四川动物  2019, Vol. 38 Issue (4): 472-480

扩展功能

文章信息

袁阳, 李静, 王欣荣, 赵克雷
YUAN Yang, LI Jing, WANG Xinrong, ZHAO Kelei
铜绿假单胞菌群体感应系统介导的呼吸道病原菌种间互作研究进展
Advances in the Study of the Interspecific Interaction Between Respiratory Pathogens Mediated by Pseudomonas aeruginosa Quorum-Sensing System
四川动物, 2019, 38(4): 472-480
Sichuan Journal of Zoology, 2019, 38(4): 472-480
10.11984/j.issn.1000-7083.20190092

文章历史

收稿日期: 2019-03-14
接受日期: 2019-05-09
铜绿假单胞菌群体感应系统介导的呼吸道病原菌种间互作研究进展
袁阳 , 李静 , 王欣荣 , 赵克雷*     
成都大学四川抗菌素工业研究所, 抗生素研究与再评价四川省重点实验室, 成都 610052
摘要:细菌性慢性呼吸道感染是严重威胁人类健康和制约社会经济发展的常见疾病。呼吸道环境和结构的复杂性导致慢性感染病灶常常定植着多种病原菌,如铜绿假单胞菌Pseudomonas aeruginosa、金黄色葡萄球菌Staphylococcus aureus、大肠埃希氏菌Escherichia coli、肺炎克雷伯氏菌Klebsiella pneumoniae、鲍曼不动杆菌Acinetobacter baumannii和白色念珠菌Candida albicans等。这些病原菌在慢性呼吸道感染的发展过程中进化出了合作、竞争、共生等复杂的种间关系,通过形成相对稳定的群落系统使多种病原菌成为一个整体来应对呼吸道各种苛刻的生存条件,从而导致呼吸道感染针对性治疗的失败或病情反复。目前国际上关于病原菌种间互作关系的研究正处于起步阶段,临床证据表明铜绿假单胞菌的定植与慢性呼吸道感染的发生、发展息息相关,并且该菌可以利用群体感应系统来主导与其他病原菌的互作与共存。因此,本文围绕群体感应系统综述了铜绿假单胞菌与其他常见呼吸道感染病原菌的种间关系和互作机理,可加深人们对病原菌种间互作与慢性呼吸道感染相关疾病关联性的认识,并为进一步临床治疗方案的改进、疾病控制和新型抗感染药物的研发提供新视角、新方向。
关键词呼吸道感染     铜绿假单胞菌     群体感应系统     种间相互作用    
Advances in the Study of the Interspecific Interaction Between Respiratory Pathogens Mediated by Pseudomonas aeruginosa Quorum-Sensing System
YUAN Yang , LI Jing , WANG Xinrong , ZHAO Kelei*     
Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
Abstract: Bacterial chronic respiratory infections are common diseases that threaten the health of people worldwide and restrict social and economic development. The complexity of respiratory tract environment and structure frequently lead to the colonization of a variety of bacterial pathogens, such as Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Candida albicans. These pathogens evolve complex interspecific relationships including cooperation, competition, and symbiosis as chronic lung infection progress. By forming a relatively stable community system, multiple pathogens can integrate to cope with the harsh living conditions of the respiratory tract, resulting in the failure of targeted treatment or recurrence of respiratory infections. At present, revealing the underlying interaction mechanism among coexisting bacterial pathogens is an emerging subject, and clinical evidences have indicated that the colonization of P. aeruginosa is closely related to the development of chronic respiratory infections, and this microorganism can use elaborate quorum-sensing system to dominate the growth and coexistence of other pathogens. Therefore, this paper reviews the interspecific relationship and interaction mechanism between P. aeruginosa and other common respiratory infection pathogens mediated by the quorum-sensing system, and this can facilitate the understanding of the correlation between pathogen-pathogen interactions and chronic respiratory infections, and provide new perspectives and directions for further improvement of clinical treatment programs, disease control and the development of novel anti-infective drugs.
Keywords: respiratory tract infection     Pseudomonas aeruginosa     quorum-sensing system     interspecific interaction    

