﻿ 自由状态冰对螺旋桨水动力性能的影响
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2021, Vol. 42 Issue (2): 159-165  DOI: 10.11990/jheu.201910038 0

### 引用本文

WANG Chao, SONG Meijun, WANG Chunhui, et al. Effect of free-moving ice on hydrodynamic performance of a propeller[J]. Journal of Harbin Engineering University, 2021, 42(2): 159-165. DOI: 10.11990/jheu.201910038.

### 文章历史

Effect of free-moving ice on hydrodynamic performance of a propeller
WANG Chao , SONG Meijun , WANG Chunhui , LI Xing , XU Pei
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: To study the non-contact interference between ice and a propeller under free-ice conditions, we used overlapping grids and the dynamic fluid-body interaction method in a non-contact ice-propeller model to simulate the ice displacement and the propeller hydrodynamic performance. A comparison of the simulation results with those obtained experimentally demonstrates the feasibility of this method. The results of this study show that there are "acceleration" and "blockage" zones behind the free ice. As an ice block approaches, the influence of the blockage zone on the propeller increases. With increases in the speed coefficient, both the propeller thrust and torque coefficients decrease.
Keywords: propeller    ice-propeller interaction    free movement    numerical simulation    overlapping grid    ice block    hydrodynamic performance    model test

1 冰浆计算模型设置 1.1 计算原理

 $f=f_{r}\left(f_{p}+f_{\tau}+f_{g}+\sum f_{\mathrm{ext}}\right)$ (1)
 $n=f_{r}\left(n_{p}+n_{\tau}+\sum n_{\mathrm{ext}}\right)$ (2)

 $f_{r}=\left\{\begin{array}{ll}0, & t 式中：ts为指定释放时间；tr为释放时间。 1.2 计算模型 本文采用由R-class破冰船螺旋桨[17]改进而来的ICEPROPELLER螺旋桨[11]和中国船级社规范中强度校核推荐使用的长方体冰块模型。为了减少计算量，本文中将冰块与螺旋桨按20∶1进行了缩小。缩小后冰块尺寸为0.075 m×0.15 m×0.225 m，螺旋桨的直径D=0.2 m，主要参数如表 1所示。在计算中需要先建立一个局部坐标系，原点选在冰块的质心，遵从右手坐标系，冰桨相对位置如图 1所示。在释放冰块前需要对流场进行1 s的稳态计算来使流场趋于稳定，之后再释放冰块，释放过程中调用DFBI模块，并将冰块的运动设定为自由运动。 表 1 ICEPROPELLER螺旋桨模型主要参数 Table 1 Table of main parameters of ICEPROPELLER model  Download: 图 1 冰桨局部坐标系 Fig. 1 Ice-propeller local coordinate system 为了正确地模拟冰块受力状态下的运动情况，除了重力，还需要设定冰块的转动惯量矩阵。转动惯量矩阵中各个变量的定义如下: $ \begin{array}{l}M x_{x}=\int\left(y^{2}+z^{2}\right) \mathrm{d} m \\ M y_{y}=\int\left(x^{2}+z^{2}\right) \mathrm{d} m \\ M z_{z}=\int\left(x^{2}+y^{2}\right) \mathrm{d} m\end{array} $(4) 1.3 网格划分 首先建立一个被称之为大域的圆柱体静止域，其中心位于坐标原点，直径为6倍螺旋桨直径。将大域前端设置为速度进口，后端为压力出口，前端离原点的距离为6倍螺旋桨直径，后端为10倍。同时，在坐标中心建立一个由导入的螺旋桨表面和圆柱体组成的旋转域，圆柱直径为1.5倍螺旋桨直径，前后表面以YOZ平面对称，均距离坐标轴原点0.5倍螺旋桨直径。冰块在(-0.5, 0.1, 0)的位置释放。静止域、旋转域以及冰块区域如图 2所示。  Download: 图 2 计算域划分 Fig. 2 Computational domain partition graph 使用六面体网格划分大域、旋转域以及冰块域，旋转域和冰块域的外表面的边界类型设定为重叠网格。基于对冰块持续运动的计算需求，对其运动区域进行加密，冰块运动加密区为一个中心位于坐标原点、能包住螺旋桨以及冰块运动区域的圆柱体，如图 3所示。  Download: 图 3 截面加密 Fig. 3 Section diagram 此外，还要细化冰块和螺旋桨的表面网格，特别是螺旋桨的导边以及随边。冰块以及螺旋桨表面网格如图 4所示。  Download: 图 4 螺旋桨面网格与冰块网格 Fig. 4 Propeller surface mesh and ice mesh 2 计算验证与结果分析 2.1 实验流程 为了验证计算方法的正确性，本文选取1组工况在哈尔滨工程大学循环水槽进行实验，与数值模拟对比分析。 该实验选择循环水槽主要是因为循环水槽中测试模型没有前进速度而周围流场以指定速度持续运动的状况与计算模拟条件较为接近，且不受实验时间的限制，能较好地控制环境条件和实验过程，实验效率和精度较高。同时，循环水槽的宽度与深度远大于6倍螺旋桨直径，对水动力性能影响可忽略[18] 实验中采用的装置如图 5所示。根据现有研究，桨毂形状对总体水动力性能影响较小，且主要集中于叶根处[19]，对本文研究内容影响可忽略。  Download: 图 5 实验设备 Fig. 5 Experimental equipment 实验的工况设置如下：来流速度0.6 m/s，螺旋桨转速600 r/m。进速系数计算： $ J=\frac{V}{n D} \$ (5)

