«上一篇
文章快速检索     高级检索
下一篇»
  哈尔滨工程大学学报  2021, Vol. 42 Issue (6): 810-817  DOI: 10.11990/jheu.201912012
0

引用本文  

石棚, 王浩, 柳家为, 等. 钢筋插入式波纹管浆锚连接受力性能数值分析[J]. 哈尔滨工程大学学报, 2021, 42(6): 810-817. DOI: 10.11990/jheu.201912012.
SHI Peng, WANG Hao, LIU Jiawei, et al. Numerical analysis of anchorage properties of grouting connection of pre-buried bellows with steel bars inserted[J]. Journal of Harbin Engineering University, 2021, 42(6): 810-817. DOI: 10.11990/jheu.201912012.

基金项目

国家自然科学基金项目(51578151);江苏省重点研发计划项目(BE2018120)

通信作者

王浩,E-mail: wanghao1980@seu.edu.cn

作者简介

石棚,男,硕士研究生;
王浩,男,教授,博士生导师

文章历史

收稿日期:2019-12-19
网络出版日期:2021-04-12
钢筋插入式波纹管浆锚连接受力性能数值分析
石棚 1, 王浩 1, 柳家为 1, 朱克宏 2     
1. 东南大学 混凝土及预应力混凝土教育部重点实验室, 江苏 南京 210096;
2. 中铁二十四局集团有限公司, 上海 200070
摘要:为研究钢筋插入式波纹管浆锚连接的受力性能,本文采用有限元法对其轴向拉伸作用下的力学行为进行了精细化模拟分析,并与试验结果进行对比,验证了数值模型的有效性。通过设置不同的锚固长度la、灌浆料厚度rg以及钢筋直径ds,分析了多种参数对其锚固性能的影响。结果表明: 除锚固长度la=7ds的接头为钢筋拔出破坏外,其余接头皆为钢筋屈服破坏;在受力过程中,波纹管均未屈服,一直处于弹性阶段;灌浆料与混凝土最大应力随rg/ds以及rgla/ds2增大而减小,当rg/ds < 0.3,rgla/ds2 < 3.0时,2种材料最大应力均超过其抗压强度。
关键词预制拼装桥梁    波纹管    浆锚连接    受力性能    有限元    数值分析    参数分析    失效模式    
Numerical analysis of anchorage properties of grouting connection of pre-buried bellows with steel bars inserted
SHI Peng 1, WANG Hao 1, LIU Jiawei 1, ZHU Kehong 2     
1. Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China;
2. China Railway 24th Bureau Group Co., Ltd., Shanghai 200070, China
Abstract: To investigate the mechanical properties of the grouting connection of pre-buried bellows with steel bars inserted, the finite-element method is used to conduct a fine simulation analysis of the mechanical behavior under axial tension load. The validity of the numerical model is illustrated by comparison with experimental results. By setting variant anchorage length, la; grouting material thickness, rg; and reinforcement diameter, ds; various factors influencing the bonding strength are studied. The results show that, apart from the damage due to extraction of the connector with anchorage length equal to seven times the diameter of the rebar, the rebar yield damage occurs in the remaining joints. In the development of stress, the corrugated sleeves do not yield and instead remain in the elastic stage. The maximum stress of the grouting materials and concrete decreases with the increase of rg/ds and rgla/ds2, and the maximum stress of these two materials exceeds their ultimate compressive strength when rg/ds is less than 0.3 and rgla/ds2 is less than 3.0.
Keywords: segmental prefabricated bridges    corrugated sleeve    grouted connection    stress performance    finite-element method    numerical analysis    parameter analysis    failure mode    

预制拼装桥梁由于克服了传统施工中构件质量无法保证、生产效率低下、交通拥堵以及粉尘污染等问题[1-3],其在桥梁建设改造工程中得到越来越广泛的应用。其中,预制构件主要受力钢筋之间的可靠连接是保证节段预制拼装桥梁整体性的关键[4-6]

灌浆套筒连接技术自20世纪60年代被提出以来,至今已发展成为预制构件连接的主要技术之一[7-8]。为了探明套筒灌浆连接的锚固性能及受力机理,国内外学者对其进行了试验及理论研究。Ling等[9]研究了连接钢筋锚固长度以及套筒直径对灌浆套筒接头连接性能的影响。Raynor等[10]进行了灌浆套筒接头的循环荷载试验,分析了其在周期荷载作用下的粘结性能。郑永峰等[11-12]提出了一种新型变形灌浆套筒,通过试验研究以及有限元分析,研究了其连接性能及工作机理。然而,有学者提出,传统灌浆套筒内部构造复杂,加工制作难度大,在现场施工过程中无法保证安装及灌浆质量。陈俊等[13]采用波纹管代替灌浆套筒,并对这种新型连接技术进行了试验研究,结果表明该方法施工简便、连接可靠。王志强[14]等对灌浆套筒与灌浆波纹管进行了抗震性能研究,结果表明两种连接方式的各向性能与现浇试件无明显差异。贾俊峰等[15]对基于波纹管浆锚连接的预制拼装RC墩柱进行了试验研究,结果表明其侧向刚度与现浇墩柱基本一致,可用于强震区构件拼装。

