﻿ 深海双层管道温度效应分析
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2019, Vol. 40 Issue (8): 1462-1467  DOI: 10.11990/jheu.201806086 0

### 引用本文

LIU Kaiyue, CHEN Zhihua, LIU Hongbo, et al. Research on the temperature effect of the deep-sea pipe-in-pipe[J]. Journal of Harbin Engineering University, 2019, 40(8), 1462-1467. DOI: 10.11990/jheu.201806086.

### 文章历史

1. 天津大学 建筑工程学院, 天津 300072;
2. 天津大学 水利工程仿真与安全国家重点实验室, 天津 300072

Research on the temperature effect of the deep-sea pipe-in-pipe
LIU Kaiyue 1, CHEN Zhihua 1,2, LIU Hongbo 1, HUANG Jinchao 1, ZHANG Zechao 1, LI Yanbo 1
1. Department of Civil Engineering, Tianjin University, Tianjin 300072, China;
2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
Abstract: The ITT and nonlinear spring elements are used to establish a pipe-in-pipe model to provide an effective method for the finite element calculation of the deep-sea double-layer pipeline system. The accuracy of the finite element calculation results is verified through comparison with analytical solutions. A finite element model is constructed for the parameterized analysis of the effects of a nonuniform temperature field on the pipe-in-pipe by deriving the axial stress distribution of pipes in a nonuniform temperature field. Long pipes and short pipes are taken as analytical objects to investigate the trend followed by the changes in anchoring point and anchoring length and to obtain calculation results that are in line with the actual situation of the deep sea. Research results show that the accuracy of the model that introduces the ITT and nonlinear spring elements in the simulation of the nonuniform temperature effect of the PIP has improved. These results prove that the inner and outer pipes of the pipe-in-pipe maintain the coordination of deformation through the bulkhead under the action of a nonuniform temperature field.
Keywords: pipe-in-pipe    finite element calculation    nonuniform temperature field    temperature stress    axial displacement    ITT element    bulkhead

1 数值计算模型 1.1 单元选择

 Download: 图 1 管道截面 Fig. 1 The cross section of the pipe-in-pipe

 Download: 图 3 2种模型轴向位移计算结果对比 Fig. 3 The comparison of models′ axial displacement

1.2 边界条件

1.3 载荷作用

2 深海双层管道均匀温度效应算例分析

2.1 模型参数

2.2 解析公式

Bokaian的解析公式[2]是通过大量简化计算模型，尤其是对管道系统内外管的连接构造简化，忽略不均匀温度场的工况分析以及内外管道的接触，很大程度上影响到解析公式的应用范围和计算准确性。双层管道系统温度应力主要受一些参数影响，包括内外管重量、管道的轴向刚度、管道长度、海床及内外管间摩擦和管道钢材的热膨胀特性等。

 $-N_{T, p}+N_{v, p}-N_{E}+F_{s}+N_{\delta}+N_{c}=0$

2.3 管道均匀温度效应数值计算结果对比

3 双层管道不均匀温度效应数值模拟计算结果

3.1 轴向位移

 Download: 图 5 不同管道不均匀温度场位移计算结果 Fig. 5 The displacement's results of the different pipeline under non-uniform temperature field

3.2 轴向应力

 Download: 图 6 不同管道不同温度场下位移计算结果对比 Fig. 6 The displacement's comparison of the different pipeline under different temperature fields

4 结论

1) 引入非线性弹簧(ITT)单元后，在温度应力的计算过程中，管道模型具有良好的精准度，与Bokaian的解析公式得到的结果差别小，很好地解决不均匀温度场的作用以及内外管间的摩擦接触等问题，同时可以计算多锚固件连接情况，通过软件模拟计算可以还原管道全长应力分布实际情况。

2) 通过建立非线性弹簧(ITT)单元，方便模拟位于刚性海床和管道之间的摩擦接触，方便相关管道模型的建立与计算。