2.2 计算验证

 Download: 图 8 数值模拟与敞水实验的冰块位移对比 Fig. 8 Comparison of ice displacement between numerical simulation and open water experiment

2.3 进速对螺旋桨水动力性能变化

 Download: 图 9 不同进速系数下的KT、KQ曲线 Fig. 9 KT and KQ curves with different speed coefficient

2.4 螺旋桨水动力性能波动情况

2.5 某时刻不同进速下冰桨之间流场

 Download: 图 10 t=1.4 s时不同进速下流场 Fig. 10 Flow field diagrams at different velocities at t=1.4 s

2.6 冰块位移变化曲线分析

 Download: 图 11 不同进速冰块位移曲线 Fig. 11 Displacement Curves of Ice Blocks with Different Forward Velocities

3 结论

1) 经与实验值对比，本文数值计算方法可以较好地预报非接触条件下冰桨干扰水动力性能和冰的运动轨迹。

2) 自由运动的冰块后方存在一定的“加速区”和“阻塞区”，当这2种区域同时作用于螺旋桨桨盘时，螺旋桨的来流有较大的不均匀性，螺旋桨水动力系数出现周期性震荡。

3) 当冰块较远时，螺旋桨受加速区影响较大，此时螺旋桨推力系数和扭矩系数会下降，低于敞水工况；当冰块逐渐靠近螺旋桨，螺旋桨受阻塞区影响较明显，此时推力系数和扭矩系数会上升。