细菌性呼吸道感染是临床常见疾病,据世界卫生组织统计,全球每年约有350万人死于呼吸道感染,位居所有死亡原因的第三位(Wunderink & Waterer,2014)。而在我国,每年约有250万人罹患呼吸道感染疾病,据估算,其中每年约有12.5万患者死于呼吸道感染相关疾病(官旭华等,2011)。越来越多的临床证据表明,在细菌性呼吸道感染病灶中往往不是定植着一种优势病原菌而是多种病原菌共存(Short et al., 2014Yonker et al., 2015Pragman et al., 2016)。2005—2014年,在全国范围内呼吸道标本中共分离出229 170株细菌,其中,革兰氏阴性菌占78.8%,革兰氏阳性菌占18.4%。常见的致病菌有鲍曼不动杆菌Acinetobacter baumannii(16.7%)、铜绿假单胞菌Pseudomonas aeruginosa(16.5%)、肺炎克雷伯氏菌Klebsiella pneumoniae(14.8%)、金黄色葡萄球菌Staphylococcus aureus(11.8%)、大肠埃希氏菌Escherichia coli(7.1%)、嗜麦芽窄食单胞菌Stenotrophomonas maltophilia(5.8%)、阴沟肠杆菌Enterobacter cloacae(3.8%)、肺炎链球菌Streptococcus pneumoniae(3.7%)、流感嗜血杆菌Haemophilus influenzae(3.1%)等(杨青等,2016)。铜绿假单胞菌的检出率仅次于院内感染常见致病菌鲍曼不动杆菌。而在所有铜绿假单胞菌感染的不同组织样本中,铜绿假单胞菌在呼吸道样本中的检出率最高,约占全部样本的70.6%(张祎博等,2016)。因此,铜绿假单胞菌的定植与呼吸道感染相关疾病密切相关,对公共健康具有较大的威胁。

高等生物具有多种群体行为,细菌虽然是结构简单的单细胞个体,但同样具备多种群体行为,如生物膜的形成、群集运动和细胞外蛋白酶或铁离子螯合官能团的产生来促进群体对营养物质和空间的利用(Little et al., 2008Peters et al., 2012Bruger & Waters,2015)。细菌之间的群体行为可以增加种群或个体对极端环境的耐受性,如营养和空间的缺乏、抗生素作用、温度变化、pH变化和氧含量减少等(Jimenez et al., 2012)。当这种群体行为出现在感染部位时,可加剧疾病的进程并增加治疗的难度(Armbruster et al., 2010Korgaonkar et al., 2013Vega et al., 2013)。细菌性呼吸道感染病灶往往能够分离到多种病原菌,这些病原菌之间存在着复杂的物质交换和信息交流,共同促进疾病的发展;如果只针对某种病原菌进行治疗,往往会导致治疗失败或病情反复(Peters et al., 2012Short et al., 2014Pragman et al., 2016)。群体感应是用来描述大多数微生物生长过程中达到特定的种群密度之后,由具有种属特异性的自诱导信号小分子介导的大规模功能基因被激活的过程(Fuqua et al., 1994Waters & Bassler,2005)。这一概念的提出大大促进了人们对病原菌群体行为的认识,显著推动了社会微生物学的萌生和发展。

铜绿假单胞菌是一种常见的革兰氏阴性条件致病菌,可以导致多种动植物和人类多种组织感染。铜绿假单胞菌可利用不同胞内调控机制来引发急慢性感染(Balasubramanian et al., 2013Zhao et al., 2019),其群体感应系统由3个层级排列的lasrhlpqs调控系统组成,其中lasrhl具有完整的自诱导信号分子合成蛋白(LasⅠ/RhlⅠ)和调控蛋白(LasR/RhlR),并且rhl系统的激活依附于las系统。而pqs系统则只有调控蛋白PqsR(又叫做MvfR),需要接收其他路径合成的信号分子PQS实现完整功能调控(Balasubramanian et al., 2013Dandekar & Greenberg,2013)。lasrhl群体感应系统共同调控至少384个与生长代谢、胞外蛋白酶合成、胞外毒素产生、信号分子合成等相关重要基因的表达激活(Schuster et al., 2003),而pqs系统除了与lasrhl系统具有功能重叠之外,还可以影响铜绿假单胞菌铁离子获取、运动性和生物膜的形成(Diggle et al., 2007Guo et al., 2014)。研究发现,铜绿假单胞菌的多种胞外产物,如蛋白质、脂类、吩嗪等小分子物质能够直接或间接影响其他呼吸道病原菌的生长,这就为细菌之间的相互作用提供了重要的物质基础(Asfahl et al., 2017)。

铜绿假单胞菌与其他病原菌共同促进呼吸道感染疾病的进程相关研究正处于起步阶段,对铜绿假单胞菌群体感应系统介导的呼吸道病原菌种间相互作用进行深入的了解与研究,在呼吸道感染疾病的治疗及预防方面具有重要意义。本文就铜绿假单胞菌群体感应系统介导的常见呼吸道病原菌之间的相互作用及其机制研究展开详细综述。

