中华流行病学杂志  2023, Vol. 44 Issue (11): 1843-1848   PDF    
http://dx.doi.org/10.3760/cma.j.cn112338-20230313-00143
中华医学会主办。
0

文章信息

杨喆, 刘博蕊, 万宁钰, 王小川, 郑璐, 胡嘉晋, 闻德亮.
Yang Zhe, Liu Borui, Wan Ningyu, Wang Xiaochuan, Zheng Lu, Hu Jiajin, Wen Deliang
母乳喂养对生命早期危险因素与儿童肥胖关联的修饰作用研究进展
Progress in research of modification effect of breastfeeding on association between early life risk factors and childhood obesity
中华流行病学杂志, 2023, 44(11): 1843-1848
Chinese Journal of Epidemiology, 2023, 44(11): 1843-1848
http://dx.doi.org/10.3760/cma.j.cn112338-20230313-00143

文章历史

收稿日期: 2023-03-13
母乳喂养对生命早期危险因素与儿童肥胖关联的修饰作用研究进展
杨喆 , 刘博蕊 , 万宁钰 , 王小川 , 郑璐 , 胡嘉晋 , 闻德亮     
辽宁省肥胖与糖脂代谢性疾病重点实验室/中国医科大学健康科学研究院, 沈阳 110122
摘要: 儿童肥胖已成为全球共同关注的公共健康问题,其发生发展与生命早期危险因素暴露密切相关。近年来,越来越多流行病学研究证据显示,母乳喂养对儿童肥胖的生命早期危险因素如肥胖高遗传风险、母亲患妊娠糖尿病、出生巨大儿等因素带来的健康危险效应具有修饰作用。本文通过对该领域现有的研究结果进行综述,总结母乳喂养对儿童肥胖遗传及生命早期环境危险因素的修饰作用,为明确母乳喂养对特定高危儿童的肥胖防控效益和实施针对性的防控策略提供参考。
关键词: 儿童肥胖    母乳喂养    遗传    环境    修饰作用    
Progress in research of modification effect of breastfeeding on association between early life risk factors and childhood obesity
Yang Zhe , Liu Borui , Wan Ningyu , Wang Xiaochuan , Zheng Lu , Hu Jiajin , Wen Deliang     
Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases of Liaoning Province/Health Sciences Institute, China Medical University, Shenyang 110122, China
Abstract: Childhood obesity has become a global public health problem, and its incidence and development are closely related to the exposure to risk factors in early life. In recent years, more and more epidemiological research evidences have shown that breastfeeding has the modification effect on early life risk factors of childhood obesity, such as high genetic risk of obesity, maternal gestational diabetes mellitus, macrosomia and other factors. This paper reviews the research results in this field, and summarizes the modification effect of breastfeeding on childhood obesity heredity and early life environmental risk factors associated with childhood obesity, to provide a reference for the evaluation of positive effect of breastfeeding on prevention and control of obesity in specific risk groups for taking targeted measure to reduce the risk for childhood obesity.
Key words: Childhood obesity    Breastfeeding    Heredity    Environment    Modification effect    

儿童肥胖已成为严重的公共健康问题之一。随着社会经济水平的提高和母婴早期营养摄入水平的不断提升,巨大儿、剖宫产等不良妊娠结局的发生率增加,进一步加重了儿童肥胖的快速流行。2020年,我国 < 6岁儿童肥胖率为3.6%,6~17岁儿童肥胖率为7.9%[1],《中国儿童肥胖报告》预测至2030年我国0~7岁儿童肥胖率将达到6.0%[2]。母乳是婴儿最理想的天然食物,WHO和国际儿童基金会推荐在婴儿出生6个月内进行纯母乳喂养,并建议持续母乳喂养至儿童2周岁以上[3]。母乳不仅为儿童的生长发育提供所需的营养素和免疫力,还可降低新生儿的感染率、死亡率[3-5]。生命早期不利环境因素暴露对儿童肥胖的发生发展具有重要影响,这些因素包括妊娠期因素(如高龄妊娠、产次、孕前超重/肥胖、妊娠期体重过度增长、妊娠期血糖血脂异常等)和婴幼儿期因素(如出生巨大儿、过早添加固态辅食、婴儿睡眠时间不足等)。近年研究结果显示,母乳喂养除了自身具有健康效应之外,还可以改善部分生命早期危险因素对儿童肥胖的危害效应,因此可以作为生命早期不良因素暴露对儿童肥胖发病影响的关键行为干预靶点。本文通过对现有的研究进行归纳总结,探讨母乳喂养对生命早期危险因素与儿童肥胖关联的修饰作用,为儿童肥胖的早期干预和制定相关母乳喂养指南提供参考依据。

