﻿ 影响凝聚核粒子计数器切割粒径的因素敏感性分析与经验公式构建
«上一篇
 文章快速检索 高级检索

 应用科技  2017, Vol. 44 Issue (5): 22-29  DOI: 10.11991/yykj.201611010 0

引用本文

CHEN Longfei, MA Yuegang, ZHANG Xin, et al. Sensitivity analysis and empirical formula construction of factors influencing the cut-off size of condensation particle counter[J]. Applied Science and Technology, 2017, 44(5), 22-29. DOI: 10.11991/yykj.201611010.

文章历史

Sensitivity analysis and empirical formula construction of factors influencing the cut-off size of condensation particle counter
CHEN Longfei, MA Yuegang, ZHANG Xin, ZHANG Cuiqi
School of Energy and Power Engineering, Beihang University, Beijing 100191, China
Abstract: Counting efficiency is an important performance indicator of condensation particle counter (CPC), witch is influenced by several factors such as the working mode, working fluid, physical and chemical properties of the particle to be tested, temperature of condenser and saturator and the flow field of condenser. In order to find the influence of multiple factors on counting efficiency and explicit prediction model, the paper engaged sodium chloride particle as particle source to investigate the butanol based condensation particle counter developed by the team. The experiment conditions were determined engaging the method of response surface in the Design Expert. The results show that the influence of condenser temperature variation on efficiency is more significant than that of saturator temperature, and the flow velocity of condenser and sample tube have less influence on counting efficiency, while they have obvious interactive influence on the cut-off particle size, besides, there is an optimal velocity difference between condenser and sample tube velocity, under which the counter can reach the highest counting efficiency. The empirical formula for predicting the cut-off size of condensation particle counter can be derived and used to predict the cut-off size and describe the relationship between these factors and the counting efficiency.
Key words: CPC    Design Expert    counting efficiency    cut-off size    empirical formula    temperature    flow velocity    interaction

1 实验系统 1.1 凝聚核粒子计数器

 图 1 凝聚核粒子计数器系统
 图 2 凝聚核粒子计数器试验样机

 图 3 文丘里流量计工程图
1.2 实验测试台

 图 4 实验测试台示意
 图 5 氯化钠粒径谱

1.3 实验设计DOE

2 实验结果及分析 2.1 切割粒径

2.2 模型分析及预测结果

Design Expert多项式模型用来描述和分析冷凝器温度、饱和器温度、采样器流速、冷凝器流速对切割粒径的影响。方差分析(F检验)用于对各回归模型整体的有效性分析，以及分析各因子及交互因子对切割粒径的显著性影响。如表 4中，方差分析中模型对应的回归项P=0.000＜0.05，表明回归模型整体有效；失拟项P=0.054，无失拟现象。其中，P值为显著性水平，指假设H0(自变量对应变量无影响)成立的概率。P值越大，则假设H0成立的概率越大，即自变量对应变量的影响越小，回归方程的有效性越小。P=0.05时，回归方程的有效性为95%。表 4F值指某个变量被剔除时，模型中应变量变化量与残差变化量之比。因此，模型中F值较大值所对应的应变量的变化远大于残差变化量。模型中对于交互作用因子中饱和器温度×采样器流速、饱和器温度×冷凝器流速P值远远大于0.05，对模型的影响很小，可剔除，简化模型，以提高模型的显著性水平。

