﻿ 可变截面涡轮性能试验研究及流量特性预测
«上一篇
 文章快速检索 高级检索

 应用科技  2018, Vol. 45 Issue (5): 91-94  DOI: 10.11991/yykj.201704012 0

### 引用本文

ZHOU Pengcheng, WANG Hechun, WANG Yinyan, et al. Performance test of variable geometry turbine and prediction of its flow characteristic[J]. Applied Science and Technology, 2018, 45(5), 91-94. DOI: 10.11991/yykj.201704012.

### 文章历史

Performance test of variable geometry turbine and prediction of its flow characteristic
ZHOU Pengcheng, WANG Hechun, WANG Yinyan, JIN Xin
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: The purpose of this paper is to test actual performance of a new type of variable geometry turbocharger (VGT), expecting to lay foundation for the future automated control of VGT. The experimental data of the turbine flow characteristics and efficiency characteristics were obtained through the performance test of a type of variable geometry turbine. On this basis, a method for predicting the flow rate of variable geometry turbine was proposed, and the process for solving the method was given. By combining this method with the experimental data, the relationship of the flow characteristics of a type of variable geometry turbine changing with the working conditions was established, and the flow characteristics of the variable geometry turbine under different working condition were predicted by this relationship. Experiments show that this method is convenient and feasible, and has a high accuracy.
Keywords: variable geometry turbine    calculation method    turbine flow characteristics    performance test    test data    pressurization technology    turbine efficiency characteristics    flow rate prediction

1 VGT性能实验 1.1 实验系统配置及实验原理

 Download: 图 1 可变截面涡轮试验系统实验示意
1.2 试验参数确定及试验结果分析

 Download: 图 2 VGT流量特性
 Download: 图 3 VGT效率特性

2 VGT流量特性的预测方法

2.1 VGT流量的预测方法

 $\frac{{{q_T}\sqrt {{T_T}^*} }}{{{P_T}^*}} = \mu {F_n}\sqrt {\frac{{2k}}{{R(k - 1)}}[{{(\frac{{{P_2}}}{{{P_T}^*}})}^{2/k}} - {{(\frac{{{P_2}}}{{{P_T}^*}})}^{(k + 1)/k}}]}$

 ${q_T}\sqrt {\frac{{{T_T}^*}}{{{T_0}^*}}} \frac{{{P_0}^*}}{{{P_T}^*}} = {m_{i1}} + {m_{i2}}{\pi _T}^2 + \frac{{{m_{i3}}}}{{{\pi _T}}}$

 ${q_T}\sqrt {\frac{{{T_T}^*}}{{{T_0}^*}}} \frac{{{P_0}^*}}{{{P_T}^*}} = {S_m}({b_1} + {b_2}{\pi _T}^2) + {S_{m1_2}} + \frac{{({b_3} + {S_{m_2}}})}{{{\pi _T}}}$

 $\begin{array}{l}{S_m} = {l_1} + {l_2}\alpha + {l_3}{\alpha ^2} + {l_4}{\alpha ^3}\\{S_{m_1}} = {c_1} + {c_2}\alpha + {c_3}{\alpha ^2} + {c_4}{\alpha ^3}\\{S_{m_2}} = {t_1}\exp ({t_2}\alpha )\end{array}$

 $\begin{array}{l}{q_T}\sqrt {\displaystyle\frac{{{T_T}^*}}{{{T_0}^*}}} \displaystyle\frac{{{P_0}^*}}{{{P_T}^*}} = (0.094 \;7 + 6.253\alpha - 8.606{\alpha ^2} + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;3.246{\alpha ^3})(1.549 - 0.017 \;4{\pi _T}^2) + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(0.291 - 5.748\alpha + 8.223{\alpha ^2} - 2.745{\alpha ^3}) + \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[1.052\exp ( - 4.577\alpha ) - 1.473]/{\pi _T}\end{array}$
2.2 VGT流量特性预测方法的试验验证