为了进一步研究钢筋插入式波纹管浆锚连接技术的锚固性能及受力机理,本文基于有限元法对其进行了单轴拉伸模拟研究,并与现有文献试验结果对比,分析钢筋锚固长度la、灌浆料厚度rg和钢筋直径ds对其连接性能的影响。

1 数值模型

该模型包含钢筋、灌浆料、波纹管和混凝土4种材料,为保证接头轴向拉伸数值模拟的准确性,有限元模型的材料本构关系应与实际材料属性相吻合。此外,模型包含3类接触面,对接触界面进行处理时,应根据各界面的接触特性选择合适的分析方式。

1.1 材料本构模型 1.1.1 钢筋和波纹管

钢筋材料属性采用陈俊等[7]材性试验数据。其屈服强度为451.2 MPa,抗拉强度为591.7 MPa,设定弹性模量为206 GPa,本文中钢筋采用三折线各向同性硬化材料模型,如图 1 (a)所示。波纹管采用双线性随动强化材料模型,设定其屈服强度为400 MPa,弹性模量为206 GPa,如图 1 (b)所示。

Download:
图 1 材料本构关系 Fig. 1 Mechanical properties of materials
1.1.2 灌浆料和混凝土

灌浆料和混凝土都采用多线性各向同性硬化材料模型,其受压应力-应变关系[16]

$ \sigma = {E_g}\frac{\varepsilon }{{\left[ {1 + {{\left( {\frac{\varepsilon }{{{\varepsilon _0}}}} \right)}^2}} \right]}}, \varepsilon \le 0.005\;5 $ (1)
$ {\varepsilon _0} = \frac{{2{f_{\rm{c}}}}}{{{E_g}}} $ (2)

式中:σ为材料的压应力;ε为材料的压应变;fc为材料的抗压强度;Eg为材料的弹性模量。

灌浆料和混凝土材料属性采用陈俊等[13]材性试验所得数据,灌浆料抗压强度为53.4 MPa,设定弹性模量为30 GPa,其抗拉强度[7]

$ {f_t} = 0.62{\left( {{f_c}} \right)^{1/2}} $ (3)

式中:ft为材料的抗拉强度。

图 2 (a)所示为灌浆料的应力应变关系。混凝土抗拉强度为43.1 MPa,设定弹性模量为30 GPa,如图 2 (b)所示。2种材料的破坏准则皆采用William-Warnke 5参数准则。

Download:
图 2 材料本构模型 Fig. 2 Mechanical properties of materials
1.2 有限元模型

模型包含钢筋-灌浆料、灌浆料-波纹管以及波纹管-混凝土3类接触界面。钢筋和混凝土的粘结本构关系极其复杂,国内外学者对其进行了大量试验研究,并采用粘结单元进行数值模拟,其效果良好,因此本文对钢筋-灌浆料界面采用分离式粘结模型。然而,波纹管波肋增强了其接触界面的机械咬合作用,故本文采用库伦摩擦模型对灌浆料-波纹管接触界面和波纹管-混凝土接触界面进行模拟,摩擦系数μ取0.4[18]。采用ANSYS建立1/4接头模型,1/4纵截面施加对称约束,混凝土侧面固定,如图 3所示。钢筋和波纹管采用实体单元SOLID185模拟,SOLID65模拟灌浆料和混凝土,接触单元TARGE170和CONTA174模拟波纹管两界面的粘结,非线性弹簧单元COMBIN39模拟锚固钢筋与灌浆料之间的粘结应力-滑移关系,其粘结滑移本构关系为[19]

$ \tau \left\{ {\begin{array}{*{20}{l}} {{k_1}s, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0 \le s \le {s_{cr}}}\\ {{\tau _{cr}} + {k_2}\left( {s - {s_{cr}}} \right), \;\;\;\;\;\;\;\;{s_{cr}} < s \le {s_u}}\\ {{\tau _u} + {k_3}\left( {s - {s_u}} \right), \;\;\;\;\;\;\;\;\;{s_u} < s \le {s_r}}\\ {{\tau _r}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{s_r} < s} \end{array}} \right. $ (4)
Download:
图 3 有限元模型 Fig. 3 Finite element model