1. 母乳喂养对儿童肥胖遗传因素的修饰作用:基于全基因组关联分析指出肥胖相关基因按照功能可分为2类:参与能量代谢的基因如FTO基因、瘦素(Leptin)基因、神经肽-Y基因等,和参与影响脂肪细胞合成与脂肪代谢的基因如PPARG2基因、胰岛素诱导基因等[6]。目前关于母乳喂养调节遗传因素与儿童肥胖发病关联的研究主要关注了FTO基因、Leptin基因、类维生素AX受体α(RXRA)基因、PPARG2基因等[7]。Wu等[8]的研究结果显示,纯母乳喂养≥5个月显著降低携带FTO rs9939609风险等位基因的儿童发生肥胖的风险,同时研究发现母乳喂养调节了脂肪高峰年龄和脂肪重积聚年龄,与未母乳喂养组相比,母乳喂养5个月的儿童达到脂肪高峰的年龄延迟了2~3个月,女孩达到脂肪重积聚的年龄延迟了6个月[8];纯母乳喂养5个月后的男孩和女孩在15岁时,BMI预测值分别下降0.56 kg/m2和1.14 kg/m2[8]。荷兰一项针对儿童的横断面研究结果显示,母乳喂养持续时间与17个月儿童Leptin基因甲基化水平呈负相关[9]。Sherwood等[10]的研究结果显示,母乳喂养时间每增加1周,Leptin cg23381058 CpG位点表达水平降低8.17个单位,并调节Leptin基因与儿童10岁时BMI之间的关联。Leptin基因甲基化水平降低导致Leptin基因的表达增加,从而抑制饥饿,可能是母乳喂养有助于预防儿童肥胖的潜在机制[11]。Pauwels等[11]的研究结果显示,母乳喂养时间每增加1个月,RXRA CpG2甲基化水平升高0.217%(P < 0.001),较高的RXRA甲基化水平与婴儿1岁时的体重减轻有关。也有研究显示,纯母乳喂养调节女孩的13个CpG位点和男孩的2个CpG位点与儿童BMI之间的关联[12]:与未母乳喂养的儿童相比,母乳喂养3~5个月的儿童6岁时总体DNA甲基化水平发生改变,使得儿童BMI增长速度减慢。Verier等[13]的研究结果显示,在携带PPARG2基因高风险表型Pro12Ala的儿童中:儿童BMI、腰围和皮褶厚度均随母乳喂养时间的延长而降低,其中母乳喂养≥6个月儿童的BMI、腰围和皮褶厚度最低;而在携带PPARG2基因低风险表型Pro12Pro的儿童中,是否进行母乳喂养以及母乳喂养持续时间对儿童的肥胖指标无明显影响[13]。遗传差异在个体体重变化和肥胖易感性中起着关键的作用,同时遗传易感性也受到环境因素的调节。以上研究结果提示母乳喂养通过调节DNA甲基化水平和高风险等位基因的表达对儿童肥胖基因产生修饰作用,母乳喂养持续时间越长,其对儿童肥胖的修饰作用越显著。

2. 母乳喂养对妊娠期危险因素与儿童肥胖关联的修饰作用:

(1)孕前超重/肥胖:母亲孕前超重/肥胖作为儿童体重的影响因素之一,可导致儿童发生肥胖风险的概率增加[14]。既往研究表明母乳喂养对孕前超重/肥胖导致儿童肥胖具有修饰作用[15-18]。在一项美国的青少年队列研究中,Li等[15]的研究结果显示,在母亲孕前BMI > 30 kg/m2的儿童中,与未经母乳喂养的儿童相比,采取母乳喂养但时间 < 4个月和母乳喂养时间≥4个月的儿童在2~14岁时超重发生率分别降低4.5%、12.9%。另一项美国的亲子队列研究中,Salsberry和Reagan[16]的研究结果显示,采取母乳喂养可使母亲孕前超重/肥胖的儿童超重风险降低35%。Guler等[17]研究结果显示,孕前超重/肥胖的母亲母乳中富含瘦素、脂联素等,因此母乳喂养能够有效降低母亲孕前肥胖的儿童发生超重/肥胖的风险,母乳喂养持续时间越长,儿童肥胖发生率越低[18]。对孕前超重/肥胖母亲进行母乳喂养健康宣教,能够有效预防儿童肥胖的发生。

(2)妊娠期体重过度增长:妊娠期体重增长情况是孕妇妊娠期能量平衡的最直观体现,也是评价胎儿宫内营养环境的最适宜指标。妊娠期体重过度增长是儿童发生肥胖的明确病因。目前关于母乳喂养对妊娠期体重过度增长的母亲与儿童肥胖关联的修饰作用研究结论尚不一致。Liu等[19]的研究结果显示,母乳喂养持续时间与母亲妊娠期体重过度增长的儿童1岁时年龄别体重Z分数、BMI-Z分数(BMI-Z)呈负相关。Zhu等[20]的研究结果显示,在2~6岁的儿童中,较长时间的母乳喂养降低了母亲妊娠期体重过度增长的儿童BMI-Z、年龄别体重Z分数和身长别体重Z分数。在美国护士健康队列研究中,母亲妊娠期体重过度增长的儿童发生肥胖的风险随母乳喂养时间的延长而降低[21]。但其他研究未发现母乳喂养对母亲妊娠期体重过度增长的儿童发生肥胖的修饰作用[19, 22]。Liu等[19]的研究结果显示,在妊娠期体重过度增长的母亲中,母乳喂养持续时间与儿童6岁时年龄别体重Z分数、BMI-Z无关。Hinkle等[22]的研究结果显示,在妊娠期体重过度增长的母亲中,母乳喂养持续时间与儿童5岁时BMI-Z无关。妊娠期体重增长过多往往导致胎儿宫内营养过剩,出生后进行母乳喂养可能使儿童对饥饿和饱腹感信号反应更灵敏,从而能更好地自我调节能量摄入。

