四川动物  2016, Vol. 35 Issue (4): 626-631

扩展功能

文章信息

薛飞, 方光战, 唐业忠
XUE Fei, FANG Guangzhan, TANG Yezhong
大脑听觉偏侧性的特征与演化
Characteristic and Evolution of Brain Auditory Lateralization
四川动物, 2016, 35(4): 626-631
Sichuan Journal of Zoology, 2016, 35(4): 626-631
10.11984/j.issn.1000-7083.20160010

文章历史

收稿日期: 2016-01-08
接受日期: 2016-04-24
大脑听觉偏侧性的特征与演化
薛飞, 方光战*, 唐业忠     
中国科学院成都生物研究所两栖爬行动物研究室, 成都 610041
摘要: 作为生物体适应环境的特征,偏侧性在人类和动物中普遍存在。偏侧性能提升个体处理环境信息的效率并更快对环境刺激做出响应,从而提升个体对环境的适合度。听觉作为重要的感知方式也具有偏侧性,并且在多个类群中具有相似趋势。本文总结了听觉偏侧性在不同动物类群间的相似性和特异性,对听觉偏侧性的产生机制进行了归纳,并探讨了群体水平听觉偏侧性的成因。最后对研究的不足之处提出了可能的解决方案,并对听觉偏侧性研究方向进行了展望。
关键词听觉偏侧性     脑功能偏侧性     群体水平偏侧性     适合度     作用机制    
Characteristic and Evolution of Brain Auditory Lateralization
XUE Fei, FANG Guangzhan*, TANG Yezhong     
Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Abstract: Lateralization is a common characteristic among the vertebrates including humans and is proposed to improve animals' fitness through processing environmental information efficiently and responding to events more rapidly. As one of the major perceptual functions, asymmetric auditory perception has been found in various species with similar tendency: the right-ear/left-hemisphere dominates conspecific sound perception while the left-ear/right-hemisphere preferentially processes interspecific and novel sounds. Previous studies concerning auditory lateralization in different animal species were reviewed and the similarity and specificity across species were compared. The possible mechanisms underlying auditory lateralization in individual level and the possible cause of auditory lateralization in population level were summarized. Finally, some protocols for studies on lateralization and the possible prospects in the future were proposed.
Key words: auditory lateralization     asymmetry of brain function     population lateralization     fitness     mechanism    

偏侧性指生物体在行为和感知的过程中偏好使用单侧肢体、感觉器官和大脑半球的现象。偏侧性是生物界普遍存在的现象,例如约90%的人是右利手(Hardyck & Petrinovich,1977),同样,类人猿亦偏好使用某侧前肢掏取食物,且偏侧肢随物种而异(Hopkins et al.,2011)。鹦鹉习惯用左脚爪抓握食物(Rogers & Workman,1993);安乐蜥Anolis carolinensis倾向于攻击左侧视野内的同类(Deckel,1995);蟾蜍在捕食右侧视野内的食物时更迅捷(Vallortigara et al.,1998);聚群的鱼类在遭遇天敌时总是转向相同方向逃走(Cantalupo et al.,1995);甚至在多种无脊椎动物类群中也发现了这种不对称使用肢体或感觉器官的现象(Frasnelli et al.,2012)。偏侧性可能是动物适应性进化的结果,对生物体的生存有积极作用(Rogers,2002Rogers et al.,2004Vallortigara & Rogers,2005):偏侧性使大脑左、右半球功能特化,能够同步处理来自躯体两侧的不同信号,优化整个神经网络的利用率;单侧半球具有主导地位,能够避免左、右半球竞争控制权而导致的反应延迟甚至反应错误,使个体能够对外界环境做出更精准的反应并能完成更加复杂的工作,从而提高个体的竞争力和适合度。除了这些积极作用外,偏侧性也会带来诸如减弱非优势侧主导的感觉器官对竞争对手、猎物或天敌的响应,群体中多数个体表现出的相同偏侧性会导致个体行为易被竞争对手或天敌预测等不利影响,但由于大脑偏侧性能使生物体具备同时处理多种信号的能力,提升了个体在复杂环境中的适应性,因此偏侧性对个体和群体而言,优胜于劣(Vallortigara,2006)。作为主要的感知方式之一,听觉是个体感知外界环境、维持生存和繁殖活动的重要途径。近年来,听觉偏侧性研究(特别是其特征和普遍性)一直是大脑功能研究领域的热点之一。