1 铜绿假单胞菌与金黄色葡萄球菌的相互作用

目前国际上对铜绿假单胞菌与金黄色葡萄球菌种间关系的研究相对较为深入,这2种病原菌通常共存于罹患囊胞性纤维症病人的肺脏中。金黄色葡萄球菌在临床儿科呼吸道感染患者中最常见,也是最主要的病原菌,患者免疫系统功能的降低为铜绿假单胞菌的继发性感染提供了有利条件。在铜绿假单胞菌定植后,由于其复杂而庞大的群体感应系统能够调控多种蛋白和毒力因子的分泌,该菌逐渐取代金黄色葡萄球菌成为感染引发的主导病原菌(Manos et al., 2013Yonker et al., 2015)。随着患者年龄的增加,铜绿假单胞菌相关发病率大大升高而金黄色葡萄球菌相关发病率则显著降低(Sagel et al., 2009Hauser et al., 2011)。研究发现,铜绿假单胞菌分泌多种抗金黄色葡萄球菌的产物和蛋白酶,如LasA、LasB、鼠李糖脂、喹啉(HAQ、HQNO、PQS)、吩嗪吡啶等物质引起金黄色葡萄球菌生物膜分散和细胞裂解(Mashburn et al., 2005Palmer et al., 2005Mitchell et al., 2010Korgaonkar et al., 2013)。而金黄色葡萄球菌则可以通过促进生物膜的形成以及增加小菌落变异体的出现频率适应来自铜绿假单胞菌的生存胁迫(Hoffman et al., 2006Biswas et al., 2009Fugère et al., 2014)。Frydenlund等(2015)从慢性呼吸道感染病灶中分离到1株宿主适应性铜绿假单胞菌代表菌株P. aeruginosa DK2-P2M24-2003,它与野生型铜绿假单胞菌在体外与金黄色葡萄球菌相互作用时有较大的差异。与野生型铜绿假单胞菌模式菌株PAO1相比,P. aeruginosa DK2-P2M24-2003在与金黄色葡萄球菌共同培养过程中产生极少量的绿脓菌素、鼠李糖脂、PQS等毒力因子,因此金黄色葡萄球菌的生长不会被抑制。金黄色葡萄球菌能够在共培养中逆转P. aeruginosa DK2-P2M24-2003的自溶现象,而P. aeruginosa DK2-P2M24-2003产生的HAQ类物质能够保护金黄色葡萄球菌免受妥布霉素(治疗囊胞性纤维症的常用药)的清除,通过这种共生的种间关系共同存在于宿主呼吸道病灶。

Alves等(2018)发现在混合细菌感染生物膜形成和非附着性细菌生长的初期,金黄色葡萄球菌往往占据主导地位,是铜绿假单胞菌附着的先驱。Yang等(2011)在铜绿假单胞菌和金黄色葡萄球菌共培养实验中发现,铜绿假单胞菌的Ⅳ型菌毛和金黄色葡萄球菌提供的胞外DNA能够促进混合生物膜的形成。在混合细菌感染中,铜绿假单胞菌和金黄色葡萄球菌的混合生物膜往往会出现更强的耐药性从而导致感染难以治愈(Dalton et al., 2011Pastar et al., 2013)。当铜绿假单胞菌和金黄色葡萄球菌共存于同一病灶中时,金黄色葡萄球菌产生的一种可扩散的AI-2群体感应小分子能够被铜绿假单胞菌接收,铜绿假单胞菌的群体感应系统被激活后产生大量的胞外产物,如弹性蛋白酶、鼠李糖脂、外毒素和吩嗪类物质引起宿主的炎症反应并且降低、抑制宿主免疫系统对铜绿假单胞菌的杀伤(Jensen et al., 2007Caldwell et al., 2009Strateva & Mitov,2011Li et al., 2015)。另外,革兰氏阳性菌细胞壁主要成分之一的N-乙酰葡糖胺(GlcNAc)能够作为激活铜绿假单胞菌pqs群体感应系统的信号分子,增强铜绿假单胞菌PQS系统控制的绿脓菌素、弹性蛋白酶、鼠李糖脂和HQNO等胞外毒力因子的表达,从而显著推进宿主病情的发展(Korgaonkar et al., 2013)。