式中:τ钢筋和灌浆料粘结应力;s钢筋和灌浆料之间的相对滑移;k1线性段斜率,k1=τcr/scr劈裂段斜率;k2=(τu-scr)/(su-scr);k3下降段斜率,k3=(τru)/(sr-su)。

2 模型验证

为验证数值模型的准确性,采用陈俊等[7]试验与有限元模型进行对比,试验装置如图 4所示。利用有限元方法模拟25-12-07d和25-12-10d波纹管接头的轴向拉伸试验,模拟结果见表 1,其中PyP′y分别为接头试验和模拟的屈服荷载,PuP′u分别为接头试验和模拟的极限荷载。由表 1可知,接头25-12-07d和接头25-12-10d轴向拉伸试验和数值模拟得到的屈服荷载误差分别为0.68%和1.04%,极限荷载误差分别为2.56%和6.63%,模拟结果与试验误差较小。图 5所示为接头有限元分析所得荷载-位移曲线和试验数据对比结果。由图 5可知,数值模拟荷载-位移曲线的变化趋势同试验结果基本吻合,误差较小,证明了有限元模型的可靠性。

Download:
图 4 试验加载装置 Fig. 4 Test setup arrangement
表 1 波纹管接头轴向拉伸试验与模拟结果对比 Table 1 Comparison between experimental and simulated results
Download:
图 5 有限元分析与试验结果荷载-位移曲线 Fig. 5 Load-displacement curves of experimental and FEA
3 参数分析 3.1 有限元模型参数

根据陈俊等[7]试验研究,影响接头锚固性能的因素包括锚固长度、灌浆料厚度及钢筋直径等。数值模型中锚固长度分别取7d,10d,10d和20d,其中d为锚固钢筋直径;钢筋直径分别取18、25、32和40 mm;灌浆料厚度分别取6、12、20和28 mm,波纹管直径根据钢筋直径与灌浆料厚度确定。数值模型几何构造如图 6所示,尺寸参数如表 2所示,rg为灌浆料厚度,l为锚固长度,ln为无粘结段长度。

Download:
图 6 数值模型几何构造 Fig. 6 Geometric construction of numerical model
表 2 数值模型尺寸参数 Table 2 Details of the numerical model
3.2 极限抗拉强度与承载力

表 3图 7所示分别为波纹管接头极限抗拉强度和承载力对比曲线。其中fu为波纹管接头的极限抗拉强度(fu=Pu/ds),fbyk为连接钢筋的屈服强度标准值,fbuk为连接钢筋的极限抗拉强度标准值。

表 3 有限元模拟结果 Table 3 Results of the FEA
Download:
图 7 承载力对比曲线 Fig. 7 Comparison of bearing capacity curves

表 3图 7可知,除锚固长度为7d的接头破坏模式为钢筋拔出破坏外,其余接头的破坏模式均为钢筋拉断破坏,为理想破坏模式,且接头极限抗拉强度与钢筋屈服强度标准值的比值fu/fbyk>1.25,接头极限抗拉强度与钢筋抗拉强度标准值的比值fu/fbuk>1.1,满足JGJ 107-2010《钢筋机械连接技术规程》中Ⅰ级接头中单向拉伸强度要求。

3.3 荷载-位移曲线 3.3.1 锚固长度对荷载-位移曲线的影响

不同锚固长度接头的荷载-位移曲线如图 8 (a)所示。由图可知,接头25-12-07d在达到钢筋极限抗拉强度之前发生粘结破坏,在外荷载作用下,承载力迅速下降。其余3种接头的荷载-位移曲线变化趋势一致,达到钢筋的极限抗拉强度之后,仍保持一定的承载能力,是接头理想的失效模式。

Download:
图 8 数值模拟F-s曲线结果 Fig. 8 F-s curves of the FEA
3.3.2 灌浆料厚度对荷载-位移曲线的影响

不同灌浆料厚度接头的荷载-位移曲线如图 8 (b)所示。由图可知,尽管接头灌浆料厚度存在差异,但其在单向荷载作用下的F-s曲线变化趋势及极限承载力相似,表明接头极限承载力和灌浆料厚度无明显相关性,在单向受力状态下,接头的破坏形式均为钢筋屈服破坏,满足接头设计要求。

3.3.3 钢筋直径对荷载位移曲线的影响

不同钢筋直径接头的荷载-位移曲线如图 8(c)所示。由图可知,接头的屈服荷载及极限荷载与钢筋直径相关,不同钢筋直径接头的破坏模式均为钢筋拉断破坏,为理想失效模式。