(3)妊娠期糖尿病(GDM):妊娠期血糖异常会改变胎儿发育的宫内生长环境,增加儿童远期罹患慢性疾病的风险[23]。目前关于母乳喂养修饰母亲GDM影响儿童肥胖的研究结论尚不一致。Schaefer-Graf等[24]的研究结果显示,母乳喂养 > 3个月可使母亲曾患有GDM的儿童发生超重风险降低40%~50%。Aris等[25]的研究结果显示,母亲曾患有GDM但母乳喂养≥4个月的儿童在6~36月龄时BMI增长速度较慢。也有研究显示,母乳喂养≥6个月可使母亲曾患有GDM的儿童0~9月龄和4~13岁时BMI增长速度减缓[26];6~13岁时BMI、腰围和皮下腹部脂肪含量分别降低2.1 kg/m2、6 cm和54.4 cm2 [27]。Shearrer等[28]的研究结果显示,母乳喂养≥6个月可使母亲曾患有GDM的儿童肥胖患病率下降32%。Gunderson等[29]的研究结果显示,在母亲曾患有GDM的儿童中,与母乳喂养0~3个月相比,经母乳喂养时间 > 9个月后的儿童在1岁时身长别体重Z分数和年龄别体重Z分数分别降低0.37和0.5。Kaul等[30]的研究结果显示,母乳喂养 > 5个月可使母亲曾患有GDM的儿童肥胖发生风险降低6.7%。Dugas等[31]的研究结果显示,在母亲曾患有GDM的0~5岁儿童中,是否纯母乳喂养和纯母乳喂养的持续时间均与儿童的年龄别体重Z分数无关。Hui等[32]的研究结果显示,出生后进行母乳喂养持续3个月并未改变GDM对儿童从婴儿到青春期BMI-Z的影响。由于GDM可改变母乳成分,当分娩后血糖恢复到正常范围,GDM母亲的母乳成分会随着时间逐渐恢复正常。所以有必要对GDM母亲的母乳成分进行具体分析,以充分了解宫内暴露于GDM的儿童母乳喂养与肥胖之间的关系。此外,应进行前瞻性研究,定量测量母乳摄入量和母乳喂养时间,并收集有关儿童辅食喂养实践和其他生活方式行为的数据。

(4)宫内发育迟缓:经历过宫内发育迟缓的儿童易在生命早期出现脂肪组织发育改变、营养和能量代谢紊乱,后期出现并发症,如肥胖、代谢疾病和神经障碍[33]。母乳喂养对宫内发育迟缓的儿童发生肥胖的修饰作用的研究证据尚不充分。Briana等[33]的研究结果显示,母乳喂养可以减缓经历过宫内发育迟缓的儿童在婴儿期的体重快速增长,避免宫内发育迟缓儿童后期出现超重/肥胖、糖尿病和高血压的风险。Rodriguez-Lopez等[34]的研究结果显示,宫内发育迟缓的儿童经过 > 6个月的母乳喂养后,左心室球形度指数值和颈动脉内膜-中膜厚度值更接近出生时为适于胎龄儿的儿童,提示母乳喂养一定程度上通过增强宫内发育迟缓儿童的心血管发育来降低发生超重、肥胖的风险。一项出生队列研究结果显示,母乳喂养和配方奶喂养的宫内发育迟缓儿童在6月龄时的体重、BMI值、LDL-C水平和HDL-C水平均无明显差异[35]。低脂联素血症是儿童肥胖特征之一,一项研究发现采取母乳喂养的宫内发育迟缓儿童体内血清脂联素水平随喂养时间延长而上升[35],提示关于母乳喂养对宫内发育迟缓儿童发生肥胖风险修饰作用的研究仍需要加大范围和延长时间。

(5)妊娠期抗生素暴露:妊娠期抗生素的使用存在普遍性,宫内抗生素暴露导致儿童发生肥胖的平均风险增加84%[36]。当前有关母乳喂养对妊娠期抗生素暴露与儿童肥胖关联的修饰作用的研究结果并不完全一致。Lemas等[37]的研究结果显示,妊娠期抗生素暴露导致儿童肠道微生物群双歧杆菌数量减少,母乳中的寡糖有利于儿童肠道中的双歧杆菌发生定植,母乳喂养对使用抗生素改变儿童肠道微生物及增加儿童肥胖风险的副作用具有修饰作用。Milliken等[38]的研究结果显示,母乳中的双歧杆菌可保护儿童肠道免受病原体侵害,纠正暴露于抗生素的儿童肠道微生物破坏的问题,降低妊娠期抗生素暴露对儿童肥胖的影响。但Koebnick等[39]的研究结果显示,母乳喂养未改变产时抗生素暴露对儿童BMI的影响。

