﻿ 循环工况下变矩器叶片角设计空间的性能优化
«上一篇
 文章快速检索 高级检索

 哈尔滨工程大学学报  2017, Vol. 38 Issue (11): 1781-1785  DOI: 10.11990/jheu.201606058 0

### 引用本文

LI Wenjia, WANG Anlin, LI Xiaotian, et al. Performance optimization of the design space of torque converter's blade angle under the condition of driving cycle[J]. Journal of Harbin Engineering University, 2017, 38(11): 1781-1785. DOI: 10.11990/jheu.201606058.

### 基金项目

2012年重大科技成果转化项目（〔2012〕258号）

### 文章历史

1. 同济大学 机械与能源工程学院, 上海 201804;
2. 山推工程机械股份有限公司, 山东 济宁 272073

Performance optimization of the design space of torque converter's blade angle under the condition of driving cycle
LI Wenjia1, WANG Anlin1, LI Xiaotian1, ZHANG Qingwu2
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China;
2. Shantui Construction Machinery Co., Ltd., Ji'ning 272073, China
Abstract: To solve the matching problem between driving cycle and torque converter and to build the dynamics mapping relationship between the design parameters of torque converter and working condition, a performance optimization method for the design space of a torque converter's blade angle under the condition of driving cycle was proposed. In a physical experiment, the statistics driving cycle weighted efficiency of the torque converter was taken as the evaluation objective. A performance model was built by using one-dimensional flow theory and the fluid-solid coupling simulation result of the torque converter. The blade angle design variables of the torque converter were optimized. Typical working conditions of V and T, and the torque converter with double turbines were the research object during the optimization. The statistics driving cycle weighted efficiency improved by 2.64% and 2.48%, respectively, as verified by the precision of the fluid-solid coupling simulation through a bench experiment on the torque converter. An integration dynamics mapping relationship between the whole machine and the blade angle design variables was established in a simple manner. The method has good engineering guidance value for the customized design of a machine with congeneric fittings.
Key words: driving cycle    torque converter    blade angle design space    performance optimization    fluid-solid coupling simulation    weighing efficiency

1 变矩器统计循环工况加权效率

1.1 装载机循环工况实验

 图 1 装载机实验方案 Fig.1 Experiment project of loader

1.2 变矩器的统计循环工况加权效率

 图 2 变矩器在各速比区间的工作概率 Fig.2 Working probability in each speed ratio interval

 $\eta {\rm{ = }}\sum\limits_{k = 1}^{10} {{w_k}} {\bar \eta _{\left( {k-1} \right)/10 \sim k/10}}$ (1)

 ${\bar \eta _{\left( {k-1} \right)/10 \sim k/10}} = \frac{{\sum\limits_{m = 1}^{11} {{\eta _{\left( {k-1} \right)/10 + \left( {m-1} \right)/100}}} }}{{11}}$ (2)

 $\eta = \sum\limits_{k = 1}^{10} {{w_k}\frac{{\sum\limits_{m = 1}^{11} {{\eta _{\left( {k-1} \right)/10 + \left( {m-1} \right)/100}}} }}{{11}}}$ (3)

2 叶片角设计空间的变矩器性能模型 2.1 设计变量及建模方法

2.2 流固耦合仿真精度

 图 3 台架实验与流固耦合仿真对比 Fig.3 Bench experiment and fluid-solid coupling simulation
2.3 出口液流偏离

 图 4 液流绝对速度的圆周分速度偏差 Fig.4 Peripheral velocity deviation of absolute velocity of flow
2.4 冲击损失系数

2.5 性能模型精度的验证

 图 5 性能模型与流固耦合仿真的效率对比 Fig.5 Efficiency comparison of performance model and fluid-solid coupling simulation
3 循环工况条件下变矩器性能优化及验证 3.1 变矩器性能优化结果

3.2 性能优化结果的验证

 图 6 优化模型与原始模型的效率对比 Fig.6 Efficiency of optimization and original model
4 结论

1) 根据流固耦合仿真分析，两个优化模型均在各自工况表现更高的加权效率；与原始模型相比，加权效率分别提升2.64%和2.48%。

2) 该方法简易地建立了整机与变矩器叶片角设计参数间的一体化动力学匹配关系，对同类面向主机的配件定制化设计有工程化指导价值。

 [1] BANEJEE J, ADIBI A H, LASHGARIAN A, et al. Parametric importance analysis and design optimization of a torque converter model using sensitivity information[J]. SAE international journal of passenger cars-mechanical systems, 2012, 5(1): 621-638. DOI:10.4271/2012-01-0808 (0) [2] KESY A, KADZIELA. Constuction optimization of hydrodynamic torque converter with application of genetic algorithm[J]. Archives of civil and mechanical engineering, 2011, 6(4): 905-920. (0) [3] KESY A. Mathematical model of a hydrodynamic torque converter for vehicle power transmission system optimization[J]. International journal of vehicle design, 2012, 59(1): 1-22. DOI:10.1504/IJVD.2012.047777 (0) [4] WU H R, FENG L, ZHANG H S. Computer aided calculation of matching between engine and hydraulic torque converter[C]//Proceedings of the 20102nd International Conference on Future Computer and Communication, 2010:6-9. http://ieeexplore.ieee.org/document/5497302/ (0) [5] DI C S, DOERING J, KOLMANOVSKY I V, et al. MPC-based control of engine deceleration with open torque converter[C]//2012 IEEE 51st Annual Conference on Decision and Control, 2012:3753-3758. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6426615 (0) [6] CUI H W, WEI W, YAN Q D. Software development of steady numerical computational method of matching between hydrodynamic torque converter and engine[J]. Advanced materials research, 2011: 323-328. (0) [7] 王安麟, 章明犬, 李文嘉, 等. 采用装载机整机实验的液力变矩器性能匹配指标[J]. 西安交通大学学报, 2015, 10: 54-60. WANG Anlin, ZHANG Mingquan, LI Wenjia, et al. Performance matching index of torque converter based on loader tests[J]. Journal of Xi'an Jiaotong University, 2015, 10: 54-60. DOI:10.7652/xjtuxb201510009 (0) [8] 王剑鹏. 50型装载机液压系统动态特性与热平衡研究[D]. 长春: 吉林大学, 2011. WANG Jianpeng. Study on dynamic characteristic and thermal balance of hydraulic system for 50-type loader[D]. Changchun:Jilin University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011106100.htm (0) [9] 徐礼超. 装载机转向缸外负载力变化特性的试验研究[J]. 矿山机械, 2013, 42(11): 36-39. XU Lichao. Test study on variation characteristics of external loading of steering cylinder in loader[J]. Mining & processing equipment, 2013, 42(11): 36-39. (0) [10] WILLI B. Stömungsmaschinen (Bere-chnung und Konstruktion)[M]. West Germany: Vogel Press, 1980. (0) [11] 吴光强, 王立军. 基于CFD的液力变矩器等效参数性能预测模型[J]. 同济大学学报:自然科学版, 2013, 41(1): 121-127. WU Guangqiang, WANG Lijun. CFD analysis-based torque converter performance prediction model with equivalent parameters[J]. Journal of Tongji University:Natural Science, 2013, 41(1): 121-127. (0) [12] 朱经昌. 液力变矩器的设计与计算[M]. 北京: 国防工业出版社, 1991. (0)