2 铜绿假单胞菌与大肠埃希氏菌的相互作用

铜绿假单胞菌与大肠埃希氏菌的相互作用主要集中在混合生物膜形成的研究。Lopes等(2011)发现铜绿假单胞菌的群体感应调控产物能够抑制大肠埃希氏菌的生长、生物膜的形成,但是大肠埃希氏菌的代谢产物能够促进铜绿假单胞菌生物膜以及铜绿假单胞菌和大肠埃希氏菌共培养时混合生物膜的形成。然而,大肠埃希氏菌在低营养R2A培养基上形成生物膜的速度较慢,但是在大肠埃希氏菌菌落上接种铜绿假单胞菌后,大肠埃希氏菌数目显著增加并且生物膜形成速率也加快(Alessandro & Packman,2014)。进一步研究发现,在铜绿假单胞菌培养体系中引入大肠埃希氏菌后,铜绿假单胞菌的生物膜产量下降,并且铜绿假单胞菌在形成的混合生物膜中的数量也降低了,表明在这种培养条件下大肠埃希氏菌对铜绿假单胞菌的生长有一定的拮抗作用(Alessandro & Packman,2014)。在营养丰富的环境中,胞外吲哚(大肠埃希氏菌代谢产物)的积累曾被报道可以通过阻碍菌体运动来减少大肠埃希氏菌生物膜的形成(Bansal et al., 2007Lee et al., 2007)。然而,铜绿假单胞菌的胞外代谢产物(如弹性蛋白酶)能够降解吲哚,从而消除胞外吲哚对大肠埃希氏菌运动性和生物膜形成的抑制(Domka et al., 2006Chu et al., 2012)。而且铜绿假单胞菌产生的吡啶类化合物能够螯合环境中的铁离子,从而限制大肠埃希氏菌对铁离子的吸收,进而抑制其胞内代谢(Keith,2003Khare & Tavazoie,2015)。铜绿假单胞菌PQS信号小分子不仅能够螯合铁离子来限制大肠埃希氏菌的生长,还能诱导产生如氰化氢、鼠李糖脂、凝集素和吩嗪类物质等多种毒力因子抑制大肠埃希氏菌的生长,其中吩嗪类是抑制大肠埃希氏菌生长的主要物质(Jimenez et al., 2012Khare & Tavazoie,2015)。而且大肠埃希氏菌在进化过程中可以发生多种代谢途径的突变以提高对铜绿假单胞菌毒力因子的耐受性。mprA基因突变可以解除mprA基因的编码产物对多重耐药外排泵EmrAB的功能抑制,促进大肠埃希氏菌泵出进入其胞内的铜绿假单胞菌毒力因子;fpr超等位基因突变能够编码大量的Fpr蛋白促进大肠埃希氏菌的厌氧代谢;而孔蛋白编码基因ompC突变可以影响大肠埃希氏菌孔蛋白的功能,从而降低绿脓菌素从孔蛋白进入胞内的量,进而降低绿脓菌素对大肠埃希氏菌的毒性(Khare & Tavazoie,2015)。

以上这些进化后的病原菌形成种间共存策略的发现让人非常惊讶,因为铜绿假单胞菌具有复杂的群体感应系统,并且是具有强大生物膜形成能力的病原菌,能够产生多种毒力因子去抑制生物膜中其他微生物的生长(Heo et al., 2007Waite & Curtis,2009),而自然进化使病原菌产生多种方式来逆转这种抑制作用。总的来说,对于铜绿假单胞菌与大肠埃希氏菌共存现象的解释有2种,一种是这2种细菌之间出现了营养利用方面的协同作用(细菌之间主要是竞争关系),然后大肠埃希氏菌产生耐受性或者主动干扰铜绿假单胞菌群体感应系统,最终导致铜绿假单胞菌的细菌毒力和生物膜决定基因的表达降低;另一种解释则侧重于大肠埃希氏菌和铜绿假单胞菌之间可能存在的一种偶然性的生存契合,即大肠埃希氏菌为铜绿假单胞菌提供营养和其他物质,而铜绿假单胞菌在进化过程中由于种间竞争导致的群体感应系统调控能力降低为大肠埃希氏菌的生存留有余地,从而实现种间共存(Venturi & Subramoni,2009Khare & Tavazoie,2015)。

3 铜绿假单胞菌与肺炎克雷伯氏菌的相互作用

铜绿假单胞菌与肺炎克雷伯氏菌之间相互作用的研究鲜有涉足。Lee等(2013)研究发现,由铜绿假单胞菌、荧光假单胞菌Pseudomonas fluorescens和肺炎克雷伯氏菌三者形成的混合生物膜比单菌形成的生物膜耗时长,混合生物膜内的生物量低于单菌形成生物膜中的生物量,但是混合生物膜明显增强了对SDS和妥布霉素的耐受性。最近,本课题组在关于铜绿假单胞菌与肺炎克雷伯氏菌相互作用的研究中发现,铜绿假单胞菌与肺炎克雷伯氏菌在非接触性共培养时,肺炎克雷伯氏菌的生长不会被铜绿假单胞菌分泌到周围环境中的毒力因子限制,但在共培养条件下肺炎克雷伯氏菌的生长则会被铜绿假单胞菌显著抑制。通过共进化实验研究,发现肺炎克雷伯氏菌的生长在初始阶段受到明显抑制,但在进一步共培养过程中比例有所增加,最后肺炎克雷伯氏菌可以与铜绿假单胞菌共存于同一体系中,并在14个周期(24 h更换一次培养基为一个周期)后形成动态平衡。铜绿假单胞菌与肺炎克雷伯氏菌共培养与铜绿假单胞菌纯培养相比,肺炎克雷伯氏菌可以提高铜绿假单胞菌的脂质代谢、硫代谢、抗菌物质的生物合成和6型蛋白分泌系统(T6SS)的功能,但降低了铜绿假单胞菌氨基酸代谢相关基因的表达。进一步的研究发现,在铜绿假单胞菌与肺炎克雷伯氏菌共进化过程中形成动态平衡后,铜绿假单胞菌中鞭毛编码基因和H1-T6SS相关基因的表达量均显著高于铜绿假单胞菌纯培养体系,并且在共培养过程中铜绿假单胞菌出现了lasR突变体,导致铜绿假单胞菌群体感应系统调控减弱,而鞭毛相关菌体运动性和H1-T6SS介导的杀菌作用可以使铜绿假单胞菌继续控制肺炎克雷伯氏菌的比例,从而维持体系中混合菌群的动态平衡(Zhao et al., 2018)。