1 听觉偏侧性的特征

在右利手的人群中,左侧颞叶皮层受损的病人在分辨语音信息时的准确率明显低于右侧受损的病人(Kimura,1961a1961b)。由于人体感觉器官的输出信号大部分都投射到对侧大脑半球(Carpenter,1976),因此在语言交流中存在右耳/左半球优势(right-ear advantage)。随后的实验证实,通常右耳/左半球倾向于处理与语言相关的信号,左耳/右半球则对音调及环境声音更加敏感(Paquette et al.,1996Kimura,2011)。而在非人哺乳类中,条件反射训练和脑损毁研究均证实左半球在识别同种叫声的过程中起主导作用(Petersen et al.,1978Ehret,1987Fitch et al.,1993Heffner & Heffner,1995)。利用朝向不对称实验范式(orienting-asymmetry paradigm,即在个体的正后方播放声音刺激,记录其耳朵或头部转动方向来分析被试是否具有耳偏侧性)对猕猴Macaca mulatta(Hauser & Andersson,1994Hauser et al.,1998)、海狮Zalophus californianus(Böye et al.,2005)、家马Equus caballus(Basile et al.,2009)、家犬Canis familiaris(Siniscalchi et al.,2008Reinholz-Trojan et al.,2012)和角雕Harpia harpyja(Palleroni & Hauser,2003)测试的结果显示:成年个体听到来自身体正后方的同种鸣叫时会转动右耳廓或将头转向右侧,听到异种或新颖的叫声则相反。这些结果表明包括人在内的哺乳动物、鸟类在感知同种鸣叫时具有右耳/左半球优势,而感知异种叫声或环境声音时左耳/右半球更加敏感。在两栖动物中,行为(Xue et al.,2015)及电生理(Fang et al.,20122014)研究证实仙琴蛙Babina daunchina具有类似的耳优势,即其左侧中脑主导着对同种鸣叫的处理和识别(Fang et al.,2015)。

有意思的是猕猴和海狮的幼体对所有声音都没有明显的偏侧性(Hauser & Andersson,1994Böye et al.,2005),而角雕(Palleroni & Hauser,2003)在听到猎物叫声时会根据捕食经验的有无而向右或向左转头,同时只有具有繁殖经验的雌性小鼠会对幼崽的叫声表现出偏侧性(Ehret,1987),这表明听觉偏侧性具有可塑性,暗示听觉偏侧性在物种演化过程中会在不同类群甚至个体之间存在差异。事实上,在感知语言时,左利手人群中具有左耳/右半球优势的人数百分比高于右利手人群中具有同样优势的人数百分比(Perlaki et al.,2013);在非人灵长类中,利用行为(Gil-da-Costa & Hauser,2006)、事件相关电位(event-relative potential,ERP)(Berntson et al.,1993)和正电子发射断层成像(positron emission tomography,PET)(Taglialatela et al.,2009)发现黑猩猩Pan troglodytes和非洲绿猴Cercopithecus aethiops在处理熟悉声音或同种鸣叫时具有右半球优势;左侧听皮层受损的猕猴在一定训练之后,其分辨能力可以恢复到受损前的水平,推测是右侧听皮层起到了补偿作用(Heffner & Heffner,1995);另外帕氏髯蝠Pteronotus parnellii在感知同种鸣叫和定位回声时分别具有左、右半球优势(Kanwal,2012)。这些特化的听觉偏侧性一般被解释为是物种在进化过程中受到不同环境选择压力所致(Ward & Hopkins,1993Gil-da-Costa & Hauser,2006)。

这一系列的研究证实在大多数四足动物中,听觉偏侧性是一种普遍存在的现象,而且和人类的听觉偏侧性具有十分相似的趋势:右耳/左半球主导同种交流信号(语言、鸣声等)和熟悉的声音;左耳/右半球负责处理异种鸣叫、突发刺激以及环境声音等。这些证据表明听觉偏侧性虽然是人类语言交流中的一个重要特征,但它并非是人类所特有,而是与其他物种声音通讯系统所共有。由于四足动物的听觉通路总体上具有很高的相似性而且部分核团和脑区具有同源性(Manley et al.,2004Butler & Hodos,2005),因此普遍存在且模式十分相似的听觉偏侧性被认为是在进化过程中来源于共同的祖先物种的脑功能特征(Vallortigara et al.,19992011)。偏侧性能够提升个体的适合度,因此具有听觉偏侧性的个体在自然选择的过程中所占比例逐渐提升;而特定形式的偏侧性一旦形成,便会作为高度保守的脑功能并在物种演化过程中得以保留(Rogers,2000)。