3.3.4 灌浆料应力

各接头灌浆料与混凝土的应力分布如图 9所示。由图可知,灌浆料和混凝土的应力分布随波肋呈锯齿状分布。接头25-12-07d,25-06-10d和40-12-10d波肋处灌浆料及混凝土最大应力均已超过两材料抗压强度(分别为53.4和43.1 MPa),表明灌浆料及混凝土在轴向拉伸作用下将发生压碎破坏。其余接头灌浆料和混凝土应力分布较均匀,最大应力分布在顶部非粘结段的第1个波肋处,均未超过2材料抗压强度,整体粘结效果良好,符合要求。

Download:
图 9 灌浆料及混凝土轴向应力分布 Fig. 9 Distribution of axial stress of grouting material and concrete
3.3.5 波纹管应力

各接头波纹管应力分布如图 10所示。由图可知,不同接头其波纹管的应力分布存在差异。25-12-15d和25-12-20d接头波纹管最大应力出现在顶部第3、4个波肋处,而其余接头波纹管的最大应力出现在底部第1个波肋处,表明锚固长度为波纹管应力分布主要影响因素。此外,所有波纹管最大应力均未超过140 MPa,低于其屈服强度,在外荷载作用下,波纹管一直处于弹性阶段,无破坏危险。

Download:
图 10 波纹管Mises有效应力分布 Fig. 10 Distribution of von Mises stress of corrugated sleeve
3.4 参数综合分析

不同rg/dsrgla/ds所对应的灌浆料与混凝土最大轴向压应力如表 4所示,不同rg/dsrgla/ds对灌浆料与混凝土应力分布的影响如图 11所示。由表 4图 11可知,随着rg/dsrgla/ds增大,σg, maxσc, max减小;当rg/ds < 0.3或rgla/ds < 3.0时,σg, max>53.4 MPa,σc, max>43.1 MPa,灌浆料及混凝土压碎;当rg/ds >0.8,rgla/ds>9.6时,随其值增大,σg, maxσc, max继续减小,但降幅不明显。

表 4 rg/dsrgla/ds对灌浆料及混凝土应力分布的影响 Table 4 Effect of rg/ds and rgla/ds on stress distribution of grouting material and concrete
Download:
图 11 rg/dsrgla/ds对灌浆料及混凝土应力分布的影响曲线 Fig. 11 The influence curves of rg/ds and rgla/ds on stress distribution of grouting material and concrete
4 结论

1) 对比试验与有限元分析得到的荷载-位移曲线及极限荷载,表明选用模型可以较有效地模拟波纹管接头的受力性能。

2) 钢筋锚固长度la、灌浆料厚度rg和钢筋直径ds影响接头的破坏模式,当la≤7ds时,接头主要破坏模式为粘结破坏,当la≥10ds时,接头以钢筋屈服破坏为主,当rg/ds < 0.3或rgla/ds < 3.0时,接头灌浆料及混凝土发生压碎破坏。