4 铜绿假单胞菌与鲍曼不动杆菌的相互作用

鲍曼不动杆菌是院内呼吸道感染(配备呼吸机的患者)分离率最高的病原菌之一,同时也是最难控制和治疗的病原菌之一(Michalopoulos & Falagas,2010杨青等,2016)。这是因为鲍曼不动杆菌形成生物膜的能力促使其能够在多数压力环境以及抗生素存在的环境下生存(Tomaras,2003Nucleo et al., 2009)。在感染病灶中通常都能检测到铜绿假单胞菌与鲍曼不动杆菌的存在,而且铜绿假单胞菌与鲍曼不动杆菌共同引起的感染致死率非常高(Dent et al., 2010)。Gospodarek等(2009)通过基因组学分析,发现鲍曼不动杆菌与铜绿假单胞菌具有65%的基因组同源性,并且两者都能通过高丝氨酸内酯类小分子促进群体感应系统中各种毒力基因的表达。铜绿假单胞菌有2种高丝氨酸内酯(AHL)分子,一种是由las Ⅰ产生的3-oxo-C12HSL,一种是由rhl Ⅰ产生的C4-HSL,3-OH-C12HSL是鲍曼不动杆菌中仅有的一种AHL分子(Niu et al., 2008)。Bhargava等(2012)发现铜绿假单胞菌群体感应系统产生的毒力因子不会抑制鲍曼不动杆菌的生长。进一步研究发现,鲍曼不动杆菌AHL分子能够诱导las Ⅰ、rhl Ⅰ双突变的铜绿假单胞菌形成生物膜,并且野生型铜绿假单胞菌的培养液能够促进AHL缺陷的鲍曼不动杆菌生物膜(鲍曼不动杆菌生物膜的合成是由AHL介导的群体感应系统调控)的形成,这也在一定程度上解释了临床上对鲍曼不动杆菌和铜绿假单胞菌混合感染的难治愈性,因为在混合感染病灶中鲍曼不动杆菌和铜绿假单胞菌混合生物膜形成的可能性增大,并表现出对抗生素极强的耐药性(Burmølle et al., 2006)。

5 铜绿假单胞菌与白色念珠菌Candida albicans的相互作用

白色念珠菌虽然是健康皮肤和黏膜菌群中常见的非致病性共生菌,但它也是引起呼吸道感染的病原菌之一。根据先前的研究,铜绿假单胞菌产生的吩嗪类物质(如绿脓菌素)能够抑制白色念珠菌的代谢和生物膜形成,并且铜绿假单胞菌能够结合并杀死菌丝形态的白色念珠菌,但不会杀死酵母形态的白色念珠菌(Kerr et al., 1999Hogan,2002Gupta et al., 2005Kaleli et al., 2010)。Hogan等(2002)研究发现铜绿假单胞菌群体感应信号分子3-oxo-C12HSL及其结构相似的分子能够抑制白色念珠菌菌丝的生成,这可能是因为3-oxo-C12HSL与白色念珠菌酵母形态产生的毒力因子法尼醇(Farnesol,具有12个碳原子的倍半萜结构)结构类似,而法尼醇能够抑制白色念珠菌菌丝的生成(McAlester et al., 2008)。这是因为白色念珠菌的形态转变涉及2种截然不同的信号系统,一种是RAS-cAMP蛋白激酶A通路,另一种是激活有丝分裂的蛋白激酶通路。Davishanna等(2010)的研究认为,法尼醇能够抑制RAS-cAMP蛋白激酶A通路从而抑制白色念珠菌由酵母形态转变为菌丝形态,但是也有学者认为法尼醇抑制了有丝分裂蛋白激酶通路。因此对法尼醇抑制白色念珠菌的形态转变机制还需要进一步的研究(McAlester et al., 2008)。

除此之外,白色念珠菌产生的法尼醇能够抑制铜绿假单胞菌pqs群体感应系统。法尼醇能够抑制铜绿假单胞菌PQS信号分子的合成,从而降低了绿脓菌素、鼠李糖脂等毒力因子的合成(Cugini et al., 2010),并显著抑制铜绿假单胞菌的群集运动,这可能是因为铜绿假单胞菌的群集运动主要由鼠李糖脂介导(McAlester et al., 2008)。铜绿假单胞菌运动性的降低更容易促进混合生物膜的形成,而混合生物膜具有更强的耐药性和对恶劣环境的适应性,从而使感染的临床治疗的难度大大增加(El-Azizi et al., 2004)。白色念珠菌和铜绿假单胞菌共培养与铜绿假单胞菌的纯培养相比,白色念珠菌能够促进铜绿假单胞菌合成大量的吡啶等铁离子载体,能够诱导3种毒力因子——外毒素A、内肽蛋白酶和吡啶的产生,并且在铁离子充足的培养基中,白色念珠菌的存在能够极大促进铜绿假单胞菌的增殖,这也反映了在白色念珠菌和铜绿假单胞菌混合感染中,铜绿假单胞菌的致病能力将显著增加(Lamont et al., 2002Trejo-Hernández et al., 2014)。