2 个体听觉偏侧性的机制模型

研究证实个体偏侧性可能是在发育过程中由基因调控形成,并能遗传给后代(Corballis et al.,2012McManus et al.,2013)。听觉偏侧性能够使个体从外界环境的噪声中快速准确地提取出与自身相关的信息,这种优势使其更容易在自然选择过程中得以保留,从而使具有偏侧性的个体在群体中占据优势地位。听觉偏侧性的产生机制一直是研究热点,主要机制模型包括结构模型、信号处理不对称模型、注意模型及混合模型等。

2.1 结构模型

对人类而言,虽然有左半球语言优势的人数在左、右利手人群中所占的百分比不同(分别为78%,95%),但语言中枢通常位于左半球,右半球则是关注非语言声音刺激(Broca,1861Sperry,1974)。由于听觉信号主要是对侧投射(Carpenter,1976),据此Kimura(1973)提出了基于非对称性听觉通路和语言中枢的右耳优势结构模型。具体而言,语言相关信号经右耳和左侧听皮层后,直接传递到位于左侧的语言感知中枢;而左耳的信号则需先传到右侧听皮层再经胼胝体传递到左侧语言中枢,同时该传递过程还受到左侧听觉通路抑制(Brancucci et al.,2004),整体传递效率低于右耳,因而右耳在处理与语言相关的信号时具有优势。除非对称性语言中枢外,胼胝体的选择性传递也被认为是听觉偏侧性的形成原因(Zaidel,1989);此外还有基于耳蜗和脑干结构的传出信号不对等模型(McFadden,1993)等。虽然这些模型所关注的具体解剖结构各不相同,但是对于听觉偏侧性的形成都有着相同的核心观点:听觉偏侧性是由于解剖结构的不对称性所导致的声音信号不对等传递的结果。

2.2 信号处理不对等模型

Ivry和Robertson(1997)提出了双重频率滤波模型(double-filtering-by-frequency model)来解释听觉偏侧性。该模型认为听觉感知依赖于注意调节的分频点,左半球主要处理信号的高频部分,而低频部分则主要由右半球处理。时域非对称采样假说(asymmetric sampling in time hypothesis)持有相似的观点(Poeppel,2003):最初由声音信号激活的神经信号传递到听皮层时是两侧相等的,之后由于左侧听皮层采集信号的时间窗较短(20~40 ms),而右侧听皮层的时间窗更长(150~250 ms),从而使得两侧听皮层偏爱加工的声音信号频率不同。由于同种叫声和环境声音的频率范围不同,因此左、右听皮层偏爱获取并加工的信号具有差异性。这类模型的建立基于两侧听皮层之间处理声音信号的不对称性,带有一定结构差异的要素;而其重点是在处理加工的过程而不是信号采集过程,有别于结构模型,可以认为是结构模型的延伸。

2.3 注意模型

根据一系列双耳分听实验结果,Kinsbourne(1975)提出听觉偏侧性的产生可能与大脑皮层的动态偏侧性激活有关。他们认为,感知或预期语言信号输入可使被试左半球进入更高的激活状态,随后这种偏侧性的激活状态会扩展至额叶眼区,从而调动注意资源偏侧至右侧感觉器官以获取准确的语音信息输入,最终导致右耳/左半球优势(Hiscock & Kinsbourne,2011)。在执行对音调的特征进行分辨的听觉任务中,当被试听到与任务不相关的响度/频率偏差的声音刺激时,包括左侧前额叶在内的多个与注意相关的脑区高激活,提示注意转移(Rinne et al.,2007Salmi et al.,2009);在听到同种鸣叫后,动物会倾向于将右侧感觉器官朝向声源方向(Hauser & Andersson,1994Hauser et al .,1998Palleroni & Hauser,2003Böye et al.,2005Siniscalchi et al.,2008Basile et al.,2009Reinholz-Trojan et al.,2012)。这些结果表明声音刺激能引起注意,进而调动注意资源偏向单侧感觉器官,最终导致听觉偏侧性。

