距离谱理论[1]作为图论的一个重要研究方向,主要是通过图的各类矩阵(距离矩阵、距离拉普拉斯矩阵等)、特征根及其特征向量来研究图的拓扑结构和代数性质,广泛应用于计算机、复杂系统、化学、物理等学科中。关于距离谱和距离(无符号)拉普拉斯谱的研究现状如下:学者们已经计算得到了圈图[2]、路图[3]和完全二部图[4]等简单图的距离谱;Stevanovic和Indulal[5-6]得到了正则图的联图的距离谱,距离正则图和完全图的簇图的距离谱;Barik和Sahoo[7]得到了距离正则图和正则图的冠图的距离谱和距离(无符号)拉普拉斯谱;其他研究成果见文献[8-11]。在此基础上,本文计算了一类组合图的广义距离谱。通过简单地参数赋值,就可以得到距离(无符号)拉普拉斯谱,大大减少了距离矩阵相关谱的计算量。
1 基本概念和引理本文只讨论简单连通图。图G=(V(G), E(G)),其中顶点集和边集分别为V(G)={v1, v2, …, vn},E(G)={e1, e2, …, em}。图G中任意2个顶点u、v之间的距离记为dG(u, v),它表示顶点u和顶点v之间最短路径的长度。顶点u的传递Tr(u)定义为顶点u到G中其他顶点距离的和,记为Tr(u)=
| $ \mathit{\boldsymbol{D}}E(G) = \sum\limits_{i = 1}^n | \lambda _i^D(G)| $ |
2013年,Aouchiche和Hansen[1]受拉普拉斯矩阵和无符号拉普拉斯矩阵的启发,提出了图的距离拉普拉斯矩阵和距离无符号拉普拉斯矩阵的概念,并研究它们的谱。图G的传递矩阵记为Tr(G),是对角线元素为Tr(vi)的n×n维对角矩阵。图G的距离拉普拉斯矩阵和距离无符号拉普拉斯矩阵分别记为L(G)=Tr(G)-D(G)和Q(G)=Tr(G)+D(G),相应的特征值分别为λ1L(G)≥λ2L(G)≥…≥λnL(G)=0,λ1Q(G)≥λ2Q(G)≥…≥λnQ(G),相应的特征值及其重数所构成的集合称为图G的距离拉普拉斯谱和距离无符号拉普拉斯谱,记为L-谱和Q-谱。
2019年,Guixian Tian[16]等研究了距离矩阵和传递矩阵的线性组合,提出了广义距离矩阵,记作Dα(G)=αTr(G)+(1-α)D(G),0≤α≤1。由此可以通过一个参数α将3个矩阵联系在一起,D0(G)=D(G),
受到Ligong Wang[12]和G. Indulal[13]论文的启发。文献[12]中,图Kn, n+1≡Kn+1, n是将Kn, n+1复制2次,然后将2个复制图中的n+1个对应顶点相连接,其中Kn, n+1是完全二部图,作者证明了Kn, n+1≡Kn+1, n是邻接整谱图。文献[13]中,作者将图Kn, n+1≡Kn+1, n一般化到图G1▽G2,是将G1和G2的联图复制2次,然后将2个复制图中G2的对应顶点相连接所得到的图,计算了其距离谱。明显地,图Kn, n+1≡Kn+1, n是图G1▽G2的一种特殊图
引理1[15] 设图G的距离拉普拉斯谱为{λL1(G)≥λL2(G)≥…≥λnL(G)=0},平均传递为t(G),则图G的距离拉普拉斯谱能量定义为:
| $ {\rm{DLE}} (G) = \sum\limits_{i = 1}^n | {\lambda _i}^L(G) - t(G)| $ |
引理2[15] 设图G的距离无符号拉普拉斯谱为{λQ1(G)≥λQ2(G)≥…≥λnQ(G)},平均传递为t(G),则图G的距离无符号拉普拉斯谱能量定义为:
| $ {\rm{DSLE}} (G) = \sum\limits_{i = 1}^n | {\lambda _i}^Q(G) - t(G)| $ |
定理1 设图Gi是有ni个顶点的ri-正则图,其邻接矩阵Ai对应的邻接谱为{ri, λi2, λi3, …, λini},i=1, 2。那么图G1▽G2的广义距离谱为:
1)(5n1+3n2-r1+λ1j)α-λ1j-2,j=2, 3, …, n1, 每一个重数为2;
2)(3n1+5n2-2r2+2λ2j)α-2λ2j-4,j=2, 3, …, n2;
3)(3n1+5n2-2r2-4)α,重数为n2-1;
4) 方程组的解
| $ \left\{ {\begin{array}{*{20}{l}} {{B^*}\beta + (1 - \alpha ){n_2}\gamma + 2(1 - \alpha ){n_2}\delta + }\\ {3(1 - \alpha ){n_1}\varepsilon = \sigma \beta }\\ {(1 - \alpha ){n_1}\beta + {C^*}\gamma + (1 - \alpha )(3{n_2} - {r_2} - 2)\delta }\\ {2(1 - \alpha ){n_1}\varepsilon = \sigma \gamma }\\ {2(1 - \alpha ){n_1}\beta + (1 - \alpha )(3{n_2} - {r_2} - 2)\gamma + }\\ {{C^*}\delta + (1 - \alpha ){n_1}\varepsilon = \sigma \delta }\\ {3(1 - \alpha ){n_1}\beta + 2(1 - \alpha ){n_2}\gamma + (1 - \alpha ){n_2}\delta + }\\ {{B^*}\varepsilon = \sigma \varepsilon } \end{array}} \right. $ |