 图 6 切割粒径主效应

 图 7 切割粒径各要素交互效应

 图 8 切割粒径响应曲面

 图 9 切割粒径的预测值与真实值

 图 10 切割粒径预测可信度等直线
3 结论

1) 冷凝器温度变化对切割粒径的影响明显优于饱和器温度变化对切割粒径的影响，采样器流速和冷凝器内流速对切割粒径的作用相对不明显；

2) 采样器流速与冷凝器流速对切割粒径的交互影响显著，且采样器流速与冷凝器流速之间存在某个流速差使计数效率最优；

3) 研究得到凝聚核粒子计数器切割粒径预测模型，且模型能较好地利用各参数描述切割粒径。

 [1] WANG Xiaoliang, GROSE M A, AVENIDO A, et al. Improvement of engine exhaust particle sizer (EEPS) size distribution measurement-Ⅰ. Algorithm and applications to compact-shape particles[J]. Journal of aerosol science, 2016, 92: 95-108. DOI:10.1016/j.jaerosci.2015.11.002 (0) [2] SIPILÄ M, LEHTIPALO K, ATTOUI M, et al. Laboratory verification of PH-CPC's ability to monitor atmospheric sub-3 nm clusters[J]. Aerosol science and technology, 2009, 43(2): 126-135. DOI:10.1080/02786820802506227 (0) [3] SIPILÄ M, LEHTIPALO K, KULMALA M, et al. Applicability of condensation particle counters to measure atmospheric clusters[J]. Atmospheric chemistry and physics, 2008, 8(14): 4049-4060. DOI:10.5194/acp-8-4049-2008 (0) [4] ZERVAS E, DORLHÈNE P, FORTI L, et al. Interlaboratory study of the exhaust gas particle number measurement using the condensation particle counter (CPC)[J]. Energy & fuels, 2006, 20(6): 2426-2431. (0) [5] GIECHASKIEL B, DILARA P, ANDERSSON J. Particle measurement programme (PMP) light-duty inter-laboratory exercise:repeatability and reproducibility of the particle number method[J]. Aerosol science and technology, 2008, 42(7): 528-543. DOI:10.1080/02786820802220241 (0) [6] HERING S V, SPIELMAN S R, LEWIS G S. Moderated, water-based, condensational particle growth in a laminar flow[J]. Aerosol science & technology, 2014, 48(4): 401-408. (0) [7] HERING S V, STOLZENBURG M R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow[J]. Aerosol science and technology, 2005, 39(5): 428-436. DOI:10.1080/027868290953416 (0) [8] KULMALA M, MORDAS G, PETÄJÄ T, et al. The condensation particle counter battery (CPCB):a new tool to investigate the activation properties of nanoparticles[J]. Journal of aerosol science, 2007, 38(3): 289-304. DOI:10.1016/j.jaerosci.2006.11.008 (0) [9] MORDAS G, MANNINEN H E, PETÄJÄ T, et al. On operation of the ultra-fine water-based CPC TSI 3786 and comparison with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010, TSI 3007)[J]. Aerosol science and technology, 2008, 42(2): 152-158. DOI:10.1080/02786820701846252 (0) [10] STRATMANN F, HERRMANN E, PETÄJÄ T, et al. Modelling Ag-particle activation and growth in a TSI WCPC model 3785[J]. Atmospheric measurement techniques discussions, 2009, 2(5): 2217-2239. DOI:10.5194/amtd-2-2217-2009 (0) [11] PETÄJÄ T, MORDAS G, MANNINEN H, et al. Detection efficiency of a water-based TSI condensation particle counter 3785[J]. Aerosol science and technology, 2006, 40(12): 1090-1097. DOI:10.1080/02786820600979139 (0) [12] KIM S, IIDA K, KUROMIYA Y, et al. Effect of nucleation temperature on detecting molecular ions and charged nanoparticles with a diethylene glycol-based particle size magnifier[J]. Aerosol science and technology, 2014, 49(1): 35-44. (0) [13] MORDAS G, SIPILÄ M, KULMALA M. Nanometer particle detection by the condensation particle counter UF-02proto[J]. Aerosol science and technology, 2008, 42(7): 521-527. DOI:10.1080/02786820802220233 (0) [14] BALTZER S, ONEL S, WEISS M, et al. Counting efficiency measurements for a new condensation particle counter[J]. Journal of aerosol science, 2014, 70: 11-14. DOI:10.1016/j.jaerosci.2013.12.011 (0) [15] WEHNER B, SIEBERT H, HERMANN M, et al. Characterisation of a new Fast CPC and its application for atmospheric particle measurements[J]. Atmospheric measurement techniques, 2011, 4(5): 823-833. DOI:10.5194/amt-4-823-2011 (0) [16] STOLZENBURG M R, MCMURRY P H. An ultrafine aerosol condensation nucleus counter[J]. Aerosol science and technology, 1991, 14(1): 48-65. DOI:10.1080/02786829108959470 (0) [17] HINDS W C. Aerosol technology:properties, behavior, and measurement of airborne particles[M]. New York: Wiley, 1999. (0) [18] 林振毅. 凝结核计数器的原理和研究进展[J]. 中国科技信息, 2008(6): 265-267, 269. (0) [19] KANGASLUOMA J, AHONEN L, ATTOUI M, et al. Sub-3 nm particle detection with commercial TSI 3772 and airmodus A20 fine condensation particle counters[J]. Aerosol science and technology, 2015, 49(8): 674-681. DOI:10.1080/02786826.2015.1058481 (0)