3) 波纹管在轴向拉伸过程中,其最大应力均未超过材料屈服强度,一直处于弹性阶段。

4) 建议灌浆料厚度与钢筋直径之比rg/ds取值在0.3~0.8,灌浆料厚度与锚固长度的乘积与钢筋直径平方之比rgla/ds取值在3.0~9.6。

参考文献
[1]
项贻强, 竺盛, 赵阳. 快速施工桥梁的研究进展[J]. 中国公路学报, 2018, 31(12): 1-27.
XIANG Yiqiang, ZHU Sheng, ZHAO Yang. Research and development on accelerated bridge construction technology[J]. China journal of highway and transport, 2018, 31(12): 1-27. DOI:10.3969/j.issn.1001-7372.2018.12.001 (0)
[2]
KAPUR J, YEN W P, DEKELBAB W, et al. Best practices regarding performance of ABC connections in bridges subjected to multihazard and extreme events[R]. 2012. (0)
[3]
魏红一, 肖纬, 王志强, 等. 采用套筒连接的预制桥墩抗震性能试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7): 1010-1016.
WEI Hongyi, XIAO Wei, WANG Zhiqiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji University (natural science), 2016, 44(7): 1010-1016. (0)
[4]
AMELI M J, PANTELIDES C P. Seismic analysis of precast concrete bridge columns connected with grouted splice sleeve connectors[J]. Journal of Structural Engineering, 2017, 143(2): 04016176. DOI:10.1061/(ASCE)ST.1943-541X.0001678 (0)
[5]
匡志平, 郑冠雨, 焦雪涛. 灌浆不足对钢筋套筒连接力学性能影响试验[J]. 同济大学学报(自然科学版), 2019, 47(7): 934-945.
KUANG Zhiping, ZHENG Guanyu, JIAO Xuetao. Experimental Study on Effect of Mechanical Behavior of Grout Sleeve Splicing for Reinforced Bars Due to Lack of Grout[J]. Journal of Tongji University (natural science), 2019, 47(7): 934-945. (0)
[6]
余琼, 匡轩, 方永青. 钢筋套筒灌浆搭接连接的预制框架柱抗震试验[J]. 同济大学学报(自然科学版), 2019, 47(1): 18-28, 37.
YU Qiong, SUN Jiaqiu, YUAN Weihang. Experimental study on bond behavior between ribbed steel bars and sleeve constrained grouting material[J]. Journal of Tongji University (natural science), 2019, 47(1): 18-28, 37. (0)
[7]
HABER Z B, MACKIE K R, AL-JELAWY H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10): 04017078. DOI:10.1061/(ASCE)BE.1943-5592.0001105 (0)
[8]
QU H, LI T, WANG Z, et al. Investigation and verification on seismic behavior of precast concrete frame piers used in real bridge structures: Experimental and numerical study[J]. Engineering Structures, 2018, 154: 1-9. DOI:10.1016/j.engstruct.2017.10.069 (0)
[9]
LING Jenhua, RAHMAN A B A, IBRAHIM I S, et al. Behaviour of grouted pipe splice under incremental tensile load[J]. Construction and building materials, 2012, 33: 90-98. DOI:10.1016/j.conbuildmat.2012.02.001 (0)
[10]
RAYNOR D J, LEHMAN D E, STANTON J F. Bond-slip response of reinforcing bars grouted in ducts[J]. Structural journal, 2002, 99(5): 568-576. (0)
[11]
郑永峰, 郭正兴, 曹江. 新型灌浆套筒的约束机理及约束应力分布[J]. 哈尔滨工业大学学报, 2015, 47(12): 106-111.
ZHENG Yongfeng, GUO Zhengxing, CAO Jiang. Confinement mechanism and confining stress distribution of new grouting coupler for rebars splicing[J]. Journal of Harbin Institute of Technology, 2015, 47(12): 106-111. (0)
[12]
郑永峰, 郭正兴. 变形灌浆套筒连接性能试验研究及有限元分析[J]. 建筑结构学报, 2016, 37(3): 94-102.
ZHENG Yongfeng, GUO Zhengxing. Experimental study and finite element analysis on behavior of deformed gout-filled pipe splice[J]. Journal of building structures, 2016, 37(3): 94-102. (0)
[13]
陈俊, 肖岩, 尹齐. 预埋波纹套管的钢筋-高强浇筑料黏结锚固性能试验研究[J]. 建筑结构学报, 2015, 36(7): 140-147.
CHEN Jun, XIAO Yan, YIN Qi. Bonding strength of rebar anchorage in embedded corrugated sleeve with high strength grout[J]. Journal of building structures, 2015, 36(7): 140-147. (0)
[14]
王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5): 74-80.
WANG Zhiqiang, WEI Zhangzhen, WEI Hongyi, et al. Influences of Precast Segmental Connector Forms on Seismic Performance of Bridge Pier[J]. China journal of highway and transport, 2017, 30(5): 74-80. (0)
[15]
贾俊峰, 郭扬, 宋年华, 等. 基于灌浆波纹管锚固连接的预制拼装RC墩柱抗震试验[J]. 中国公路学报, 2018, 31(12): 211-220.
JIA Junfeng, GUO Yang, SONG Nianhua, et al. Seismic testing of precast rc bridge pier columns anchored by grouted corrugated ducts[J]. China journal of highway and transport, 2018, 31(12): 211-220. (0)
[16]
THANOON W A, ALWATHAF A H, NOORZAEI J, et al. Nonlinear finite element analysis of grouted and ungrouted hollow interlocking mortarless block masonry system[J]. Engineering structures, 2008, 30(6): 1560-1572. (0)
[17]
黄士元, 蒋家奋, 杨南如, 等. 近代混凝土技术[M]. 西安: 陕西科学技术出版社, 1998. (0)
[18]
WONG R C K, MA S K Y, WONG R H C, et al. Shear strength components of concrete under direct shearing[J]. Cement and Concrete Research, 2007, 37(8): 1248-1256. (0)
[19]
中华人民共和国住房和城乡建设部. GB 50010-2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50010-2010, Code for design of concrete structures[S]. Beijing: China building industry press, 2015. (0)