其中,B*=(3n1+3n2)α+2n1-r1-2,C*=(3n1+3n2-r2-2)α+2n2-r2-2。
证明:对图G1▽G2的顶点进行适当编号,图G1▽G2的距离矩阵可以表示为:
| $ \mathit{\boldsymbol{D}}({G_1}\nabla {G_2}) = \left[ {\begin{array}{*{20}{c}} {2(\mathit{\boldsymbol{J}} - \mathit{\boldsymbol{I}}) - {\mathit{\boldsymbol{A}}_1}}&\mathit{\boldsymbol{J}}&{2\mathit{\boldsymbol{J}}}&{3\mathit{\boldsymbol{J}}}\\ \mathit{\boldsymbol{J}}&{2(\mathit{\boldsymbol{J}} - \mathit{\boldsymbol{I}}) - {\mathit{\boldsymbol{A}}_2}}&{3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2}}&{2\mathit{\boldsymbol{J}}}\\ {2\mathit{\boldsymbol{J}}}&{3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2}}&{2(\mathit{\boldsymbol{J}} - \mathit{\boldsymbol{I}}) - {\mathit{\boldsymbol{A}}_2}}&\mathit{\boldsymbol{J}}\\ {3\mathit{\boldsymbol{J}}}&{2\mathit{\boldsymbol{J}}}&\mathit{\boldsymbol{J}}&{2(\mathit{\boldsymbol{J}} - \mathit{\boldsymbol{I}}) - {\mathit{\boldsymbol{A}}_1}} \end{array}} \right] $ |
根据距离矩阵,得到图G1▽G2中每个顶点的传递Tr(u)=5n1+3n2-r1-2,u∈V(G1);Tr(v)=3n1+5n2-2r2-4,v∈V(G2)。因此,图G1▽G2的广义距离矩阵可以表示为:
| $ {\mathit{\boldsymbol{D}}_\alpha }({G_1}\nabla {G_2}) = = \left[ {\begin{array}{*{20}{c}} {{N^*}}&{(1 - \alpha )\mathit{\boldsymbol{J}}}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}&{3(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {(1 - \alpha )\mathit{\boldsymbol{J}}}&{{M^*}}&{(1 - \alpha )(3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2})}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {2(1 - \alpha )\mathit{\boldsymbol{J}}}&{(1 - \alpha )(3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2})}&{{\mathit{\boldsymbol{M}}^*}}&{(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {3(1 - \alpha )\mathit{\boldsymbol{J}}}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}&{(1 - \alpha )\mathit{\boldsymbol{J}}}&{{N^*}} \end{array}} \right] $ |
式中:M*=(3n1+5n2-2r2-4)αI+(1-α)(2J-2I-A2); N*=(5n1+3n2-r1-2)αI+(1-α) (2J-2I-A1); J是全1矩阵; I是单位矩阵。
因为Gi是ri-正则图,所以Ai的特征值ri所对应的特征向量是全1向量1,其他特征向量都和1正交。设Ai的特征值λi≠ri所对应的特征向量为Xi,则AiXi=λiXi,1TXi=0,i=1, 2。
向量ϕ1=[X1 0 0 0]T是矩阵Dα(G1▽G2)的特征值(5n1+3n2-r1+λ1j)α-λ1j-2,j=2, 3, …, n1所对应的特征向量。即:
| $ \begin{array}{l} {\mathit{\boldsymbol{D}}_\alpha }({G_1}\nabla {G_2}){\phi _1} = \left[ {\begin{array}{*{20}{c}} {{N^*}}&{(1 - \alpha )\mathit{\boldsymbol{J}}}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}&{3(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {(1 - \alpha )\mathit{\boldsymbol{J}}}&{{M^*}}&{(1 - \alpha )(3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2})}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {2(1 - \alpha )\mathit{\boldsymbol{J}}}&{(1 - \alpha )(3\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_2})}&M&{(1 - \alpha )\mathit{\boldsymbol{J}}}\\ {3(1 - \alpha )\mathit{\boldsymbol{J}}}&{2(1 - \alpha )\mathit{\boldsymbol{J}}}&{(1 - \alpha )\mathit{\boldsymbol{J}}}&{{N^*}} \end{array}} \right] \times \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{X}}_1}}\\ {\bf{0}}\\ {\bf{0}}\\ {\bf{0}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {((5{n_1} + 3{n_2} - {r_1} - 2)\alpha \mathit{\boldsymbol{I}} + (1 - \alpha )(2\mathit{\boldsymbol{J}} - 2\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}_1})){\mathit{\boldsymbol{X}}_1}}\\ {\bf{0}}\\ {\bf{0}}\\ {\bf{0}} \end{array}} \right]{\rm{ = }}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (5{n_1} + 3{n_2} - {r_1} + {\lambda _{{1_j}}})\alpha - {\lambda _{{1_j}}} - 2\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{X}}_1}}\\ {\bf{0}}\\ {\bf{0}}\\ {\bf{0}} \end{array}} \right] \end{array} $ |
同样地,向量ϕ2=[0 0 0 X1]T是矩阵Dα(G1▽G2)的特征值(5n1+3n2-r1+λ1j)α-λ1j-2,j=2, 3, …, n1所对应的特征向量。
设向量ψ=[0 tX2 X2 0]T是矩阵Dα(G1▽G2)的特征值μ所对应的特征向量,然后根据Dα(G1▽G2)ψ=μψ可得:
| $ \left\{ {\begin{array}{*{20}{l}} {[(3{n_1} + 5{n_2} - 2{r_2} + {\lambda _2} - 2)\alpha - 2 - {\lambda _2}]t - (1 - \alpha )({\lambda _2} + 2) = \mu t}\\ { - (1 - \alpha )({\lambda _2} + 2)t + (3{n_1} + 5{n_2} - 2{r_2} + {\lambda _2} - 2)\alpha - 2 - {\lambda _2} = \mu } \end{array}} \right. $ |
求解方程组可得:
μ=(3n1+5n2-2r2+2λ2j)α-2λ2j-4,j=2, 3, …, n2;μ=(3n1+5n2-2r2-4)α,重数为n2-1。
已经得到了2(n1-1)+2(n2-1)=2(n1+n2)-4个特征向量,这些特征向量正交于[1 0 0 0]T、[0 1 0 0]T、[0 0 1 0]T和[0 0 0 1]T。
因此,剩余4个特征向量有如下形式φ=[β1 γ1 δ1 ε1]T,(β, γ, δ, ε)≠(0, 0, 0, 0)。
设σ是矩阵Dα(G1▽G2)的特征向量φ所对应的特征值,根据Dα(G1▽G2)φ=σφ和Ai1=ri1,i=1, 2可得:
| $ \left\{ {\begin{array}{*{20}{l}} {{B^*}\beta + (1 - \alpha ){n_2}\gamma + 2(1 - \alpha ){n_2}\delta + 3(1 - \alpha ){n_1}\varepsilon = \sigma \beta }\\ {(1 - \alpha ){n_1}\beta + {C^*}\gamma + (1 - \alpha )(3{n_2} - {r_2} - 2)\delta + 2(1 - \alpha ){n_1}\varepsilon = \sigma \gamma }\\ {2(1 - \alpha ){n_1}\beta + (1 - \alpha )(3{n_2} - {r_2} - 2)\gamma + {C^*}\delta + (1 - \alpha ){n_1}\varepsilon = \sigma \delta }\\ {3(1 - \alpha ){n_1}\beta + 2(1 - \alpha ){n_2}\gamma + (1 - \alpha ){n_2}\delta + {B^*}\varepsilon = \sigma \varepsilon } \end{array}} \right. $ |
式中:B*=(3n1+3n2)α+2n1-r1-2,C*=(3n1+3n2-r2-2)α+2n2-r2-2。
假设β=0代入上面方程组,化简得γ=δ=ε=0,矛盾。因此,不失一般性,假设α=1求解上面方程组可得定理中的第(4)部分,证毕。
3 图G1▽G2的距离拉普拉斯谱定理2 设图Gi是有ni个顶点的ri-正则图,其邻接矩阵Ai对应的邻接谱为{ri, λi2, λi3, …, λini},i=1, 2。那么图G1▽G2的距离拉普拉斯谱为:
1) 5n1+3n2-r1+λ1j,j=2, 3, …, n1, 每一个重数为2;
2) 3n1+5n2-2r2+2λ2j,j=2, 3, …, n2;
3) 3n1+5n2-2r2-4,重数为n2-1;
4)
其中A*=9n12-14n1n2+12n1r2+24n1+9n22-12n2r2-24n2+4r22+16r2+16。
证明:已知Dα(G)-Dβ(G)=(α-β)L(G),取α=1,β=0得L(G1▽G2)=D1(G1▽G2)-D0(G1▽G2),则由定理1可得定理2,证毕。
推论1 设图Kn是n个顶点的完全图的补图,图Kn+1是n+1个顶点的完全图的补图,则图Kn▽Kn+1是距离拉普拉斯整谱图。
证明:在定理2中,令G1=Kn,G2=Kn+1。即:n1=n, n2=n+1和r1=r2=0,则Kn▽Kn+1的距离拉普拉斯谱为:
推论2 图
证明:已知
定理3 设图Gi是有ni个顶点的ri-正则图,其邻接矩阵Ai对应的邻接谱为{ri, λi2, λi3, …, λini},i=1, 2。那么图G1▽G2的距离无符号拉普拉斯谱为:
1) 5n1+3n2-r1-λ1j-4,j=2, 3, …, n1, 每一个重数为2;
2) 3n1+5n2-2r2-2λ2j-8,j=2, 3, …, n2;
3) 3n1+5n2-2r2-4,重数为n2-1;
4)
其中A*=n12+2n1n2-4n1r1+4n1r2+n22+4n2r1-4n2r2+4r12-8r1r2+4r22; A**=49n12-62n1n2-28n1r1+56n1+49n22+28n2r1-56n2r2-56n2+4r12-16r1r2-16r1+16r22+32r2+16。
证明:已知
推论3 图Kn是n个顶点的完全图的补图,图Kn+1是n+1个顶点的完全图的补图,则图Kn▽Kn+1是距离无符号拉普拉斯整谱图。
证明:在定理3中,令G1=Kn,G2=Kn+1。即:n1=n, n2=n+1和r1=r2=0,则Kn▽Kn+1的距离无符号拉普拉斯谱为:
推论4 图Kn▽Kn+1的距离无符号拉普拉斯谱能量为DSLE(Kn▽Kn+1)=32n2-44n-1。
证明:已知
1) 主要研究了2个正则图经过Indu-Bala乘积这一图操作之后所形成的合成图的广义距离谱,揭示了合成图的广义距离谱、距离(无符号)拉普拉斯谱与原图的邻接谱之间的关系,不仅拓宽了组合图广义距离谱的研究范围,而且大大减少了距离(无符号)拉普拉斯谱的计算量;
2) 得到了一类特殊的距离(无符号)拉普拉斯整谱图;
3) 得到了特殊图的距离(无符号)拉普拉斯谱能量公式。
| [1] |
AOUCHICHE M, HANSEN P. Two Laplacians for the distance matrix of a graph[J]. Linear algebra and its applications, 2013, 439(1): 21-33. ( 0)
|
| [2] |
GRAOVAC A, JASHARI G, STRUNJE M. On the distance spectrum of a cycle[J]. Aplikace matematiky, 1985, 30(4): 286-290. ( 0)
|
| [3] |
RUZIEH S N, POWERS D L. The distance spectrum of the path Pn and the first distance eigenvector of connected graphs[J]. Linear and multilinear algebra, 1990, 28(1/2): 75-81. ( 0)
|
| [4] |
KRIVKA P, TRINAJSTIĆ N. On the distance polynomial of a graph[J]. Aplikace matematiky, 1983, 28(5): 357-363. ( 0)