6 总结与展望

过去认为细菌性感染通常是由优势病原菌的毒性引起,而近代研究证明大多数感染是由多种病原菌定植造成并且其毒性发挥也是多因素的。病原菌之间存在复杂的相互作用,通过多种化学物质或物理接触进行种间交流,共同促进疾病的发展。现在人们更加重视通过共培养的方法来模拟病灶中多种微生物共存的方式来研究病原菌之间的相互作用。这些研究初步揭示呼吸道病原菌相互作用涉及到的种间信号传递、代谢物交换和物理接触等一系列分子机制,并且相互作用的结果通常是对病原菌行为的调节,包括毒力因子合成、生物膜形成和抗生素耐药性或耐受性的改变。这些研究仅仅是停留在2种菌或3种菌之间的相互作用,对于呼吸道中更为复杂的多菌相互作用机制还不能完全被解释。因此,还需要更多更深入更全面地基于动物宿主或者临床患者研究来诠释病原菌之间相互作用影响疾病进程的关系,为进一步治疗方案的改进、疾病控制和新药的研发提供参考。

参考文献
官旭华, Silk BJ, Li WK, 等. 2011. 中国大陆肺炎发病率与死亡率:1985-2008年中英文文献的系统分析[J]. 公共卫生与预防医学, 22(1): 14–19.
杨青, 俞云松, 林洁, 等. 2016. 2005-2014年CHINET呼吸道分离菌耐药性监测[J]. 中国感染与化疗杂志, 16(5): 541–550.
张祎博, 孙景勇, 倪语星, 等. 2016. 2005-2014年CHINET铜绿假单胞菌耐药性监测[J]. 中国感染与化疗杂志, 16(2): 141–145.
Alessandro C, Packman AI. 2014. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium[J]. PLoS ONE, 9(9): e107186. DOI:10.1371/journal.pone.0107186
Alves PM, Albadi E, Withycombe C, et al. 2018. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed-biofilm[J]. Pathogens and Disease, 76(1): fty003. DOI:10.1093/femspd/fty003
Armbruster CE, Hong W, Pang B, et al. 2010. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling[J]. mBio, 1(3): e00102–10. DOI:10.1128/mBio.00102-10
Asfahl KL, Schuster M, Gibbs K. 2017. Social interactions in bacterial cell-cell signaling[J]. FEMS Microbiology Reviews, 41(1): 92–107. DOI:10.1093/femsre/fuw038
Balasubramanian D, Schneper L, Kumari H, et al. 2013. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence[J]. Nucleic Acids Research, 41(1): 1–20. DOI:10.1093/nar/gks1039
Bansal T, Englert D, Lee J, et al. 2007. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression[J]. Infection and Immunity, 75(9): 4597–4607. DOI:10.1128/IAI.00630-07
Bhargava N, Sharma P, Capalash N. 2012. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa[J]. Biofouling, 28(8): 813–822. DOI:10.1080/08927014.2012.714372
Biswas L, Biswas R, Schlag M, et al. 2009. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 75(21): 6910–6912. DOI:10.1128/AEM.01211-09
Bruger E, Waters C. 2015. Sharing the sandbox:evolutionary mechanisms that maintain bacterial cooperation[J]. F1000 Research, 4: 1504. DOI:10.12688/f1000research.7363.1
Burmølle M, Webb JS, Rao D, et al. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms[J]. Applied and Environmental Microbiology, 72(6): 3916–3923. DOI:10.1128/AEM.03022-05
Caldwell CC, Chen Y, Goetzmann HS, et al. 2009. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis[J]. American Journal of Pathology, 175(6): 2473–2488. DOI:10.2353/ajpath.2009.090166
Chu W, Zere TR, Weber MM, et al. 2012. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling[J]. Applied and Environmental Microbiology, 78(2): 411–419. DOI:10.1128/AEM.06396-11
Cugini C, Calfee MW, Farrow JM, et al. 2010. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa[J]. Molecular Microbiology, 65(4): 896–906.
Dalton T, Dowd SE, Wolcott RD, et al. 2011. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions[J]. PLoS ONE, 6(11): e27317. DOI:10.1371/journal.pone.0027317
Dandekar AA, Greenberg EP. 2013. Microbiology:plan b for quorum sensing[J]. Nature Chemical Biology, 9(5): 292–293. DOI:10.1038/nchembio.1233
Davishanna A, Piispanen AE, Stateva LI, et al. 2010. Farnesol and dodecanol effects on the Candida albicans Ras 1-cAMP signaling pathway and the regulation of morphogenesis[J]. Molecular Microbiology, 67(1): 47–62.
Dent LL, Marshall DR, Pratap S, et al. 2010. Multidrug resistant Acinetobacter baumannii:a descriptive study in a city hospital[J]. BMC Infectious Diseases, 10(1): 196. DOI:10.1186/1471-2334-10-196
Diggle SP, Matthijs S, Wright VJ, et al. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment[J]. Chemistry & Biology (Cambridge), 14(1): 87–96.
Domka J, Lee J, Wood TK. 2006. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling[J]. Applied and Environmental Microbiology, 72(4): 2449–2459. DOI:10.1128/AEM.72.4.2449-2459.2006
El-Azizi MA, Starks SE, Khardori N. 2004. Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms[J]. Journal of Applied Microbiology, 96(5): 1067–1073. DOI:10.1111/j.1365-2672.2004.02213.x
Frydenlund MC, Khademi SMH, Johansen HK, et al. 2015. Evolution of metabolic divergence in Pseudomonas aeruginosa during long-term infection facilitates a proto-cooperative interspecies interaction[J]. The ISME Journal, 10(6): 1323–1336.