(6)分娩方式:孕妇剖宫产分娩可能影响新生儿肠道菌群的正常定植,从而增加儿童肥胖的发病风险[38, 40]。目前关于母乳喂养对剖宫产与儿童肥胖关联的研究结论尚不充分。Milliken等[38]的研究结果显示,母乳中的双歧杆菌保护儿童肠道免受病原体的侵害,降低剖宫产分娩的儿童体内微生物破坏导致儿童肥胖的不利影响。然而Sitarik等[41]的研究结果显示,母乳喂养未影响剖宫产与10岁儿童肥胖之间的关系。可能是由于母乳喂养的时间和量存在混杂偏倚,母乳喂养持续时间通过定义是否 > 1个月不能完全反映母乳喂养的效果[41]。目前关于母乳喂养对分娩方式与儿童肥胖关联的研究较少,母乳喂养对剖宫产导致的儿童肥胖是否具有修饰作用尚无明确定论,未来研究需要关注宫内其他危险因素对儿童肥胖的影响。

(7)环境暴露物:持久性有机污染物,如邻苯二甲酸盐和二氯二苯基三氯乙烯及其主要代谢物二氯二苯基二氯乙烯(DDE)、六氯苯和多氯联苯是导致儿童肥胖的主要环境化学物质[42-43]。Valvi等[44]的研究结果显示,与纯母乳喂养≤16周的儿童相比,纯母乳喂养 > 16周修饰了DDE导致儿童肥胖的效应(交互作用P=0.04),提示长时间的纯母乳喂养可减弱孕期DDE暴露与儿童超重之间的相关性。Garí等[45]的研究结果显示,母乳喂养持续时间与儿童7岁时体内的邻苯二甲酸酯代谢物浓度呈负相关,其中邻苯二甲酸盐含量下降的趋势更显著,母乳喂养 > 6个月显著降低邻苯二甲酸盐酯代谢物对儿童肥胖的影响。

孕产妇吸烟是儿童肥胖的危险因素之一。目前关于母乳喂养对孕期烟草暴露与儿童肥胖关联的影响尚无明确结论。宫内接触烟草的儿童出生体重较小且易出现体重和头围的追赶性生长,Boshuizen等[46]的研究结果显示,在荷兰的一项出生队列中发现,与未经母乳喂养的儿童相比,母乳喂养的儿童出生后第二个月的追赶性生长明显减慢;长时间母乳喂养的儿童1岁时体重降低0.18 kg,BMI降低0.06 kg/m2。Wen等[47]的研究结果显示,母亲孕期重度吸烟的儿童可通过母乳接触烟草化合物,使得儿童期BMI一定程度上升高,7岁儿童超重风险增加,此发现与Little等[48]在美国出生队列数据中的研究结果一致。这一现象提示吸烟母亲中母乳喂养对儿童肥胖的健康效应可能取决于孕期的吸烟量。

3. 母乳喂养对围产不良结局与儿童肥胖关联的修饰作用:

(1)低出生体重儿与小于胎龄儿:低出生体重儿会出现追赶生长以弥补先天的发育不足,在追赶生长期体重快速增长可能会增加内脏脂肪组织的合成,以及引起腹部赘肉的中心性肥胖[49]。小于胎龄儿已被发现与心血管疾病、糖尿病等代谢性疾病有关[50]。既往研究表明母乳喂养对低出生体重儿、小于胎龄儿导致儿童肥胖具有修饰作用[51-57]。Zarrati等[51]的研究结果显示,母乳喂养1~2年的低出生体重儿的腹部脂肪发生率降低40%,肥胖发病率降低20%。目前关于小于胎龄儿与母乳喂养对儿童肥胖的研究主要集中于高分子量脂联素和胰岛素样生长因子-Ⅰ(IGF-Ⅰ),脂联素主要能促进葡萄糖和脂质的代谢,高分子量脂联素的合成可降低肥胖、2型糖尿病等代谢性疾病[52],IGF-Ⅰ在调节儿童时期的生长发育方面起着重要作用,IGF-Ⅰ浓度较高易导致体重、BMI的增加[53]。如在西班牙某出生队列研究结果显示,与进行配方奶的小于胎龄儿相比,母乳喂养的小于胎龄儿在4月龄时高分子量脂联素含量和IGF-Ⅰ含量均与母乳喂养的适于胎龄儿相近;已有研究发现小于胎龄儿进行母乳喂养后,在4月龄时的IGF-Ⅰ和胰高血糖素样肽-1的含量分别降低9 mg/L、9 pmol/L,肌肉与脂肪的比例降低了0.89[54-56]。Santiago等[57]的研究结果显示,母乳喂养在预防小于胎龄儿后期出现肥胖和代谢性疾病方面有显著的健康效益。