另一方面,和无线索相比,在提示被试注意混合声音中的某种特定声音时,其双侧额下回、左侧颞上回等区域高激活(Osnes et al.,2012)。而相对被动听觉实验,当要求被试响应语音靶刺激时,左额眼区高激活,并且要求注意单侧耳时,其左额眼区激活水平更高(Thomsen et al.,2004);当要求被试响应音调靶刺激时,前额叶尤其是右侧前额叶高激活(Jäncke et al.,2003)。这些结果说明,在听觉任务中线索产生的预期能激活注意相关脑区,这些脑区与视觉任务中预期所激活的脑区高度相似(Sakai & Passingham,2003),这是由于不同感觉模态的注意调控是由共同的神经机制完成(Shinn-Cunningham,2008)。据此推测,对刺激的预期激活了注意相关脑区,从而引起自上而下的调控,加强听觉皮层非对称性激活,进而导致听觉偏侧性。

注意模型还提出注意调节能够对听觉偏侧性产生影响(Hiscock & Kinsbourne,2011)。在双耳分听任务下,当要求被试注意双侧或右耳声音时,其左侧颞叶高激活,表现出右耳优势;在注意右耳时,即使左侧声音声压级相对右侧更高(非注意条件下会引起左耳优势),被试也表现出右耳优势(Westerhausen et al.,2010),当要求注意左耳时,右侧颞叶的激活状态更高,说明耳优势发生了逆转(Jäncke et al.,2001Alho et al.,2012)。这些结果表明注意对听觉偏侧性的调控作用,支持了注意模型的有效性。

2.4 混合模型

关于结构模型和注意模型的有效性一直存在争论:结构模型虽然有解剖结果的强力支持,但是很难解释耳优势在注意调节下的反转,即从右耳优势到左耳优势的反转(Foundas et al.,2006);注意模型则是强调高级神经中枢的调控能力而淡化了解剖结构显著差异性的固有影响(Hiscock & Kinsbourne,2011)。Fang等(2014)通过控制双耳注意差异,证实仙琴蛙的右耳优势是以结构差异为基础并受注意调节影响的结果,说明右耳优势的形成机制更可能是一种综合了结构模型和注意模型的混合模型。

3 群体水平听觉偏侧性的成因

在具有个体偏侧性的物种中,某侧半球占主导地位在本质上并无优劣之分,因此理论上群体中左侧和右侧半球占主导地位的个体应该各占50%。然而在具有个体偏侧性的社会性物种中,其群体中多数个体(60%~90%)的偏侧性都呈现出同样的方向,表现出群体水平的偏侧性(Vallortigara & Rogers,2005Vallortigara,2006)。群体水平偏侧性并不像个体偏侧性那样能提高个体的竞争力和适合度,反而因个体行为易被预测而在反捕食或竞争过程中存在劣势,说明必定存在某种机制使得群体水平出现偏侧性并维持稳定。进化稳定策略(evolution stable strategy)(Ghirlanda & Vallortigara,2004Ghirlanda et al.,2009)认为这种群体水平的偏侧性是在外界环境压力和群体中个体相互作用的双重影响下所形成能够使群体适合度达到最优的一种生存策略。然而这一假说只能解释为何群体水平偏侧性能够在群体中维持稳定,关于最初某一侧脑功能偏侧性为何会在群体水平上占有优势这一问题依然需要更加完善的理论来解答。

