文章信息
- 王茜, 尹瑜, 王豪, 龙品品, 陈卫红, 袁瑜, 邬堂春.
- Wang Xi, Yin Yu, Wang Hao, Long Pinpin, Chen Weihong, Yuan Yu, Wu Tangchun
- 金属或类金属及持久性有机污染物暴露与心血管疾病的研究进展
- Progress in research of relationship between metal or metalloid and persistent organic pollutants exposures and cardiovascular disease
- 中华流行病学杂志, 2023, 44(5): 705-712
- Chinese Journal of Epidemiology, 2023, 44(5): 705-712
- http://dx.doi.org/10.3760/cma.j.cn112338-20221128-01004
-
文章历史
收稿日期: 2022-11-28
2. 华中科技大学同济医学院, 武汉 430030
2. Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
心血管疾病(CVD)是导致人类死亡和健康寿命损失的主要原因,居全球疾病负担首位[1-2]。《中国心血管健康与疾病报告2021》指出我国CVD的现患人数预估为3.3亿,每年因CVD死亡的人数在中国农村和城市的疾病死因构成中分别占46.74%和44.26%,居各种疾病之首[3]。CVD病因复杂,大量流行病学研究证明,引起CVD的主要危险因素除了高血压、糖尿病、吸烟及肥胖等传统危险因素以外,环境中的化学污染物同样在CVD的发生发展中起着重要的作用[4-6]。
党的二十大报告强调:“深入推进环境污染防治。坚持精准治污、科学治污、依法治污,持续深入打好蓝天、碧水、净土保卫战”[7]。金属或类金属污染是大气污染、水体污染及土壤污染中重要的污染物之一,具有较强的迁移、富集性,并且可通过消化道、呼吸道和皮肤进入人体,从而对人体造成健康危害[8-10]。持久性有机污染物具有持久性、亲脂性、生物蓄积性和长距离传播的特性,在环境介质中无处不在,可通过大气、水、土壤和固体生物体等多种介质对人类健康造成影响[11-12]。WHO发布的关于《化学品对公共卫生的影响:已知和未知》的报告提到约35%的缺血性心脏病和42%的脑卒中可通过减少或消除环境化学污染物暴露来预防[13],然而目前环境化学污染对CVD的影响仍被低估[4]。本文对金属或类金属及持久性有机污染物的暴露与CVD关系的相关研究进行综述,为通过治理环境中化学污染物来有效防控CVD提供科学依据。
一、金属和类金属1. 金属和类金属的研究概况:金属是分布最广、人类接触最多的化学物质[14-15],具有较强的迁移和富集特性,可通过消化道、呼吸道和皮肤进入人体,进而对心血管系统造成健康危害[8]。目前各个国家均已建立了系统的国家人体生物监测项目,对金属在人体的负荷水平进行连续的监测调查。美国国家健康和营养检查调查(National Health and Nutrition Examination Survey,NHANES)项目从1999年开始对美国一般人群血液和尿液中的金属和类金属进行长期监测,并在最新的报告中发布了2017-2018年监测的金属或类金属负荷水平的详细数据[16]。加拿大卫生部和统计局等从2007年启动了国民健康调查,并于2021年12月发布了第六次人体环境化学生物监测报告[17]。欧洲地区17个国家按照统一标准测定了1 844名儿童及其母亲的尿汞和尿镉的浓度[18]。
2009-2010年中国CDC采用整群随机抽样的方法,在国内东部、西部和中部8个省份开展了环境化学物水平调查,采集了18 000余名6~60岁非职业接触人群的生物样本,评估我国一般人群血液和尿液中30种金属和类金属的负荷水平[19-22]。目前我国居民体内重金属负荷水平不容乐观,血铅、尿铅水平远高于美国、加拿大、韩国和德国[8]。未来还需要对居民体内的金属负荷水平进行持续监测,以判断我国人群金属负荷水平的变化情况[8]。
2. 金属和类金属暴露与CVD:
(1)砷:大多数流行病学研究指出,砷暴露与心血管事件存在显著关联。饮用水是砷暴露的主要途径[23]。一项纳入了11项研究的Meta分析提示,与饮用水中10 μg/L的砷相比,20 μg/L的砷暴露会导致CVD发病风险增加9%(RR=1.09,95%CI:1.03~1.14),CVD死亡风险增加7%(RR=1.07,95%CI:1.01~1.14)[24]。此外,另一项纳入了28项研究的Meta分析结果指出,与1 μg/L的饮用水砷相比,10 μg/L的饮用水砷暴露会导致冠心病(CHD)死亡风险增加50%(RR=1.50,95%CI:1.15~1.95),CVD死亡风险增加17%(RR=1.17,95%CI:1.05~1.31)。研究提示随着饮用水砷浓度在1~10 μg/L范围内增加,CVD死亡风险显著增加,揭示了低到中等浓度的砷暴露诱发的潜在健康风险,为进一步下调WHO推荐浓度范围(< 10 μg/L)以及减轻CVD相关结局带来的经济负担提供了重要的科学依据[25-26]。一项基于孟加拉国的砷健康效应纵向队列研究将暴露于高浓度砷的1 375名孟加拉国居民作为研究对象,随访确诊447名新发CVD,研究发现了饮用水砷水平与致死性和非致死性CHD之间有显著的正相关关系,但并未发现饮用水砷浓度与脑卒中死亡风险有显著的关联[27]。2018年发表在BMJ上的Meta分析也显示,砷暴露会增加CVD的发病风险(RR=1.30,95%CI:1.04~1.63),CHD的发病风险增加23%(RR=1.23,95%CI:1.04~1.45),并未发现金属砷与脑卒中之间存在关联(RR=1.15,95%CI:0.92~1.43)[28]。
