﻿ HCRSP推进器操舵工况空泡性能数值模拟
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2018, Vol. 39 Issue (12): 1873-1879  DOI: 10.11990/jheu.201706021 0

### 引用本文

XU Jiaqi, XIONG Ying, WANG Zhanzhi, et al. Numerical simulation of cavitation performance of HCRSP in steering conditions[J]. Journal of Harbin Engineering University, 2018, 39(12), 1873-1879. DOI: 10.11990/jheu.201706021.

### 文章历史

HCRSP推进器操舵工况空泡性能数值模拟

Numerical simulation of cavitation performance of HCRSP in steering conditions
XU Jiaqi , XIONG Ying , WANG Zhanzhi , WANG Rui
College of Naval Ship and Ocean, Naval University of Engineering, Wuhan 430033, China
Abstract: To better understand the cavitation performance of HCRSP under steering conditions, primarily the E779A propeller cavitation was simulated as to validate the simulation method, then the numerical simulation of HCRSP cavitation performance was carried out. It was found that the cavitation of fore propeller is hardly affected by the aft propeller and pod, while the cavitation of the aft propeller is affected by the fore propeller, pod, and steering angles. The cavitation area fluctuates with the circumferential angle. Overset grid assembly tools were used to generate high-quality and high-efficiency overset meshes, especially for the steered pod. This paper provides references for the design of an HCRSP with better cavitation performance.
Keywords: HCRSP    steering conditions    cavitation    numerical simulation    fore propeller    aft propeller    pod    mesh

1 数值计算方法 1.1 控制方程

 $\frac{{\partial {\rho _m}}}{{\partial t}} + \frac{{\partial \left( {\rho {u_i}} \right)}}{{\partial {x_i}}} = 0$ (1)
 $\begin{array}{l} \;\;\;\;\;\;\frac{{\partial \left( {{\rho _m}{u_i}} \right)}}{{\partial t}} + \frac{{\partial \left( {{\rho _m}{u_i}{u_j}} \right)}}{{\partial {x_j}}} = \\ - \frac{{\partial p}}{{\partial {x_i}}} + \frac{\partial }{{\partial {x_j}}}\left[ {\left( {\mu + {\mu _t}} \right)\left( {\frac{{\partial {u_i}}}{{\partial {x_j}}} + \frac{{\partial {u_j}}}{{\partial {x_i}}}} \right)} \right] \end{array}$ (2)

1.2 空泡模型

 ${\rho _m} = \alpha {\rho _v} + \left( {1-\alpha } \right){\rho _l}$ (3)

 $\frac{{\partial \left( {\alpha {\rho _v}} \right)}}{{\partial t}} + \frac{{\partial \left( {\alpha {\rho _v}{u_i}} \right)}}{{\partial {x_i}}} = {{\dot m}^ + }-{{\dot m}^-}$ (4)

p < pv时，

 ${{\dot m}^ + } = 3\frac{{{\rho _l}{\rho _v}}}{{{\rho _m}}}\frac{1}{R}\alpha \left( {1-\alpha } \right)\sqrt {\frac{2}{3}\frac{{{p_v}-p}}{{{\rho _l}}}}$ (5)

p>pv时，

 ${{\dot m}^-} =-3\frac{{{\rho _l}{\rho _v}}}{{{\rho _m}}}\frac{1}{R}\alpha \left( {1-\alpha } \right)\sqrt {\frac{2}{3}\frac{{p - {p_v}}}{{{\rho _l}}}}$ (6)

pv为饱和蒸汽压。汽相体积分数：

 $\alpha = \frac{{{n_0}\frac{4}{3}{\rm{ \mathsf{ π} }}{\mathit{R}^3}}}{{1 + {n_0}\frac{4}{3}{\rm{ \mathsf{ π} }}{\mathit{R}^3}}}$ (7)
2 E779A桨模敞水、空泡性能数值模拟 2.1 网格划分与计算方法

2.2 计算结果 2.2.1 敞水性能

J=0.88工况，分别采用三套网格进行了网格无关性和收敛性分析。三套方案的近壁面网格沿壁面法向的划分无异，而桨叶表面网格尺寸不同，仅螺旋桨旋转域网格数量不同，网格方案如表 2，其推力和扭矩系数计算值与试验值如表 3

2.2.2 空泡性能

 Download: 图 2 E779A桨空泡形态计算与试验结果对比 Fig. 2 Comparison between calculation & experiment result of E779A cavitation pattern

3 混合式CRP推进器敞水、空泡性能数值模拟 3.1 网格划分与计算方法

3.2 计算结果与讨论 3.2.1 敞水性能

3.2.2 空泡性能

 Download: 图 5 混合式CRP推进器空泡数值计算与试验结果 Fig. 5 Computation & experiment results of cavitation of HCRSP