在人类、哺乳类、鸟类和蛙类中,占主导地位的听觉感知中枢和发声中枢一般位于左半球(Bolhuis et al .,2010Moorman et al.,2012),解剖学(Hutsler & Galuske,2003)和弥散张量成像(Nucifora et al.,2005)证实人类同侧的发声中枢和听觉感知中枢有神经束直接相连;蛙类发声控制和听觉感知也被证实由左半球主导(Bauer,1993Fang et al.,2014)。这种相似性证实了听觉和发声作为声音通讯的两个方面是协同进化的(Botero et al.,2010)。另一方面,发声涉及到发声器官的运动,在绝大多数声音通讯物种中,发声中枢和肢体运动中枢的优势侧相同且绝大多数位于左半球(Rogers,2000)。这种肢体偏侧性和感知偏侧性的密切相关被认为具有因果关系,但谁因谁果仍然充满争议。一种观点认为肢体偏侧性最先出现,进而引起了整个神经系统的偏侧性,最终导致感知偏侧性(MacNeilage,2007);另一种观点则认为神经系统先产生了偏侧性,然后才引起了感知器官和肢体的偏侧性(Rogers,2009)。在鱼类中的研究倾向于神经系统偏侧性优先产生的观点:在迂回行为实验中,镰形吉拉德食蚊鱼Girardinus falcatus会依据视野中是否出现具有生物学意义的刺激而表现或不表现出群体水平的方向偏侧,这表明其行为的偏侧性更多是受到视觉感知的驱动(Facchin et al.,1999)。这种神经系统偏侧性先出现的观点为听觉感知偏侧性的形成提供了一种可能的解释:由于具有偏侧性的个体对其左侧视野中的其他个体表现出更强的攻击性,同时同种信号更多由右侧器官感知(Rogers,2000),因此个体在非争斗的情况下都会倾向于将其他个体置于自己的右侧或者从右侧接近其他个体,以降低不必要的争斗并更好进行同种信息的交流(Salva et al.,2012);这种偏好巩固了左半球在群体水平上对同种信号处理的主导地位,从而产生了群体水平上的偏侧性。特定形式的偏侧性一旦形成,便会作为高度保守的脑功能并在物种演化过程中得以保留(Rogers,2000),因此在声音通讯物种中,左侧的听觉中枢继承了这种对同种信号感知的主导地位,进而产生了群体水平的听觉偏侧性。

4 研究中存在的不足及展望

朝向不对称实验范式被广泛运用于动物听觉偏侧性研究,然而随着相关研究的开展,该范式存在的问题也逐渐浮现。联合使用功能性磁共振成像(functional magnetic resonance imaging,fMRI)和朝向不对称实验范式发现,成年人听到语音后左半球Broca区激活明显,然而被试却更多地向左转头,这被认为是听觉偏侧性和头部转向行为并没有直接关系的证据(Fischer et al.,2009)。由于听觉偏侧性在不同物种中具有多样性和可塑性,Teufel等(2010)指出在使用朝向不对称实验范式时可能存在未控制的变量,从而造成实验结果与预测不符甚至完全相反,因此在听觉偏侧性和头部转向行为的关系被完全阐明之前,选用这个实验范式的时候需要十分谨慎。除了开发新的实验范式外,由于听觉偏侧性是大脑功能偏侧性的一种形式,大脑听皮层的活动不对等能够直接反映出听觉偏侧性,因此选用朝向不对称实验范式研究听觉偏侧性时,与能够直接反应大脑活动的研究方式相结合,例如fMRI、PET和脑电图(electroencephalogram,EEG)相结合,从脑功能和行为两个水平上同时进行研究,就能取得更有效可靠的结果。Fang等(2014)Xue等(2015)结合行为和EEG研究仙琴蛙的右耳优势及其形成机制就是有益的尝试。

听觉偏侧性是大脑功能偏侧性的表现形式之一,是大脑执行正常功能的途径,但是听觉偏侧性与其他大脑功能的关系还不清楚,比如听觉偏侧性与其他感觉偏侧性如何协同作用以实现对目标的注意与识别。另外相关研究主要集中在人类、哺乳类、鸟类和两栖类中,而爬行类至今尚无报道,这使得探究听觉偏侧性演化过程的数据出现了断层。在更多的物种上对听觉偏侧性进行研究势在必行。此外在一些不以声音为主要交流方式甚至完全不发声的物种中,其听觉感知是否存在偏侧性,如果存在,其表现形式及形成原因如何,这些问题同样值得深入研究。