 Download: 图 4 某型VGT100%开度时预测流量与实测流量比较
 Download: 图 5 某型VGT0%和70%开度时预测流量与实测流量比较
3 结论

1）可变截面涡轮转速，对流量特性的影响不明显。相同喷嘴环开度，通过可变截面涡轮的流量，随膨胀比的增大而增大；相同膨胀比，喷嘴环开度越小，通过可变截面涡轮的流量越小。

2）当喷嘴环开度小于50%时，相同膨胀比，通过可变截面涡轮的流量随开度的减小速率比喷嘴环开度大于50%，通过可变截面涡轮的流量随开度的减小速率大。

3）喷嘴环开度在50%时，可变截面涡轮的总体效率最高。当喷嘴环开度变化时，总体效率均有所下降。

4）利用最小二乘法，对实验数据进行处理，得出了基于实验数据的可变截面涡轮流量特性的预测方法。该预测方法优点在于，不需要涡轮的几何数据，并且该预测方法将可变截面涡轮流量特性，归一为涡轮膨胀比和喷嘴环开度的函数，由该预测模型得到的预测值与试验值比较，预测值具有较高的准确性。

 [1] 张守动. 车用柴油机配VGT性能研究[D]. 武汉: 华中科技大学, 2014. (0) [2] 郭林福, 马朝臣, 施新, 等. VGT对柴油机经济性和动力性影响的试验研究[J]. 内燃机学报, 2004, 22(2): 116-121. DOI:10.3321/j.issn:1000-0909.2004.02.004 (0) [3] 郭林福. VGT电控增压系统的开发及其与柴油机优化匹配的研究[D]. 北京: 北京理工大学, 2003. (0) [4] HATAMI M, CUIJPERS M C M, BOOT M D. Experimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a design of experiment (DoE) approach[J]. Energy conversion and management, 2015, 106: 1057-1070. DOI:10.1016/j.enconman.2015.10.040 (0) [5] TANCREZ M, GALINDO J, GUARDIOLA C, et al. Turbine adapted maps for turbocharger engine matching[J]. Experimental thermal and fluid science, 2011, 35(1): 146-153. DOI:10.1016/j.expthermflusci.2010.07.018 (0) [6] CHAUVIN J, GRONDIN O, MOULIN P. Control oriented model of a variable geometry turbocharger in an engine with two EGR loops[J]. IFAC proceedings volumes, 2009, 42(26): 64-70. DOI:10.3182/20091130-3-FR-4008.00009 (0) [7] WU Binyang, ZHAN Qiang, YU Xiaoyang, et al. Effects of Miller cycle and variable geometry turbocharger on combustion and emissions in steady and transient cold process[J]. Applied thermal engineering, 2017, 118: 621-629. DOI:10.1016/j.applthermaleng.2017.02.074 (0) [8] 陣内靖明, 有水大之, 田代直人, 等. 满足欧洲排放法规要求的车用柴油机可变截面涡轮增压器的开发[J]. 国外内燃机, 2014, 46(2): 25-30. DOI:10.3969/j.issn.2096-4870.2014.02.006 (0) [9] 董霏, 方存光. 可变截面废气涡轮增压器控制系统数学建型[J]. 科技资讯, 2014, 12(35): 81. DOI:10.3969/j.issn.1672-3791.2014.35.059 (0) [10] 倪计民, 刘越, 石秀勇, 等. 可变喷嘴涡轮增压及废气再循环系统改善柴油机排放性能[J]. 农业工程学报, 2016, 32(16): 82-88. DOI:10.11975/j.issn.1002-6819.2016.16.012 (0) [11] 詹志胜. 可变喷嘴涡轮增压器喷嘴环设计及非定常流场分析[D]. 北京: 北京理工大学, 2015. (0) [12] TANG H, AKEHURST S, BRACE C J, et al. Optimisation of transient response of a gasoline engine with variable geometry turbine turbocharger[C]// Proceedings of the 11th International Conference on Turbochargers and Turbocharging. Amsterdam, Holland. 2014: 163-175. (0)