﻿ 冲击荷载下大型LNG储罐混凝土外罐的数值模拟
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2018, Vol. 39 Issue (9): 1517-1525  DOI: 10.11990/jheu.201703059 0

### 引用本文

YAN Chen, ZHAI Ximei, WANG Yonghui. Numerical simulation of a large LNG concrete outer tank under impact loads[J]. Journal of Harbin Engineering University, 2018, 39(9), 1517-1525. DOI: 10.11990/jheu.201703059.

### 文章历史

1. 哈尔滨工业大学 结构工程灾变与控制教育部重点实验室, 黑龙江 哈尔滨 150090;
2. 哈尔滨工业大学 土木工程智能防灾减灾工业和信息化部重点实验室, 黑龙江 哈尔滨 150090

Numerical simulation of a large LNG concrete outer tank under impact loads
YAN Chen1,2, ZHAI Ximei1,2, WANG Yonghui1,2
1. Key Lab of Structural Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
Abstract: To obtain the dynamic response of large full-capacity liquefied natural gas(LNG)tanks under impact loads and its law of the external concrete wall, an elaborate finite-element (FE) model of a LNG outer tank under impact loading was established using an actual LNG tank project as a basis and ANSYS/LS-DYNA FE software as an analytical platform. A Tomahawk cruise missile was considered the impact object, and the internal force, deformation, and law of the tank structure were analyzed. The failure mode of the structure under the impact load was also summarized. The impact test results verified the numerical simulation method of this paper and its applicability under impact loading against a concrete target. The prestressed steel provided at the tank wall improved the ability of the structure to resist the impact load. Further analysis demonstrated that the impact damage of the LNG outer tank can be divided into three types:local dent, peel-off of the concrete surface, and breakdown. Weak positions were observed at the connections between the tank dome and the outer wall and between the outer tank wall and the floor. These results provide a basis for the future anti-impact design of tank structures.
Keywords: liquefied natural gas tank    impact    dynamic response    numerical simulation    prestress    concrete outer tank    finite element    failure model

1 工程概况及有限元模型的建立

160 000 m3LNG储罐由混凝土圆柱壳和球面穹顶组成，罐体分为内外罐两部分。其中，内罐采用9%镍钢，外罐采用预应力混凝土，穹顶采用预应力混凝土球面壳体。该LNG储罐的具体参数见图 1

 Download: 图 1 160 000 m3全容式LNG储罐混凝土外罐剖面图 Fig. 1 Sections of the 160 000 m3 LNG outer tank
1.1 单元类型及基本假定

1.2 混凝土本构模型

2.3 冲击试验验证

 Download: 图 5 有限元模拟靶板冲击贯穿全过程 Fig. 5 Whole process of the impact perforation of the slab

 ${E_r} = \frac{{{v_s} - {v_t}}}{{{v_t}}}$ (1)

1.4 冲击作用下LNG储罐混凝土外罐的有限元建模

 $B = b - \frac{{\pi {r^2}n}}{{1\;000}} + \left( {\frac{{{E_s}}}{{{E_c}}} - 1} \right)b\rho$ (2)

 Download: 图 6 LNG储罐混凝土外罐有限元模型 Fig. 6 FE model of the LNG concrete outer tank
1.5 预应力钢筋的影响

2 冲击作用下的数值响应分析 2.1 穹顶位置的冲击响应

 Download: 图 7 储罐Mises应力云图 Fig. 7 Von Mises stress of LNG tank
 Download: 图 9 穹顶单元位移和Mises等效应力时程 Fig. 9 Displacement-time curve and Von Mises stress-time curves
2.2 冲击响应的参数分析

2.2.1 冲击速度

2.2.2 冲击角度

2.2.3 冲击位置

2.3 LNG储罐混凝土外罐的冲击破坏分类

 Download: 图 13 不同冲击速度时穹顶冲击区的Mises等效应力云图 Fig. 13 Von Mises stress of the impact area on the dome under different impact velocities