参考文献
Alho K, Salonen J, Rinne T, et al. 2012. Attention-related modulation of auditory-cortex responses to speech sounds during dichotic listening[J]. Brain Research : 47–54.
Basile M, Boivin S, Boutin A, et al. 2009. Socially dependent auditory laterality in domestic horses (Equus caballus)[J]. Animal Cognition, 12 (4): 611–619.
Bauer RH. 1993. Lateralization of neural control for vocalization by the frog (Rana pipiens)[J]. Psychobiology, 21 (3): 243–248.
Berntson GG, Boysen ST, Torello MW. 1993. Vocal perception:brain event-related potentials in a chimpanzee[J]. Developmental Psychobiology, 26 (6): 305–319.
Bolhuis JJ, Okanoya K, Scharff C. 2010. Twitter evolution:converging mechanisms in birdsong and human speech[J]. Nature Reviews Neuroscience, 11 (11): 747–759.
Botero CA, Pen I, Komdeur J, et al. 2010. The evolution of individual variation in communication strategies[J]. Evolution, 64 (11): 3123–3133.
Böye M, Güntürkün O, Vauclair J. 2005. Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus):hemispheric specialization for communication?[J]. European Journal of Neuroscience, 21 (6): 1727–1732.
Brancucci A, Babiloni C, Babiloni F, et al. 2004. Inhibition of auditory cortical responses to ipsilateral stimuli during dichotic listening:evidence from magnetoencephalography[J]. European Journal of Neuroscience, 19 (8): 2329–2336.
Broca P. 1861. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech)[J]. Bulletin de la Société Anatomique : 330–357.
Butler AB, Hodos W. 2005. Comparative vertebrate neuroanatomy:evolution and adaptation[M]. Hoboken, New Jersey, US: John Wiley & Sons .
Cantalupo C, Bisazza A, Vallortigara G. 1995. Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus)[J]. Neuropsychologia, 33 (12): 1637–1646.
Carpenter MB. 1976. Human neuroanatomy[M]. Baltimore: Williams & Wilkins .
Corballis MC, Badzakova-Trajkov G, Häberling IS. 2012. Right hand, left brain:genetic and evolutionary bases of cerebral asymmetries for language and manual action[J]. Wiley Interdisciplinary Reviews:Cognitive Science, 3 (1): 1–17.
Deckel AW. 1995. Laterality of aggressive responses in Anolis[J]. Journal of Experimental Zoology, 272 (3): 194–200.
Ehret G. 1987. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls[J]. Nature, 325 (6101): 249–251.
Facchin L, Bisazza A, Vallortigara G. 1999. What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use[J]. Behavioural Brain Research, 103 (2): 229–234.
Fang G, Xue F, Yang P, et al. 2014. Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation[J]. Behavioural Brain Research : 77–84.
Fang G, Yang P, Cui J, et al. 2012. Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species[J]. PLoS ONE, 7 (12): .
Fang G, Yang P, Xue F, et al. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs[J]. Brain, Behavior and Evolution, 86 (3-4): 232–245.
Fischer J, Teufel C, Drolet M, et al. 2009. Orienting asymmetries and lateralized processing of sounds in humans[J]. BMC Neuroscience, 10 (1): 14–23.
Fitch RH, Brown CP, O'Connor K, et al. 1993. Functional lateralization for auditory temporal processing in male and female rats[J]. Behavioral Neuroscience, 107 (5): 844–850.
Foundas AL, Corey DM, Hurley MM, et al. 2006. Verbal dichotic listening in right and left-handed adults:laterality effects of directed attention[J]. Cortex, 42 (1): 79–86.
Frasnelli E, Vallortigara G, Rogers LJ. 2012. Left-right asymmetries of behaviour and nervous system in invertebrates[J]. Neuroscience & Biobehavioral Reviews, 36 (4): 1273–1291.
Ghirlanda S, Frasnelli E, Vallortigara G. 2009. Intraspecific competition and coordination in the evolution of lateralization[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 364 (1519): 861–866.
Ghirlanda S, Vallortigara G. 2004. The evolution of brain lateralization:a game-theoretical analysis of population structure[J]. Proceedings of the Royal Society B:Biological Sciences, 271 (1541): 853–858.