Fugère A, Séguin DL, Mitchell G, et al. 2014. Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients[J]. PLoS ONE, 9(1): e86705. DOI:10.1371/journal.pone.0086705
Fuqua WC, Winans SC, Greenberg EP. 1994. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Bacteriology, 176: 269–275. DOI:10.1128/jb.176.2.269-275.1994
Gospodarek E, Bogiel T, Zalas-Wiecek P. 2009. Communication between microorganisms as a basis for production of virulence factors[J]. Polish Journal of Microbiology, 58(3): 191–198.
Guo Q, Kong W, Jin S, et al. 2014. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1[J]. Journal of Basic Microbiology, 54(7): 633–643. DOI:10.1002/jobm.201300091
Gupta N, Haque A, Mukhopadhyay G, et al. 2005. Interactions between bacteria and Candida in the burn wound[J]. Burns, 31(3): 375–378. DOI:10.1016/j.burns.2004.11.012
Hauser AR, Jain M, Barmeir M, et al. 2011. Clinical significance of microbial infection and adaptation in cystic fibrosis[J]. Clinical Microbiology Reviews, 24(1): 29–70.
Heo YJ, Chung IY, Choi KB, et al. 2007. R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains[J]. Journal of Microbiology and Biotechnology, 17(1): 180–185.
Hoffman LR, Déziel E, D'Argenio DA, et al. 2006. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(52): 19890–19895. DOI:10.1073/pnas.0606756104
Hogan DA. 2002. Pseudomonas-Candida interactions:an ecological role for virulence factors[J]. Science, 296(5576): 2229–2232. DOI:10.1126/science.1070784
Jensen PO, Bjarnsholt T, Phipps R, et al. 2007. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa[J]. Microbiology, 153(5): 1329–1338. DOI:10.1099/mic.0.2006/003863-0
Jimenez PN, Koch G, Thompson JA, et al. 2012. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa[J]. Microbiology and Molecular Biology Reviews, 76(1): 46–65.
Kaleli I, Cevahir N, Demir M, et al. 2010. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens[J]. Mycoses, 50(1): 74–78.
Keith P. 2003. Iron acquisition and its control in Pseudomonas aeruginosa many roads lead to rome[J]. Frontiers in Bioscience, 8(4): 661–686. DOI:10.2741/1051
Kerr JR, Taylor GW, Rutman A, et al. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth[J]. Journal of Clinical Pathology, 52(5): 385–387. DOI:10.1136/jcp.52.5.385
Khare A, Tavazoie S. 2015. Multifactorial competition and resistance in a two-species bacterial system[J]. PLoS Genetics, 11(12): e1005715. DOI:10.1371/journal.pgen.1005715
Korgaonkar A, Trivedi U, Rumbaugh KP, et al. 2013. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(3): 1059–1064. DOI:10.1073/pnas.1214550110
Lamont IL, Beare PA, Ochsner U, et al. 2002. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 99(10): 7072–7077. DOI:10.1073/pnas.092016999
Lee KW, Periasamy S, Mukherjee M, et al. 2013. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm[J]. The ISME Journal, 8(4): 894–907.
Lee J, Jayaraman A, Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA[J]. BMC Microbiology, 7(1): 42. DOI:10.1186/1471-2180-7-42
Li H, Li X, Wang Z, et al. 2015. Autoinducer-2 regulates Pseudomonas aeruginosa PAO1 biofilm formation and virulence production in a dose-dependent manner[J]. BMC Microbiology, 15: 192. DOI:10.1186/s12866-015-0529-y
Little AE, Robinson CJ, Peterson SB, et al. 2008. Rules of engagement:interspecies interactions that regulate microbial communities[J]. Annual Review of Microbiology, 62(1): 375–401. DOI:10.1146/annurev.micro.030608.101423
Lopes SP, Machado I, Pereira MO. 2011. Role of planktonic and sessile extracellular metabolic byproducts on Pseudomonas aeruginosa and Escherichia coli intra and interspecies relationships[J]. Journal of Industrial Microbiology & Biotechnology, 38(1): 133–140.
Manos J, Hu H, Rose BR, et al. 2013. Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis[J]. European Journal of Clinical Microbiology & Infectious Diseases, 32(12): 1583–1592.
Mashburn LM, Jett AM, Akins DR, et al. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture[J]. Journal of Bacteriology, 187(2): 554–566. DOI:10.1128/JB.187.2.554-566.2005