1) 前桨桨叶空泡面积受周向角、吊舱偏转角变化的影响较小；前者主要是因为前桨所处来流为均匀来流，后者则表明前桨受后桨抽吸作用、吊舱阻塞作用的影响很小。

2) 后桨桨叶的空泡的产生基本从梢部开始，随后叶背中部也产生片空泡，两处空泡面积逐渐增大并逐渐合并，之后空泡面积减小，叶背中部片空泡的消失滞后于梢部空泡；

3) 吊舱向左舷偏转时，后桨叶背片空泡的产生和溃灭过程从周向角240°~360°再由0°至120°，空泡面积先增大后减小；吊舱向右舷偏转时，叶背片空泡的产生和溃灭过程则大致从60°至300°。吊舱偏转时，相对于叶背中部的片空泡，梢部空泡产生至溃灭的过程相对提前60°左右。随偏转加剧，后桨桨叶空泡面积增大。

 ${J_{{\rm{local}}}} = \frac{{{V_{AA}}{\rm{cos}}\psi }}{{nD + {V_{AA}} + {\rm{sin}}\psi {\rm{cos}}\theta }} = \frac{{{J_A}{\rm{cos}}\psi }}{{1 + {J_A}{\rm{sin}}\psi {\rm{cos}}\theta }}$ (8)

 Download: 图 7 混合式CRP推进器空泡和涡量云图 Fig. 7 Iso-surface of cavitation & vorticity of HCRSP

1) 偏转角达10°时，前桨下泄的毂涡空泡到达后桨吸力面时仍未消失，后桨桨叶转至前桨桨毂正后方时，总的空泡面积有所增大；

2) 直航时，吊舱支架两侧均有空泡产生。向左舷偏转时，吊舱支架左舷侧空泡面积大于右舷侧，随偏转加剧，右舷侧空化减弱，左舷侧空化增强；反之亦然。

4 结论

1) 前桨的空泡由进速系数和空泡数决定，基本不受后桨、吊舱的影响；

2) 后桨的空泡与进速系数和空泡数有关，并且明显受偏转角的影响，桨叶旋转一周内空泡面积与形态变化显著。吊舱向左舷偏转时，后桨叶背片空泡的产生至溃灭过程从240°至360°再由0°至120°；向右舷偏转时，后桨叶背片空泡的产生至溃灭过程大致从60°至300°。前桨尾流加速作用减弱会使后桨桨叶叶背空泡的产生提前大约30°，吊舱舱体的阻塞作用会使后桨桨叶叶背空泡的溃灭延迟大约30°。随偏转加剧，后桨桨叶空泡面积增大，且空泡面积随周向角的脉动变化更加显著；

3) 偏转角较大(10°及以上)时，前桨下泄的毂涡空泡到达后桨吸力面时仍未消失，加剧后桨的空化。

1) 改进前桨毂帽，减弱或消除毂涡空泡；

2) 改进吊舱的设计，在吊舱后部加装活动舵叶，主要通过操纵舵叶来提供操舵力，减小操舵力要求下的吊舱偏转角，即减小后桨的偏转角，从而更好地使后桨吸收前桨尾流能量实现对转桨(CRP)的节能功能。