|
| [5] |
STEVANOVIĆ D, INDULAL G. The distance spectrum and energy of the compositions of regular graphs[J]. Applied mathematics letters, 2009, 22(7): 1136-1140. DOI:10.1016/j.aml.2008.11.007 ( 0)
|
| [6] |
INDULAL G, STEVANOVIĆ D. The distance spectrum of corona and cluster of two graphs[J]. AKCE international journal of graphs and combinatorics, 2015, 12(2/3): 186-192. ( 0)
|
| [7] |
BARIK S, SAHOO G. On the distance spectra of coronas[J]. Linear and multilinear algebra, 2017, 65(8): 1617-1628. DOI:10.1080/03081087.2016.1249448 ( 0)
|
| [8] |
GOPALAPILLAI I. Distance spectrum of graph compositions[J]. ARS mathematica contemporanea, 2009, 2(1): 93-100. DOI:10.26493/1855-3974.103.e09 ( 0)
|
| [9] |
ALHEVAZ A, BAGHIPUR M, HASHEMI E, et al. On the distance Signless Laplacian spectrum of graphs[J]. Bulletin of the Malaysian mathematical sciences society, 2019, 42(5): 2603-2621. DOI:10.1007/s40840-018-0619-8 ( 0)
|
| [10] |
SCARIA D C, INDULAL G. The distance Laplacian and distance signless Laplacian spectrum of the subdivision-vertex join and subdivision-edge join of two regular graphs[J]. Discrete mathematics, algorithms and applications, 2019, 11(5): 1950053. DOI:10.1142/S1793830919500538 ( 0)
|
| [11] |
AOUCHICHE M, HANSEN P. On the distance signless Laplacian of a graph[J]. Linear and multilinear algebra, 2016, 64(6): 1113-1123. DOI:10.1080/03081087.2015.1073215 ( 0)
|
| [12] |
WANG Ligong. Integral graphs and integral trees[D]. Enshart: University of Twente, 2005.
( 0)
|
| [13] |
INDULAL G, BALAKRISHNAN R. Distance spectrum of Indu Bala product of graphs[J]. AKCE International journal of graphs and combinatorics, 2016, 13(3): 230-234. DOI:10.1016/j.akcej.2016.06.012 ( 0)
|
| [14] |
INDULAL G, GUTMAN I, VIJAYAKUMAR A. On distance energy of graphs[J]. MATCH communications in mathematical and in computer chemistry, 2008, 60(2): 461-472. ( 0)
|
| [15] |
YANG Jieshan, YOU Lihua, GUTMAN I. Bounds on the distance Laplacian energy of graphs[J]. Kragujevac journal of mathematics, 2013, 37(2): 245-255. ( 0)
|
| [16] |
CUI Shuyu, HE Jingxiang, TIAN Guixian. The generalized distance matrix[J]. Linear algebra and its applications, 2019, 563: 1-23. DOI:10.1016/j.laa.2018.10.014 ( 0)
|
2020, Vol. 41



0)