4) 随着进速系数的逐渐增加，总体上螺旋桨的推力系数和扭矩系数都会下降，阻塞区的影响会更为显著，推力系数和扭矩系数的上升趋势更显著，上升时间更长。

 [1] SHIH L Y, ZHENG Y. Constricted hydrodynamic flow due to proximate ice blockage over a blade profile in 2-D[C]//Proceedings of the 2nd International Symposium on Propeller and Cavitation. Hangzhou, China, 1992: 74-79. (0) [2] YAMAGUCHI H. Investigation on propeller performance in uniform and blocked flow for the open propeller in the IMD ice tank and cavitation tunnel experiments[R] Technical Report Laboratory Memorandum LM-1993-11, National Research Council of Canada, Institute for Marine Dynamics, 1993. (0) [3] BOSE N. Ice blocked propeller performance prediction using a panel method[J]. Transactions of the royal institution of naval architects, 1996, 138: 213-226. (0) [4] LUZNIK L, WALKER D, BOSE N, et al. Effects of ice blockage size and proximity on propeller performance during non-contact propeller-ice interaction[C]//Proceedings of the Offshore Mechanics and Arctic Engineering (OMAE). Denmark, 1995. (0) [5] VEITCH B. Predictions of ice contact forces on a marine screw propeller during the propeller-ice cutting process[J]. Acta polytechnica scandinavica, mechanical engineering series, 1995, 118: 1-110. (0) [6] WALKER D L N. The influence of blockage and cavitation on the hydrodynamic performance of ice class propellers in blocked flow[D] Johns: Memorial University of Newfoundland, 1996. (0) [7] LIU PENGFEI, DOUCET J M, VEITCH B, et al. Numerical prediction of ice induced hydrodynamic loads on propellers due to blockage[J]. Oceanic engineering international, 2000, 4(1): 31-38. (0) [8] LIU PENGFEI, BOSE N, COLBOURNE B. A Broyden numerical Kutta condition for an unsteady panel method[J]. International shipbuilding progress, 2002, 49(4): 263-273. (0) [9] 王国亮. 冰-桨-流相互作用下的螺旋桨水动力性能研究[D] 哈尔滨: 哈尔滨工程大学, 2016. WANG Guoliang. Study of propeller hydrodynamic performance under ice-propeller-flow interaction[D] Harbin: Harbin Engineering University, 2016. (0) [10] 常欣, 封振, 王超, 等. 冰临近过程中螺旋桨的水动力性能计算分析[J]. 武汉理工大学学报, 2016, 38(9): 43-50. CHANG Xin, FENG Zhen, WANG Chao, et al. Hydrodynamic performance calculation of a propeller under the action of an approaching ice block[J]. Journal of Wuhan University of Technology, 2016, 38(9): 43-50. DOI:10.3963/j.issn.1671-4431.2016.09.007 (0) [11] 王超, 叶礼裕, 常欣, 等. 非接触工况下冰桨干扰水动力载荷试验[J]. 哈尔滨工程大学学报, 2017, 38(8): 1190-1196. WANG Chao, YE Liyu, CHANG Xin, et al. Test of hydrodynamic loads under non-contact propeller-ice interaction[J]. Journal of Harbin Engineering University, 2017, 38(8): 1190-1196. (0) [12] 武珅, 曾志波, 张国平. 冰阻塞参数对螺旋桨水动力性能影响试验研究[J]. 船舶力学, 2018, 22(2): 156-164. WU Shen, ZENG Zhibo, ZHANG Guoping. Experimental research on the influence of ice block parameters on propeller hydrodynamic performance[J]. Journal of ship mechanics, 2018, 22(2): 156-164. DOI:10.3969/j.issn.1007-7294.2018.02.004 (0) [13] 郭春雨, 徐佩, 张海鹏. 冰对螺旋桨水动力性能影响的试验研究[J]. 船舶力学, 2018, 22(7): 797-806. GUO Chunyu, XU Pei, ZHANG Haipeng. Experimental study on the effect of ice on hydrodynamic performance of propeller[J]. Journal of ship mechanics, 2018, 22(7): 797-806. DOI:10.3969/j.issn.1007-7294.2018.07.003 (0) [14] 王超, 李兴, 常世伟, 等. 桨前自由状态冰的受力和运动轨迹[J]. 哈尔滨工程大学学报, 2019, 40(1): 20-25. WANG Chao, LI Xing, CHANG Shiwei, et al. Analysis of the force and motion trail of unconstrained fore-propeller ice[J]. Journal of Harbin Engineering University, 2019, 40(1): 20-25. (0) [15] 陈景仁. 湍流模型及有限分析法[M] 臧国才, 译. 上海: 上海交通大学出版社, 1989. CHEN Jingren. Turbulence model and finite analysis method[M] ZANG Guocai, trans. Shanghai: Shanghai Jiao Tong University Press, 1989. (0) [16] 谭礼斌, 黄灿, 余千英, 等. 基于STARCCM+的通机整机流场特性分析[J]. 装备制造技术, 2018(4): 1-7, 17. TAN Libin, HUANG Can, YU Qianying, et al. Flow field characteristics analysis of general purpose engine using STARCCM+[J]. Equipment manufacturing technology, 2018(4): 1-7, 17. DOI:10.3969/j.issn.1672-545X.2018.04.001 (0) [17] NICHOLS R, TRAMEL R, NICHOLS R, et al. Applications of a highly efficient numerical method for overset-mesh moving body problems[C]//Proceedings of the 15th Applied Aerodynamics Conference. Atlanta, GA: AIAA, 1997. (0) [18] 黄国燕, 李良伟, 赵耀, 等. 基于CFD方法的螺旋桨试验水筒的筒壁影响[J]. 舰船科学技术, 2011, 33(5): 19-23. HUANG Guoyan, LI Liangwei, ZHAO Yao, et al. The wall effect of simple propeller water tank by CFD[J]. Ship science and technology, 2011, 33(5): 19-23. DOI:10.3404/j.issn.1672-7649.2011.05.005 (0) [19] 刘爱兵, 谢清程, 张俊武. 桨毂形状对螺旋桨水动力影响仿真[J]. 船舶工程, 2019, 41(4): 42-46. LIU Aibing, XIE Qingcheng, ZHANG Junwu. Simulation of the effect of hub shape on propeller hydrodynamics[J]. Ship engineering, 2019, 41(4): 42-46. (0)