﻿ 不同船艏形式船模阻力试验及数值计算
«上一篇
 文章快速检索 高级检索

 应用科技  2018, Vol. 45 Issue (5): 1-5  DOI: 10.11991/yykj.201707002 0

### 引用本文

YAN Qiulian, CAO Xuxiang, GUO Chunyu, et al. Resistance test and numerical calculation of ship model based on different bow forms[J]. Applied Science and Technology, 2018, 45(5), 1-5. DOI: 10.11991/yykj.201707002.

### 文章历史

1. 上海船舶研究设计院，上海 201203;
2. 哈尔滨工程大学 船舶工程学院，黑龙江 哈尔滨 150001

Resistance test and numerical calculation of ship model based on different bow forms
YAN Qiulian1, CAO Xuxiang2, GUO Chunyu2, LIN Jianfeng2, ZHANG Haipeng2
1. Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China;
2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: In order to better study the influence of different bow profiles on the ship’s resistance performance, a resistance experiment on the ship model of a bow form was carried out and the computational fluid dynamics (CFD) numerical calculation was done. And then the bow profile optimization was conducted based on this hull pattern, designing another two different forms of bow, and making a CFD numerical calculation of the resistance of ship model that had been optimized. At last these three types of bow models were compared and analyzed on the resistance performance, which effectively illustrates that increasing the convex form of the ship’s hull line properly is helpful to improving the ship’s resistance performance.
Keywords: ship's resistance    computational fluid dynamics    bow form    resistance test    Star-CCM+    hullline optimization    energy conservation

1 船舶总阻力数值计算及试验验证 1.1 基于CFD的船舶总阻力数值计算 1.1.1 船模参数及船艏形式

2 000 t科考船船模主要尺度参数及其船艏型线轮廓如表1图1所示。

1.1.2 数值计算控制方程及模型选择

 $\frac{{\partial {u_i}}}{{\partial {x_i}}} = 0$
 $\begin{split}\frac{\partial }{{\partial t}}\left( {\rho {u_i}} \right) + & \frac{\partial }{{\partial {x_j}}}\left( {\rho {u_i}{u_j}} \right) = \\& - \frac{{\partial p}}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + {\mu _t}} \right)\left( {\frac{{\partial {u_i}}}{{\partial {u_j}}} + \frac{{\partial {u_j}}}{{\partial {u_i}}}} \right)} \right] + {f_i}\end{split}$

1.1.3 计算域及网格划分

1.2 船舶拖曳阻力试验验证

2 000 t科考船船模阻力试验是在哈尔滨工程大学船模拖曳水池中完成的（见图5），水池长108 m、宽7 m、深3.5 m、稳速0.1~6.5 m/s、精度0.1%。船模由拖车通过四自由度适航仪（精度0.1%）牵引，计算机数采系统（精度16 bit）实时记录各个航速下作用在船模上的力。船模艏部装有激流装置真实模拟湍流边界层。在阻力测量阶段，船模自由升沉、纵摇。阻力试验一般至少测量10~15个点，包含船模速度Vm（m/s）和该速度下的船模总阻力Rtm（N）[10-12]

1.3 结果分析 1.3.1 船模阻力

1.3.2 船模兴波及表面压力（Vm=2.061 m/s）

2 不同船艏形式船舶阻力数值计算 2.1 不同船艏基本模型轮廓

2.2 计算结果

 ${R_{{t}}} = {R_{{f}}} + {R_{{p}}}$

3 结论

1）船舶球鼻艏的形式对船舶阻力性能有很大的影响，合适的船舶艏部型线对于船舶减阻性能提高产生积极地作用；

2）适当增加球鼻艏可以有效地提高船舶减阻性能，针对文中两种方案阻力平均降低5%左右；

3）阻力性能的改善会受到航速区间的影响，在本研究中阻力减额随着航速的增大呈现先增加后减小的趋势；

4）船舶球鼻艏外延程度的增加相对于整个船体总阻力的下降是否是一成不变的，如何借助试验的方法确定最优的船艏形式仍然需要继续深入的研究。

 [1] 杨大明, 尹赟凯, 施奇. 某型低速船模型阻力试验研究[J]. 科学技术与工程, 2010, 10(13): 3296-3297, 3302. DOI:10.3969/j.issn.1671-1815.2010.13.066 (0) [2] ZHANG Baoji. Research on optimization of hull lines for minimum resistance based on rankine source method[J]. Journal of marine science and technology, 2012, 20(1): 89-94. (0) [3] MA Kun, TANAKA I. A study of optimal hull form for minimum resistance[J]. Journal of hydrodynamics, 1997, 12(1): 113-122. (0) [4] HAMASAKI J I, HIMENO Y. Hull form optimization by nonlinear programming (Part 1): improvement of prismatic curve for minimizing wave resistance[J]. Journal of society of naval architects of Japan, 1995, 223: 29-34. (0) [5] 兰林强, 罗伟林. 基于参数化建模和CFD数值模拟的船舶球鼻艏优化设计[J]. 机电工程, 2016, 33(11): 1329-1333, 1353. (0) [6] 易文彬, 王永生, 杨琼方, 等. 实船阻力及流场数值预报方法[J]. 哈尔滨工程大学学报, 2014, 35(5): 532-536. (0) [7] MENTER F R. Zonal two equation k-ω models for aerodynamic flows[R]. AIAA Paper. Orlando, USA: AIAA, 1993. (0) [8] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605. DOI:10.2514/3.12149 (0) [9] 赵松年, 于允贤. 湍流问题十讲: 理解和研究湍流的基础[M]. 北京: 科学出版社, 2016. (0) [10] 俞湘三. 船舶性能实验技术[M]. 上海: 上海交通大学出版社, 1991. (0) [11] 盛振邦, 刘应中. 船舶原理[M]. 上海: 上海交通大学出版社, 2004. (0) [12] 姜次平, 邵世明. 船舶阻力[M]. 上海: 上海交通大学出版社, 1985. (0)