3 结论

1) 罐壁布置预应力钢筋能够提高LNG储罐抵御冲击的能力。

2) 冲击荷载作用下LNG储罐混凝土外罐的破坏类型可分为三种：混凝土发生凹陷；混凝土表面发生剥落；混凝土外罐发生击穿破坏。

3) 定义了区分三种冲击破坏类型的临界速度，其中划分混凝土凹陷与剥落破坏类型的速度为第一临界速度，划分混凝土剥落与击穿破坏类型的速度为第二临界速度。

4) 冲击速度越大、冲击角度越小时，混凝土外罐受力越不利、冲击区域影响范围越大，其中0°为最不利冲击角度。冲击区域影响范围和冲击位置关系不大。

5) LNG储罐外罐与环梁、外罐与底板的连接处为危险位置，是抗冲击防御设计的薄弱部位。

 [1] 苏娟, 刘玉玺, 荆潇, 等. 冲击荷载作用下LNG混凝土储罐力学性能分析[J]. 中国造船, 2012, 53(S2): 241-248. SU Juan, LIU Yuxi, JING Xiao, et al. Mechanical analysis of LNG prestressed concrete tank for blast loading[J]. Shipbuliding of China, 2012, 53(S2): 241-248. (0) [2] 翟希梅, 高嵩, 范峰. 低温下LNG储罐混凝土外罐的静力性能分析[J]. 哈尔滨工业大学学报, 2014, 46(4): 7-12. ZHAI Ximei, GAO Song, FAN Feng. Mechanical behavioral of LNG outer concrete tank under low temperature[J]. Journal of Harbin Institute of Technology, 2014, 46(4): 7-12. (0) [3] 苏娟, 周美珍, 余建星, 等. 泄露工况下大型LNG预应力混凝土储罐低温分析[J]. 低温工程, 2010(4): 47-52. SU Juan, ZHOU Meizhen, YU Jianxing, et al. Low temperature analysis of LNG prestressed concrete tank for spill conditions[J]. Cryogenics, 2010(4): 47-52. DOI:10.3969/j.issn.1000-6516.2010.04.011 (0) [4] 张云峰, 张钊, 薛景宏, 等. LNG储罐外罐壁在冲击荷载作用下的受力分析[J]. 大庆石油学院学报, 2011, 35(6): 93-96. ZHANG Yunfeng, ZHANG Zhao, XUE Jinghong, et al. Stress analysis of the outer wall of LNG storage tank under impact loading[J]. Journal of Daqing Petroleum Institute, 2011, 35(6): 93-96. DOI:10.3969/j.issn.2095-4107.2011.06.019 (0) [5] 李金光, 郑建华, 李航, 等. 全容式LNG储罐在飞行物冲击作用下的局部效应验算[J]. 石油工程建设, 2013, 39(4): 30-33. LI Jinguang, ZHENG Jianhua, LI Hang, et al. Verifying calculations of local effect of flying object impact on concrete outer tank of full-containment LNG storage tank[J]. Petroleum engineering construction, 2013, 39(4): 30-33. DOI:10.3969/j.issn.1001-2206.2013.04.008 (0) [6] 崔利富, 孙建刚, 周国发, 等. 冲击荷载作用下LNG储罐外罐力学性能数值仿真分析[J]. 自然灾害学报, 2016, 25(4): 167-175. CUI Lifu, SUN Jiangang, ZHOU Guofa, et al. Numerical simulation analysis of LNG outer tank mechanical properties under impact load[J]. Journal of natural disasters, 2016, 25(4): 167-175. (0) [7] 葛庆子, 翁大根, 张瑞甫. 飞机撞击特大型LNG储罐全过程仿真分析[J]. 振动与冲击, 2016, 35(4): 1-7, 21. GE Qingzi, WENG Dagen, ZHANG Ruifu. Whole process simulation analysis of aircraft's crashing into an extra-large LNG storage tank[J]. Journal of vibration and shock, 2016, 35(4): 1-7, 21. (0) [8] 葛庆子, 翁大根, 张瑞甫. 特大型LNG储罐等壳体结构抗爆研究综述[J]. 振动与冲击, 2013, 32(11): 89-94. GE Qingzi, WENG Dagen, ZHANG Ruifu. Reviews of antiknock study on extra-large LNG storage tank and other shell structures[J]. Journal of vibration and shock, 2013, 32(11): 89-94. DOI:10.3969/j.issn.1000-3835.2013.11.019 (0) [9] 董鲁生, 张树民. 日本LPG、LNG储罐设计[J]. 油气储运, 1996, 15(5): 51-53. DONG Lusheng, ZHANG Shumin. Design of LPG and LNG tanks in Japan[J]. Oil & gas storage and transportation, 1996, 15(5): 51-53. (0) [10] European Committee for Standardization. EN 14620-1: 2006, Design and manufacture of site built, vertical, cylindrical, flat-bottomed steel tanks for the storage of refrigerated, liquefied gases with operating temperatures between 0℃ and -165℃, Part 1: General[S]. European Commite for Standardization Brussels, 2006. (0) [11] BSI. BS7777: 1993, Flat-bottomed, vertical, cylindrical storage tanks for low temperature service[S]. British standards Institution, London, 1993. (0) [12] American Petroleum Institute. API620: 2008, Design and construction of large, welded, low-pressure storage tanks[S]. American Petroleum Institute, Washington, 2008. (0) [13] 巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(2): 340-344. WU Xutao, LI Yao, LI Heping. Research on the material constants of the HJC dynamic constitutive model for concrete[J]. Chinese journal of applied mechanics, 2010, 27(2): 340-344. (0) [14] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//MICHAEL J M. JOSEPH E B. 14th International Symposium on Ballistics. Quebec, Canada, 1993, 2: 591-600. (0) [15] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International journal of impact engineering, 1997, 19(9/10): 847-873. (0) [16] 刘云飞, 申祖武, 晏石林, 等. 预应力钢筋混凝土安全壳侵彻数值模拟分析[J]. 武汉理工大学学报, 2003, 25(10): 51-53, 67. LIU Yunfei, SHEN Zuwu, YAN Shilin, et al. Numerical simulation of projectile penetration into prestressed concrete containment[J]. Journal of Wuhan University of Technology, 2003, 25(10): 51-53, 67. DOI:10.3321/j.issn:1671-4431.2003.10.014 (0) [17] 纪冲, 龙源, 万文乾. 弹丸侵彻钢纤维混凝土数值模拟[J]. 解放军理工大学学报(自然科学版), 2005, 6(5): 459-463. JI Chong, LONG Yuan, WAN Wenqian. Numerical simulation of projectile penetrating into steel fiber reinforced concrete[J]. Journal of PLA University of Science and Technology (natural science edition), 2005, 6(5): 459-463. (0) [18] 董军, 邓国强, 杨科之, 等. 弹丸对混凝土薄板的冲击破坏效应[J]. 岩石力学与工程学报, 2005, 24(4): 713-720. DONG Jun, DENG Guoqiang, YANG Kezhi, et al. Damage effect of thin concrete slabs subjected to projectile impact[J]. Chinese journal of rock mechanics and engineering, 2005, 24(4): 713-720. DOI:10.3321/j.issn:1000-6915.2005.04.029 (0)