(2)出生巨大儿与大于胎龄儿:出生巨大儿和大于胎龄儿在宫内发育过快,导致远期肥胖、代谢性疾病、心血管疾病等发生风险增加[58-59]。既往研究表明母乳喂养对巨大儿远期肥胖的发生发展具有保护作用[60-61],如Goetz等[60]的研究结果显示,在从出生至6月龄期间母乳喂养占比越高的巨大儿,7~12个月时体重增长相对越慢。Lee等[61]的研究结果显示,与配方奶喂养组的儿童相比,纯母乳喂养6个月的巨大儿在9~12月龄发生超重/肥胖的风险显著降低(OR=0.69,95%CI:0.52~0.91,P < 0.001)。目前关于母乳喂养对大于胎龄儿调节作用的研究结论尚不一致。Çamurdan等[62]的研究结果显示,母乳喂养时间 > 12个月的大于胎龄儿BMI与适于胎龄儿的BMI无差异,同时母乳喂养时间不宜 < 3个月,否则大于胎龄儿组3岁时的BMI平均值仍显著较高。Chen等[63]的研究结果显示,与未经母乳喂养的大于胎龄儿相比,母乳喂养的大于胎龄儿1~3岁的BMI-Z显著下降。Kaul等[30]的研究结果显示,母乳喂养并未降低GDM母亲所生大于胎龄儿发生肥胖的风险。Salahuddin等[64]的研究结果显示,在大于胎龄儿的研究中,BMI-Z轨迹并未因婴儿的喂养方式不同而发生改变。

综上所述,尽管当前研究结论尚不完全一致,多数研究证据提示了母乳喂养对儿童肥胖的生命早期危险因素具有潜在的修饰作用。通过倡导纯母乳喂养和延长母乳喂养时间可能对孕期以及婴幼儿早期不良暴露具有补偿修饰效应,从而达到防控儿童肥胖风险的目的。目前研究多基于队列研究设计,大样本随机对照试验研究证据仍然缺乏。与此同时,现有研究对母乳喂养时长的分类标准不一致,进一步探究母乳喂养时长与修饰作用的剂量反应关系,从而明确母乳喂养健康效应的阈值具有重要的研究价值。在遗传因素研究方面,母乳喂养对儿童遗传因素的修饰作用研究主要集中在单基因研究上,后续研究应对多基因遗传肥胖风险的修饰作用方面进行深入探索。在环境危险因素研究方面,母乳喂养对妊娠期环境危险因素如孕前超重/肥胖、妊娠期体重增长、宫内发育迟缓等与儿童肥胖关联修饰作用的现有研究证据尚不完全一致,仍需进行深入研究。此外,母乳喂养对生命早期危险因素与儿童肥胖关联修饰作用的后续研究,应针对更广泛的生命早期肥胖危险因素如妊娠年龄、妊娠期血脂异常、产次等,在二胎、三胎放开政策背景下,这对关注并改善高龄产妇子代健康具有现实意义。后续研究还应探索个性化母乳喂养方案,推动母乳喂养相关科学研究的精准化,进一步完善母乳喂养指导的科学规范,实现中国母乳喂养率的不断提升及儿童肥胖的早期防控干预。