McAlester G, O'Gara F, Morrissey JP. 2008. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans[J]. Journal of Medical Microbiology, 57(5): 563–569. DOI:10.1099/jmm.0.47705-0
Michalopoulos A, Falagas ME. 2010. Treatment of acinetobacter infections[J]. Expert Opinion on Pharmacotherapy, 11(5): 779–788. DOI:10.1517/14656561003596350
Mitchell G, Séguin LD, Asselin AE, et al. 2010. Staphylococcus aureussigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide[J]. BMC Microbiology, 10(1): 33. DOI:10.1186/1471-2180-10-33
Niu C, Clemmer KM, Bonomo RA, et al. 2008. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii[J]. Journal of Bacteriology, 190(9): 3386–3392. DOI:10.1128/JB.01929-07
Nucleo E, Steffanoni L, Fugazza G, et al. 2009. Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii[J]. BMC Microbiology, 9(1): 270. DOI:10.1186/1471-2180-9-270
Palmer KL, Mashburn LM, Singh PK, et al. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology[J]. Journal of Bacteriology, 187(15): 5267–5277. DOI:10.1128/JB.187.15.5267-5277.2005
Pastar I, Nusbaum AG, Joel G, et al. 2013. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection[J]. PLoS ONE, 8(2): e56846. DOI:10.1371/journal.pone.0056846
Peters BM, Jabrarizk MA, O'May GA, et al. 2012. Polymicrobial interactions:impact on pathogenesis and human disease[J]. Clinical Microbiology Reviews, 25(1): 193–213.
Pragman AA, Berger JP, Williams BJ. 2016. Understanding persistent bacterial lung infections:clinical implications informed by the biology of the microbiota and biofilms[J]. Clinical Pulmonary Medicine, 23(2): 57–66. DOI:10.1097/CPM.0000000000000108
Sagel SD, Gibson RL, Emerson J, et al. 2009. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis[J]. The Journal of Pediatrics, 154(2): 183–188. DOI:10.1016/j.jpeds.2008.08.001
Schuster M, Lostroh CP, Ogi T, et al. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:a transcriptome analysis[J]. Journal of Bacteriology, 185(7): 2066–2079. DOI:10.1128/JB.185.7.2066-2079.2003
Short FL, Murdoch SL, Ryan RP. 2014. Polybacterial human disease:the ills of social networking[J]. Trends in Microbiology, 22(9): 508–516. DOI:10.1016/j.tim.2014.05.007
Strateva T, Mitov I. 2011. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections[J]. Annals of Microbiology, 61(4): 717–732.
Tomaras AP. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii:involvement of a novel chaperone-usher pili assembly system[J]. Microbiology, 149(12): 3473–3484. DOI:10.1099/mic.0.26541-0
Trejo-Hernández A, Andrade-Domínguez A, Hernández M, et al. 2014. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms[J]. The ISME Journal, 8(10): 1974–1988. DOI:10.1038/ismej.2014.53
Vega NM, Allison KR, Samuels AN, et al. 2013. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(35): 14420–14425. DOI:10.1073/pnas.1308085110
Venturi V, Subramoni S. 2009. Future research trends in the major chemical language of bacteria[J]. Human Frontier Science Program, 3(2): 105–116.
Waite RD, Curtis MA. 2009. Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms[J]. Journal of Bacteriology, 191(4): 1349–1354. DOI:10.1128/JB.01458-08
Waters CM, Bassler BL. 2005. Quorum sensing:cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 21: 319–346. DOI:10.1146/annurev.cellbio.21.012704.131001
Wunderink RG, Waterer GW. 2014. Clinical practice. Community-acquired pneumonia[J]. New England Journal of Medicine, 370(6): 543–551. DOI:10.1056/NEJMcp1214869
Yang L, Liu Y, Markussen T, et al. 2011. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa[J]. Pathogens & Disease, 62(3): 339–347.
Yonker LM, Cigana C, Hurley BP, et al. 2015. Host-pathogen interplay in the respiratory environment of cystic fibrosis[J]. Journal of Cystic Fibrosis, 14(4): 431–439. DOI:10.1016/j.jcf.2015.02.008
Zhao K, Du L, Lin J, et al. 2018. Pseudomonas aeruginosa quorum-sensing and type Ⅵ secretion system can direct interspecific coexistence during evolution[J]. Frontiers in Microbiology, 9: 2287. DOI:10.3389/fmicb.2018.02287
Zhao K, Li W, Li J, et al. 2019. TesG is a type Ⅰ secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection[J]. Nature Microbiology, 4: 459–469. DOI:10.1038/s41564-018-0322-4