Gil-da-Costa R, Hauser MD. 2006. Vervet monkeys and humans show brain asymmetries for processing conspecific vocalizations, but with opposite patterns of laterality[J]. Proceedings of the Royal Society B:Biological Sciences, 273 (1599): 2313–2318.
Hardyck C, Petrinovich LF. 1977. Left-handedness[J]. PsychologicalBulletin, 84 (3): 385.
Hauser MD, Agnetta B, Perez C. 1998. Orienting asymmetries in rhesus monkeys:the effect of time-domain changes on acoustic perception[J]. Animal Behaviour, 56 (1): 41–47.
Hauser MD, Andersson K. 1994. Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys:field experiments[J]. Proceedings of the National Academy of Sciences, 91 (9): 3946–3948.
Heffner HE, Heffner RS. 1995. Role of auditory cortex in the perception of vocalizations by Japanese macaques[M]. US: Springer: 207 -219.
Hiscock M, Kinsbourne M. 2011. Attention and the right-ear advantage:what is the connection?[J]. Brain and Cognition, 76 (2): 263–275.
Hopkins WD, Phillips KA, Bania A, et al. 2011. Hand preferences for coordinated bimanual actions in 777 great apes:implications for the evolution of handedness in hominins[J]. Journal of Human Evolution, 60 (5): 605–611.
Hutsler J, Galuske RA. 2003. Hemispheric asymmetries in cerebral cortical networks[J]. Trends in Neurosciences, 26 (8): 429–435.
Ivry R, Robertson L. 1997. The two sides of perception[M]. Cambridge: MIT Press .
Jäncke L, Buchanan T, Lutz K, et al. 2001. Focused and nonfocused attention in verbal and emotional dichotic listening:an FMRI study[J]. Brain and Language, 78 (3): 349–363.
Jäncke L, Specht K, Shah JN, et al. 2003. Focused attention in a simple dichotic listening task:an fMRI experiment[J]. Cognitive Brain Research, 16 (2): 257–266.
Kanwal JS. 2012. Right-left asymmetry in the cortical processing of sounds for social communication vs[J]. navigation in mustached bats[J]. European Journal of Neuroscience, 35 (2): 257–270.
Kimura D. 1961a. Cerebral dominance and the perception of verbal stimuli[J]. Canadian Journal of Psychology, 15 (3): 166.
Kimura D. 1961b. Some effects of temporal-lobe damage on auditory perception[J]. Canadian Journal of Psychology, 15 (3): 156.
Kimura D. 1973. The asymmetry of the human brain[J]. Scientific American, 228 (3): 70–78.
Kimura D. 2011. From ear to brain[J]. Brain and Cognition, 76 (2): 214–217.
Kinsbourne M. 1975. The mechanism of hemispheric control of the lateral gradient of attention[M]. London: Academic Press .
MacNeilage PF. 2007. Present status of the postural origins theory. The evolution of hemispheric specialization in primates. Oxford, UK:Elsevier[M]. : 58 -91.
Manley GA, Popper AN, Fay RR. 2004. Evolution of the vertebrate auditory system[M]. New York: Springer .
McFadden D. 1993. A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions[J]. Hearing Research, 68 (2): 143–151.
McManus I, Davison A, Armour JA. 2013. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies[J]. Annals of the New York Academy of Sciences, 1288 (1): 48–58.
Moorman S, Gobes SM, Kuijpers M, et al. 2012. Human-like brain hemispheric dominance in birdsong learning[J]. Proceedings of the National Academy of Sciences, 109 (31): 12782–12787.
Nucifora PG, Verma R, Melhem ER, et al. 2005. Leftward asymmetry in relative fiber density of the arcuate fasciculus[J]. Neuroreport, 16 (16): 791–794.
Osnes B, Hugdahl K, Hjelmervik H, et al. 2012. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception[J]. Brain and Language, 121 (1): 65–69.
Palleroni A, Hauser M. 2003. Experience-dependent plasticity for auditory processing in a raptor[J]. Science, 299 (5610): 1195.
Paquette C, Bourassa M, Peretz I. 1996. Left ear advantage in pitch perception of complex tones without energy at the fundamental frequency[J]. Neuropsychologia, 34 (2): 153–157.
Perlaki G, Horvath R, Orsi G, et al. 2013. White-matter microstructure and language lateralization in left-handers:a whole-brain MRI analysis[J]. Brain and Cognition, 82 (3): 319–328.