利益冲突  所有作者声明无利益冲突

参考文献
[1]
Zhang L, Chen JN, Zhang JW, et al. Regional disparities in obesity among a heterogeneous population of Chinese children and adolescents[J]. JAMA Netw Open, 2021, 4(10): e2131040. DOI:10.1001/jamanetworkopen.2021.31040
[2]
张娜, 马冠生. 《中国儿童肥胖报告》解读[J]. 营养学报, 2017, 39(6): 530-534. DOI:10.13325/j.cnki.acta.nutr.sin.2017.06.005
Zhang N, Ma GS. Interpretation of report on childhood obesity in China[J]. Acta Nutr Sin, 2017, 39(6): 530-534. DOI:10.13325/j.cnki.acta.nutr.sin.2017.06.005
[3]
World Health Organization. Infant and young child feeding[EB/OL]. (2021-06-09)[2023-04-16]. https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding.
[4]
Horta BL, Rollins N, Dias MS, et al. Systematic review and meta-analysis of breastfeeding and later overweight or obesity expands on previous study for World Health Organization[J]. Acta Paediatr, 2023, 112(1): 34-41. DOI:10.1111/apa.16460
[5]
Horta BL, de Mola CL, Victora CG. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: a systematic review and meta-analysis[J]. Acta Paediatr, 2015, 104(S467): 30-37. DOI:10.1111/apa.13133
[6]
Walley AJ, Asher JE, Froguel P. The genetic contribution to non-syndromic human obesity[J]. Nat Rev Genet, 2009, 10(7): 431-442. DOI:10.1038/nrg2594
[7]
Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk[J]. Nutrients, 2014, 6(4): 1711-1724. DOI:10.3390/nu6041711
[8]
Wu YY, Lye S, Briollais L. The role of early life growth development, the FTO gene and exclusive breastfeeding on child BMI trajectories[J]. Int J Epidemiol, 2017, 46(5): 1512-1522. DOI:10.1093/ije/dyx081
[9]
Obermann-Borst SA, Eilers PHC, Tobi EW, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children[J]. Pediatr Res, 2013, 74(3): 344-349. DOI:10.1038/pr.2013.95
[10]
Sherwood WB, Bion V, Lockett GA, et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children[J]. Clin Epigenet, 2019, 11(1): 128. DOI:10.1186/s13148-019-0727-9
[11]
Pauwels S, Symons L, Vanautgaerden EL, et al. The influence of the duration of breastfeeding on the infant's metabolic epigenome[J]. Nutrients, 2019, 11(6): 1408. DOI:10.3390/nu11061408
[12]
Briollais L, Rustand D, Allard C, et al. DNA methylation mediates the association between breastfeeding and early-life growth trajectories[J]. Clin Epigenet, 2021, 13(1): 231. DOI:10.1186/s13148-021-01209-z
[13]
Verier C, Meirhaeghe A, Bokor S, et al. Breast-feeding modulates the influence of the peroxisome proliferator-activated receptor-γ (PPARG2) pro12Ala polymorphism on adiposity in adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) cross-sectional study[J]. Diabetes Care, 2010, 33(1): 190-196. DOI:10.2337/dc09-1459
[14]
Heslehurst N, Vieira R, Akhter Z, et al. The association between maternal body mass index and child obesity: a systematic review and meta-analysis[J]. PLoS Med, 2019, 16(6): e1002817. DOI:10.1371/journal.pmed.1002817
[15]
Li CY, Kaur H, Choi WS, et al. Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight[J]. Obes Res, 2005, 13(2): 362-371. DOI:10.1038/oby.2005.48
[16]
Salsberry PJ, Reagan PB. Taking the long view: the prenatal environment and early adolescent overweight[J]. Res Nurs Health, 2007, 30(3): 297-307. DOI:10.1002/nur.20215
[17]
Guler TT, Koc N, Kara Uzun A, et al. The association of pre-pregnancy BMI on leptin, ghrelin, adiponectin and insulin-like growth factor-1 in breast milk: a case-control study[J]. Br J Nutr, 2022, 127(11): 1675-1681. DOI:10.1017/S0007114521002932
[18]
Gunderson EP. Breastfeeding after gestational diabetes pregnancy: subsequent obesity and type 2 diabetes in women and their offspring[J]. Diabetes Care, 2007, 30 Suppl 2: S161-168. DOI:10.2337/dc07-s210
[19]
Liu JX, Xu X, Liu JH, et al. Association of maternal gestational weight gain with their offspring's anthropometric outcomes at late infancy and 6 years old: mediating roles of birth weight and breastfeeding duration[J]. Int J Obes, 2018, 42(1): 8-14. DOI:10.1038/ijo.2017.183
[20]
Zhu YY, Hernandez LM, Dong YQ, et al. Longer breastfeeding duration reduces the positive relationships among gestational weight gain, birth weight and childhood anthropometrics[J]. J Epidemiol Community Health, 2015, 69(7): 632-638. DOI:10.1136/jech-2014-204794
[21]
Mayer-Davis EJ, Rifas-Shiman SL, Zhou L, et al. Breast-feeding and risk for childhood obesity: does maternal diabetes or obesity status matter?[J]. Diabetes Care, 2006, 29(10): 2231-2237. DOI:10.2337/dc06-0974
[22]
Hinkle SN, Sharma AJ, Swan DW, et al. Excess gestational weight gain is associated with child adiposity among mothers with normal and overweight prepregnancy weight status[J]. J Nutr, 2012, 142(10): 1851-1858. DOI:10.3945/jn.112.161158