 [1] SÁNCHEZ-CAJA A, PÉREZ-SOBRINO M, QUEREDA R, et al. Combination of Pod, CLT and CRP propulsion for improving ship efficiency: the TRIPOD project[C]//Proceedings of the 3rd International Symposium on Marine Propulsorssmp'13. Tasmania, Australia, 2013. (0) [2] 崔燕. 欧盟STREAMLINE计划[J]. 中国船检, 2013(11): 68-69. CUI Yan. EU STREAMLINE project[J]. China ship survey, 2013(11): 68-69. (0) [3] XIONG Ying, ZHANG Ke, WANG Zhanzhi, et al. Numerical and experimental studies on the effect of axial spacing on hydrodynamic performance of the hybrid CRP Pod propulsion system[J]. China ocean engineering, 2016, 30(4): 627-636. DOI:10.1007/s13344-016-0040-8 (0) [4] 王展智, 熊鹰, 王睿. 主要设计参数对混合式CRP推进器敞水性能的影响[J]. 哈尔滨工程大学学报, 2016, 37(1): 98-103. WANG Zhanzhi, XIONG Ying, WANG Rui. Effect of the main design parameters on the open-water performance of a hybrid CRP podded propulsion system[J]. Journal of Harbin Engineering University, 2016, 37(1): 98-103. (0) [5] 盛立, 熊鹰. 混合式CRP吊舱推进器水动力性能数值模拟及试验[J]. 南京航空航天大学学报, 2012, 44(2): 184-190. SHENG Li, XIONG Ying. Numerical simulation and experimental investigation on hydrodynamics performance of hybrid CRP podded propulsion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(2): 184-190. DOI:10.3969/j.issn.1005-2615.2012.02.008 (0) [6] 王睿, 熊鹰, 王展智, 等. 混合式CRP空泡性能模型试验研究[J]. 哈尔滨工程大学学报, 2016, 37(12): 1625-1630. WANG Rui, XIONG Ying, WANG Zhanzhi, et al. Experimental research on the cavitation performance of a hybrid contra-rotating shaft pod propulsor[J]. Journal of Harbin Engineering University, 2016, 37(12): 1625-1630. (0) [7] 徐嘉启, 熊鹰, 王展智. 混合式CRP推进器操舵工况水动力性能数值研究[J]. 中国舰船研究, 2017, 12(2): 63-70, 99. XU Jiaqi, XIONG Ying, WANG Zhanzhi. Numerical research of hydrodynamic performance of hybrid CRP podded propulsor in steering conditions[J]. Chinese journal of ship research, 2017, 12(2): 63-70, 99. DOI:10.3969/j.issn.1673-3185.2017.02.008 (0) [8] WANG Zhanzhi, XIONG Ying. Effect of time step size and turbulence model on the open water hydrodynamic performance prediction of contra-rotating propellers[J]. China ocean engineering, 2013, 27(2): 193-204. DOI:10.1007/s13344-013-0017-9 (0) [9] BLACK S D, CUSANELLI D S. Design and testing of a hybrid shaft-pod propulsor for a high speed sealift ship[C]//Proceedings of the SNAME Propellers/Shafting 2003 Symposium, Society of Naval Architects and Marine Engineers. Virginia, USA, 2009. (0) [10] KIM S H, CHOO S H, PARK J Y, et al. Numerical simulation of cavitation phenomena for hybrid contra-rotating shaft propellers[C]//Proceedings of the 9th International Symposium on Cavitation. Lausanne, Switzerland, 2015. (0) [11] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605. DOI:10.2514/3.12149 (0) [11] SAUER J. Instationär kavitierende Strömungen-Ein neues Modell, basierend auf Front Capturing (VoF) und Blasendynamik[D]. Germany: University of Karlsruhe, 2000. (0) [12] SALVATORE F. The INSEAN E779A propeller experimental dataset[R]. INSEAN, VIRTUEWP4, 2004. (0) [13] VAZ G, HALLY D, HUUVA T, et al. Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation[C]//Proceedings of the 4th International Symposium on Marine Propulsors. Austin, Texas, USA, 2015. (0) [14] PEREIRA F, SALVATORE F, DI FELICE F. Measurement and modeling of propeller cavitation in uniform inflow[J]. Journal of fluids engineering, 2004, 126(4): 671-679. DOI:10.1115/1.1778716 (0) [15] PEREIRA F, SALVATORE F, DI FELICE F, et al. Experimental investigation of a Cavitating propeller in non-uniform inflow[C]//Proceedings of the 25th ONR Symposium on Naval Hydrodynamics. Newfoundland, Canada, 2004. (0) [16] MITJA M, ENRICO N. Comparison of hexa-structured and hybrid-unstructured meshing approaches for numerical prediction of the flow around marine propellers[C]//Proceedings of the 1st International Symposium on Marine Propulsors. Trondheim, Norway, 2009. (0) [17] 王展智.采用混合式CRP推进器的船舶水动力特性及尺度效应研究[D].武汉: 海军工程大学, 2014. WANG Zhanzhi. Study on the Hydrodynamic characteristic and scale effect of a ship equipped with the hybrid CRP pod propulsion system[D]. Wuhan: Naval University of Engineering, 2014. (0) [18] 伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法[J]. 航空学报, 2011, 32(1): 15-26. WU Yizhao, TIAN Shuling, XIA Jian. Unstructured grid methods for unsteady flow simulation[J]. Acta aeronautica et astronautica sinica, 2011, 32(1): 15-26. (0) [19] 徐嘉启.操舵工况下混合式CRP推进器水动力性能数值模拟研究[D].武汉: 海军工程大学, 2016. XU Jiaqi. Numerical study of hydrodynamic performance of hybrid CRP propulsor in steering conditions[D]. Wuhan: Naval University of Engineering, 2016. (0) [20] 宋晗.空泡水洞洞壁效应修正及混合式CRP推进器水动力性能试验研究[D].武汉: 海军工程大学, 2016. SONG Han. Experiment research on the wall effect correction in cavitation tunnel and the hydrodynamic performance of Hybrid Contra Rotating Propeller[D]. Wuhan: Naval University of Engineering, 2016. (0) [21] CARRICA P M, CASTRO A M, STERN F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of marine science and technology, 2010, 15(4): 316-330. DOI:10.1007/s00773-010-0098-6 (0)