Petersen MR, Beecher MD, Moody D, et al. 1978. Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata)[J]. Science, 202 (4365): 324–327.
Poeppel D. 2003. The analysis of speech in different temporal integration windows:cerebral lateralization as ‘asymmetric sampling in time’[J]. Speech Communication, 41 (1): 245–255.
Reinholz-Trojan A, Włodarczyk E, Trojan M, et al. 2012. Hemispheric specialization in domestic dogs (Canis familiaris) for processing different types of acoustic stimuli[J]. Behavioural Processes, 91 (2): 202–205.
Rinne T, Kirjavainen S, Salonen O, et al. 2007. Distributed cortical networks for focused auditory attention and distraction[J]. Neuroscience Letters, 416 (3): 247–251.
Rogers LJ, Workman L. 1993. Footedness in birds[J]. Animal Behaviour, 45 (2): 409–411.
Rogers LJ, Zucca P, Vallortigara G. 2004. Advantages of having a lateralized brain[J]. Proceedings of the Royal Society B:Biological Sciences, 271 (Suppl 6): S420–S422.
Rogers LJ. 2000. Evolution of side biases:motor versus sensory lateralization[M]. Netherlands: Springer: 3 -40.
Rogers LJ. 2002. Advantages and disadvantages of lateralization[M]. Cambridge: Cambridge University Press: 126 -153.
Rogers LJ. 2009. Hand and paw preferences in relation to the lateralized brain[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 364 (1519): 943–954.
Sakai K, Passingham RE. 2003. Prefrontal interactions reflect future task operations[J]. Nature Neuroscience, 6 (1): 75–81.
Salmi J, Rinne T, Koistinen S, et al. 2009. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention[J]. Brain Research : 155–164.
Salva OR, Regolin L, Mascalzoni E, et al. 2012. Cerebral and behavioural asymmetries in animal social recognition[J]. Comparative Cognition & Behavior Reviews, 7 (10): 110–138.
Shinn-Cunningham BG. 2008. Object-based auditory and visual attention[J]. Trends in Cognitive Sciences, 12 (5): 182–186.
Siniscalchi M, Quaranta A, Rogers LJ. 2008. Hemispheric specialization in dogs for processing different acoustic stimuli[J]. PLoS ONE, 3 (10): e3349.
Sperry R. 1974. Lateral specialization in the surgically separated hemispheres[M]. Cambridge: MIT Press .
Taglialatela JP, Russell JL, Schaeffer JA, et al. 2009. Visualizing vocal perception in the chimpanzee brain[J]. Cerebral Cortex, 19 (5): 1151–1157.
Teufel C, Ghazanfar AA, Fischer J. 2010. On the relationship between lateralized brain function and orienting asymmetries[J]. Behavioral Neuroscience, 124 (4): 437–445.
Thomsen T, Rimol LM, Ersland L, et al. 2004. Dichotic listening reveals functional specificity in prefrontal cortex:an fMRI study[J]. Neuroimage, 21 (1): 211–218.
Vallortigara G, Chiandetti C, Sovrano VA. 2011. Brain asymmetry (animal)[J]. Wiley Interdisciplinary Reviews:Cognitive Science, 2 (2): 146–157.
Vallortigara G, Rogers L, Bisazza A. 1999. Possible evolutionary origins of cognitive brain lateralization[J]. Brain Research Reviews, 30 (2): 164–175.
Vallortigara G, Rogers LJ, Bisazza A, et al. 1998. Complementary right and left hemifield use for predatory and agonistic behaviour in toads[J]. Neuroreport : 3341–3344.
Vallortigara G, Rogers LJ. 2005. Survival with an asymmetrical brain:advantages and disadvantages of cerebral lateralization[J]. Behavioral and Brain Sciences, 28 (4): 575–588.
Vallortigara G. 2006. The evolutionary psychology of left and right:costs and benefits of lateralization[J]. Developmental Psychobiology, 48 (6): 418–427.
Ward JP, Hopkins WD. 1993. Primate laterality:current behavioral evidence of primate asymmetries[M]. New York: Springer .
Westerhausen R, Moosmann M, Alho K, et al. 2010. Identification of attention and cognitive control networks in a parametric auditory fMRI study[J]. Neuropsychologia, 48 (7): 2075–2081.
Xue F, Fang G, Yang P, et al. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog[J]. Journal of Experimental Biology, 218 (5): 740–747.
Zaidel E. 1989. Hemispheric independence and interaction in word recognition[M]. Hampshire: McMillan: 77 -97.