[23]
Dugas C, Perron J, Kearney M, et al. Postnatal prevention of childhood obesity in offspring prenatally exposed to gestational diabetes mellitus: where are we now[J]. Obes Facts, 2017, 10(4): 396-406. DOI:10.1159/000477407
[24]
Schaefer-Graf UM, Hartmann R, Pawliczak J, et al. Association of breast-feeding and early childhood overweight in children from mothers with gestational diabetes mellitus[J]. Diabetes Care, 2006, 29(5): 1105-1107. DOI:10.2337/dc05-2413
[25]
Aris IM, Soh SE, Tint MT, et al. Associations of infant milk feed type on early postnatal growth of offspring exposed and unexposed to gestational diabetes in utero[J]. Eur J Nutr, 2017, 56(1): 55-64. DOI:10.1007/s00394-015-1057-0
[26]
Crume TL, Ogden LG, Mayer-Davis EJ, et al. The impact of neonatal breast-feeding on growth trajectories of youth exposed and unexposed to diabetes in utero: the EPOCH Study[J]. Int J Obes, 2012, 36(4): 529-534. DOI:10.1038/ijo.2011.254
[27]
Crume TL, Ogden L, Maligie M, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero[J]. Diabetes Care, 2011, 34(3): 641-645. DOI:10.2337/dc10-1716
[28]
Shearrer GE, Whaley SE, Miller SJ, et al. Association of gestational diabetes and breastfeeding on obesity prevalence in predominately Hispanic low-income youth[J]. Pediatr Obes, 2015, 10(3): 165-171. DOI:10.1111/ijpo.247
[29]
Gunderson EP, Greenspan LC, Faith MS, et al. Breastfeeding and growth during infancy among offspring of mothers with gestational diabetes mellitus: a prospective cohort study[J]. Pediatr Obes, 2018, 13(8): 492-504. DOI:10.1111/ijpo.12277
[30]
Kaul P, Bowker SL, Savu A, et al. Association between maternal diabetes, being large for gestational age and breast-feeding on being overweight or obese in childhood[J]. Diabetologia, 2019, 62(2): 249-258. DOI:10.1007/s00125-018-4758-0
[31]
Dugas C, Kearney M, Perron J, et al. Breastfeeding and growth trajectory from birth to 5 years among children exposed and unexposed to gestational diabetes mellitus in utero[J]. J Perinatol, 2021, 41(5): 1033-1042. DOI:10.1038/s41372-021-00932-y
[32]
Hui LL, Li AM, Nelson EAS, et al. In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference?[J]. Int J Obes, 2018, 42(7): 1317-1325. DOI:10.1038/s41366-018-0077-2
[33]
Briana DD, Fotakis C, Kontogeorgou A, et al. Early human-milk metabolome in cases of intrauterine growth-restricted and macrosomic infants[J]. J Parenter Enteral Nutr, 2020, 44(8): 1510-1518. DOI:10.1002/jpen.1783
[34]
Rodriguez-Lopez M, Osorio L, Acosta-Rojas R, et al. Influence of breastfeeding and postnatal nutrition on cardiovascular remodeling induced by fetal growth restriction[J]. Pediatr Res, 2016, 79(1): 100-106. DOI:10.1038/pr.2015.182
[35]
王群, 黄砚屏, 陶旭炜, 等. 母乳喂养对宫内发育迟缓儿胰岛素敏感性影响的随访研究[J]. 中国当代儿科杂志, 2020, 22(7): 701-705. DOI:10.7499/j.issn.1008-8830.2001007
Wang Q, Huang YP, Tao XW, et al. Effect of breastfeeding on insulin sensitivity in infants with intrauterine growth retardation: a follow-up study[J]. Chin J Contemp Pediatr, 2020, 22(7): 701-705. DOI:10.7499/j.issn.1008-8830.2001007
[36]
Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity[J]. Int J Obes, 2015, 39(4): 665-670. DOI:10.1038/ijo.2014.180
[37]
Lemas DJ, Yee S, Cacho N, et al. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity[J]. Semin Fetal Neonatal Med, 2016, 21(6): 406-409. DOI:10.1016/j.siny.2016.04.013
[38]
Milliken S, Allen RM, Lamont RF. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood[J]. Expert Opin Drug Saf, 2019, 18(3): 173-185. DOI:10.1080/14740338.2019.1579795
[39]
Koebnick C, Sidell MA, Getahun D, et al. Intrapartum antibiotic exposure and body mass index in children[J]. Clin Infect Dis, 2021, 73(4): e938-946. DOI:10.1093/cid/ciab053
[40]
Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: systematic review and meta-analysis[J]. PLoS Med, 2018, 15(1): e1002494. DOI:10.1371/journal.pmed.1002494
[41]
Sitarik AR, Havstad SL, Johnson CC, et al. Association between cesarean delivery types and obesity in preadolescence[J]. Int J Obes, 2020, 44(10): 2023-2034. DOI:10.1038/s41366-020-00663-8
[42]
La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals[J]. Mt Sinai J Med: J Transl Pers Med, 2011, 78(1): 22-48. DOI:10.1002/msj.20229
[43]
Holtcamp W. Obesogens: an environmental link to obesity[J]. Environ Health Perspect, 2012, 120(2): a62-68. DOI:10.1289/ehp.120-a62
[44]
Valvi D, Mendez MA, Garcia-Esteban R, et al. Prenatal exposure to persistent organic pollutants and rapid weight gain and overweight in infancy[J]. Obesity, 2014, 22(2): 488-496. DOI:10.1002/oby.20603
[45]
