钩会在锁舌和棘爪间来回进行振荡。

Download:
图 6 锁机构有限元模型

侧门与车身通过铰链连接,铰链由3部分组成,车身侧铰链本体及侧门侧铰链本体用实体建模,销轴采用Hinge单元模拟。其他附件以质量点代替。

3 模型对标

在做实验的过程中,加速度是一个很容易测得的结果,可以通过加速度传感器获得该数据。因此,本文采用基于加速度对标的方法来修正模型。实验因传感器连接到电脑,如果在内部取点会影响侧门关闭;外部的取点主要根据铰链和锁对应外板位置,其余位置均布在门框边界及中部位置,实验测试加速度7个位置如图7所示。因铰链侧的加速度响应不明显,文中主要列取锁处及边界位置点P1P4P5的加速度响应图及对标结果。

Download:
图 7 实验及仿真加速度位置

疲劳损伤的主要影响是幅值,因此把加速度的最小值a和最大值b作为主要目标进行对标。仿真结果与实验结果对标如图8所示。

Download:
图 8 加速度对标曲线

通过对比可以发现,锁在锁死后,实验加速度衰减迅速,但仿真结果一直在激荡,没有衰减。考虑到侧门在实际关闭的过程中存在各种阻尼,如空气、密封条、缓冲块等,因密封条面积较大,占主要因素。但是阻尼的获取比较困难,本文通过将阻尼等效在密封条上进行对标。设置密封条阻尼比为1%~5%,与实验加速度进行对标,列出P1点对标结果,如图9所示。

Download:
图 9 不同阻尼比的加速度对标曲线

通过结果对比,阻尼比在1%~5%变化时,加速度的第一个峰值变化不大;随着阻尼比的增大,加速度衰减越快,但是幅值并不是线性的下降,比如3%的加速度幅值比2%大。与实验加速度对比,当阻尼比为2%时,最大和最小幅值及衰减过程相关性较好,因此选取密封条阻尼比为2%进行疲劳计算。

4 疲劳验证

计算得到的损伤结果如图10所示,最大损伤在靠近下部门框处焊点,损伤值为1.6、1.1。

Download:
图 10 疲劳仿真结果

实验开裂位置如图11所示,与仿真最大损伤位置为同一处焊点,验证了仿真与实验的相关性较好。对开裂焊点进行优化改进,在开裂位置增加一段结构胶,仿真得到损伤为0.028、0.017,最终通过实验验证。

Download:
图 11 开关疲劳实验结果
5 结论

1)本文建立了侧门开关疲劳的瞬态仿真方法,并与实验结果进行对标。

2)阻尼对于侧门加速度响应具有较大的影响,特别是幅值的衰减,当密封条阻尼比为2%时,仿真和实验具有较好的相关性。

3)后续还需要研究侧门在关闭过程中空气、缓冲块、锁的阻尼等,进一步提升仿真精度。

参考文献
[1] 邢志伟, 惠延波, 冯兰芳, 等. 基于MSC. FATIGUE的某微客车门疲劳分析及优化[J]. 机械研究与应用, 2013(4): 61-63. DOI:10.3969/j.issn.1007-4414.2013.05.021 (0)
[2] 刘洋, 张荣松. 乘用车侧门玻璃对NVH性能影响的分析[J]. 农业装备与车辆工程, 2018, 56(11): 96-98. DOI:10.3969/j.issn.1673-3142.2018.08.025 (0)
[3] 周伟, 胡宏, 宋大伟, 等. 乘用车侧门关门声音品质研究及应用[J]. 汽车科技, 2019(5): 39-43. DOI:10.3969/j.issn.1005-2550.2019.01.004 (0)
[4] 刘禹呈, 周杰, 沈雁东. 汽车侧门冲压防撞杆高效断面优化研究[J]. 汽车零部件, 2019, 128(2): 10-13. (0)
[5] 李石. 轿车屈曲、抗凹性能分析及优化[J]. 合肥工业大学学报(自然科学版), 2009, 32(S1): 18-21. (0)
[6] 王晓华, 崔志琴, 张腾, 等. 汽车车门的设计[J]. 机械, 2011, 38(10): 60-63. DOI:10.3969/j.issn.1006-0316.2011.10.015 (0)
[7] 王少伟, 兰天亮, 李梦帆. 浅议汽车侧门结构设计中的CAE应用[J]. 智能制造, 2017, (6): 31-39. DOI:10.3969/j.issn.1671-8186.2017.06.010 (0)
[8] BASKAR S. Door structure slam durability inertia relife approach[C]//International Body Engineering Conference and Exposition. Detroit, USA, 1998. (0)
[9] IYENGAR M R, CHANG T, LAXMAN S, et al. A comprehensive study of door slam [C]// Sae World Congress and Exhibition. Detroit, USA, 2004. (0)
[10] SONG G. G, TAN C A. Slam door slam CAE method investigation[C]//SAE 2015 World Congress and Exhibition. Detroit, USA, 2015. (0)
[11] 叶青, 洪光辉, 王得天, 等. 惯性释放在汽车飞翼门slam分析中的应用[J]. 计算机辅助工程, 2011, 20(2): 136-142. DOI:10.3969/j.issn.1006-0871.2011.02.028 (0)
[12] 张怡, 饶建强. 后背箱内板点焊耐久开裂分析及对策研究[J]. 计算机辅助工程, 2016(6): 10-14. (0)
[13] 杨潆奎, 董波, 刘帅, 等. 汽车后背箱盖关闭冲击及耐久性分析[J]. 现代制造工程, 2015, 25(1): 10-14. (0)
[14] 赵婷婷, 王得天. 基于RADIOSS的侧门关门耐久性能分析[C]//Altair 2012 Hyper Works技术大会论文集.上海, 中国, 2012: 1-6. (0)
[15] 王磊, 王峻峰, 刘莹, 等. 基于Abaqus显式分析的行李箱盖关闭力分析[J]. 计算机辅助工程, 2013(2): 170-171. DOI:10.3969/j.issn.1006-0871.2013.z2.043 (0)
[16] 雷拓, 刘伯权, 刘锋. 基于ABAQUS显式分析的梁单元材料模型开发应用[J]. 工程力学, 2013(6): 259-268. (0)
[17] 朱跃峰. 基于ABAQUS的显式动力学分析方法研究[J]. 机械设计与制造, 2015(3): 107-109. DOI:10.3969/j.issn.1001-3997.2015.05.029 (0)
[18] 石亦平, 周玉蓉. ABAQUS 有限元分析实例详解[M]. 北京: 机械工业出版社, 2006: 52-58. (0)
[19] 张岩, 孟凡亮, 吴泽勋, 等. 基于瞬态响应分析的汽车前舱盖开关疲劳寿命预测[J]. 计算机辅助工程, 2016, 25(1): 15-18. (0)
[20] NALLAPATI S, MILLER J, MANDADAPU S, et al. Development of robust CAE modeling technique for decklid slam analysis[C]//SAE 2011 World Congress and Exhibition. Detroit, USA,2011. (0)