Garí M, Koch HM, Pälmke C, et al. Determinants of phthalate exposure and risk assessment in children from Poland[J]. Environ Int, 2019, 127: 742-753. DOI:10.1016/j.envint.2019.04.011
[46]
Boshuizen HC, Verkerk PH, Reerink JD, et al. Maternal smoking during lactation: relation to growth during the first year of life in a Dutch birth cohort[J]. Am J Epidemiol, 1998, 147(2): 117-126. DOI:10.1093/oxfordjournals.aje.a009423
[47]
Wen XZ, Shenassa ED, Paradis AD. Maternal smoking, breastfeeding, and risk of childhood overweight: findings from a national cohort[J]. Matern Child Health J, 2013, 17(4): 746-755. DOI:10.1007/s10995-012-1059-y
[48]
Little RE, Lambert MD, Worthington-Roberts B, et al. Maternal smoking during lactation: relation to infant size at one year of age[J]. Am J Epidemiol, 1994, 140(6): 544-554. DOI:10.1093/oxfordjournals.aje.a117281
[49]
Cottrell EC, Ozanne SE. Early life programming of obesity and metabolic disease[J]. Physiol Behav, 2008, 94(1): 17-28. DOI:10.1016/j.physbeh.2007.11.017
[50]
Martín-Calvo N, Goni L, Tur JA, et al. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: systematic review and meta-analysis[J]. Obesity, 2022, 23 Suppl 1: e13380. DOI:10.1111/obr.13380
[51]
Zarrati M, Shidfar F, Moradof M, et al. Relationship between breast feeding and obesity in children with low birth weight[J]. Iran Red Crescent Med J, 2013, 15(8): 676-682. DOI:10.5812/ircmj.11120
[52]
Daniele A, de Rosa A, de Cristofaro M, et al. Decreased concentration of adiponectin together with a selective reduction of its high molecular weight oligomers is involved in metabolic complications of myotonic dystrophy type 1[J]. Eur J Endocrinol, 2011, 165(6): 969-975. DOI:10.1530/EJE-11-0537
[53]
Ong KK, Langkamp M, Ranke MB, et al. Insulin-like growth factor I concentrations in infancy predict differential gains in body length and adiposity: the Cambridge Baby Growth Study[J]. Am J Clin Nutr, 2009, 90(1): 156-161. DOI:10.3945/ajcn.2008.27408
[54]
de Zegher F, Sebastiani G, Diaz M, et al. Body composition and circulating high-molecular-weight adiponectin and IGF-I in infants born small for gestational age: breast-versus formula-feeding[J]. Diabetes, 2012, 61(8): 1969-1973. DOI:10.2337/db11-1797
[55]
Díaz M, Bassols J, Sebastiani G, et al. Circulating GLP-1 in infants born small-for-gestational-age: breast-feeding versus formula-feeding[J]. Int J Obes, 2015, 39(10): 1501-1503. DOI:10.1038/ijo.2015.117
[56]
de Zegher F, Sebastiani G, Diaz M, et al. Breast-feeding vs formula-feeding for infants born small-for-gestational-age: divergent effects on fat mass and on circulating IGF-I and high-molecular-weight adiponectin in late infancy[J]. J Clin Endocrinol Metab, 2013, 98(3): 1242-1247. DOI:10.1210/jc.2012-3480
[57]
Santiago ACT, da Cunha LPM, Vieira NSA, et al. Breastfeeding in children born small for gestational age and future nutritional and metabolic outcomes: a systematic review[J]. J Pediatr, 2019, 95(3): 264-274. DOI:10.1016/j.jped.2018.06.013
[58]
Donahue SMA, Kleinman KP, Gillman MW, et al. Trends in birth weight and gestational length among singleton term births in the United States: 1990-2005[J]. Obstet Gynecol, 2010, 115(2 Pt 1): 357-364. DOI:10.1097/AOG.0b013e3181cbd5f5
[59]
Baird J, Fisher D, Lucas P, et al. Being big or growing fast: systematic review of size and growth in infancy and later obesity[J]. BMJ, 2005, 331(7522): 929. DOI:10.1136/bmj.38586.411273.E0
[60]
Goetz AR, Mara CA, Stark LJ. Greater breastfeeding in early infancy is associated with slower weight gain among high birth weight infants[J]. J Pediatr, 2018, 201: 27-33. DOI:10.1016/j.jpeds.2018.06.004
[61]
Lee JW, Lee M, Lee J, et al. The protective effect of exclusive breastfeeding on overweight/obesity in children with high birth weight[J]. J Korean Med Sci, 2019, 34(10): e85. DOI:10.3346/jkms.2019.34.e85
[62]
Çamurdan MO, Çamurdan AD, Polat S, et al. Growth patterns of large, small, and appropriate for gestational age infants: impacts of long-term breastfeeding: a retrospective cohort study[J]. J Pediatr Endocrinol Metab, 2011, 24(7/8): 463-468. DOI:10.1515/jpem.2011.168
[63]
Chen YL, Han LL, Su WJ, et al. The impact of breastfeeding on childhood obesity in children that were large-for-gestational age: retrospective study from birth to 4 years[J]. Sci Rep, 2022, 12(1): 4226. DOI:10.1038/s41598-022-08275-0
[64]
Salahuddin M, Pérez A, Ranjit N, et al. The associations of large-for-gestational-age and infant feeding practices with children's body mass index z-score trajectories: the Early Childhood Longitudinal Study, Birth Cohort[J]. Clin Obes, 2017, 7(5): 307-315. DOI:10.1111/cob.12201