(2)铅:铅暴露目前被认为是CVD的危险因素之一。美国NHANES Ⅲ研究纳入了14 289名成年人,提示当血铅浓度从1.0 μg/L增加到6.7 μg/L,CVD死亡风险增加70%(HR=1.70,95%CI:1.30~2.22)[29]。发表在Environ Health Perspect的最新研究筛选了15篇铅暴露相关研究,最终纳入4项进行健康影响模型分析,结果显示1999-2014年有16%~46%的心血管死亡下降得益于血铅暴露水平降低[30]。一项纳入了5篇研究的Meta分析也提示,铅暴露会导致CVD死亡风险增加35%(HR=1.35,95%CI:1.05~1.74)[31]。也有Meta分析提示铅暴露不仅会增加CVD的发病风险(RR=1.43,95%CI:1.16~1.76),还会增加CHD(RR=1.85,95%CI:1.27~2.69)和脑卒中(RR=1.63,95%CI:1.14~2.34)的发病风险[28]。然而,在中国的东风-同济队列中未观察到血铅和CVD之间的显著关联[9]。上述不一致的发现可能是由于研究人群遗传背景和易感性存在差异,不同地区重金属水平存在差异,选择检测的生物样本不同等原因导致。
(3)镉:镉是一种有毒重金属,具有潜在的心血管影响[32]。饮食和吸烟是一般人群镉暴露的主要途径[6, 32]。2017年中国成年人膳食调查结果显示,食源性镉暴露在CHD和脑卒中疾病负担中分别占9.69%和8.22%[33]。因此,控制食物中的镉暴露有助于减轻中国人群CHD和脑卒中的负担。2018年的Meta分析显示,镉暴露会增加CVD(RR=1.33,95%CI:1.09~1.64)和脑卒中(RR=1.72,95%CI:1.29~2.28)的发病风险[28]。另一项关于人群尿镉含量与死亡风险的Meta分析表明,与最低镉剂量暴露组相比,最高镉剂量暴露组的CVD死亡风险增加57%(HR=1.57,95%CI:1.27~1.95),并且尿镉暴露在低水平时仍然与CVD死亡风险增加有关[34]。
(4)汞:金属汞和CVD的关联性研究呈现不一致的结果。一项纳入了14项研究的Meta分析提示,慢性汞暴露会导致缺血性心脏病风险增加21%(RR=1.21,95%CI:0.98~1.50),CVD死亡风险增加68%(RR=1.68,95%CI:1.15~2.45)[35]。当头发汞浓度 > 1 μg/g时,发生缺血性心脏病的风险开始持续增加;当头发汞浓度 > 2 μg/g时,发生CVD的风险开始持续增加[35]。基于1 871名芬兰男性的队列研究也同样表明,头发中汞含量高(> 2.03 μg/g)可能是芬兰东部中年男性发生急性冠状动脉事件、CHD和CVD的危险因素[36]。脚趾甲汞含量反映了长期的汞接触水平,与鱼类摄入量呈正相关[37],然而基于美国两个前瞻性队列的3 427对新发CVD巢式病例对照研究提示,高浓度脚指甲汞与CVD发病无显著的关联性[38]。同时,一项纳入9项观察性研究的Meta分析也未发现金属汞与CVD发病的关联性(RR=0.94,95%CI:0.66~1.36)[28]。
(5)硒:硒是人体必需的营养元素,有抗氧化作用。一项纳入13项前瞻性研究的Meta分析表明,血硒浓度每增加10 μg/L,CVD发病风险降低15%(RR=0.85,95%CI:0.76~0.94)[39]。当血硒增加30~35 μg/L时,CVD死亡风险最低。但当血硒增加超过35 μg/L时,CVD死亡风险开始增加[39],所以每日硒摄入量应在推荐的每日允许量(50~300 μg)内[40],以防止摄入过量硒所产生的有害影响。以上研究结果一致表明,合理范围内的高硒水平可能是CVD发病和死亡的保护因素。但值得注意的是,一项基于46个随机对照试验的Meta分析并未发现单独补充硒与CVD风险之间的显著关联,只有补充含硒的抗氧化剂混合物时,CVD死亡风险才会降低23%(RR=0.77,95%CI:0.62~0.97)[41]。
(6)多种金属和类金属与CVD:在实际日常生活中,人体同时暴露于多种金属和类金属元素,然而多种金属和类金属暴露与CVD之间的关联性研究仍较为缺乏。基于中国东风-同济队列,一项纳入了1 621对CHD巢式病例对照的研究发现,随着血浆钛和砷水平的升高,CHD发病风险显著增加,而随着硒水平的升高,CHD发病风险显著降低[10]。在该队列开展的脑卒中巢式病例对照研究也表明,随着血浆铜、钼、钛水平的升高,缺血性脑卒中发病风险显著增加,而随着血浆铷、硒水平的升高,出血性脑卒中的发病风险显著降低[42]。综上所述,仍有必要进一步开展大型前瞻性队列研究,以探索多种金属联合暴露对CVD的共同影响。
二、持久性有机污染物1. 持久性有机污染物暴露概况:持久性有机污染物因其持久性、高毒性、远距离迁移性以及生物蓄积性而成为主要的环境问题。主要包括脂溶性(多氯联苯、有机氯农药、多溴联苯醚和二噁英)和非脂溶性两种,如全氟烷基物质[43-44]。我国持久性有机污染物严重污染的地方主要分布在东南沿海地区,其中,多氯联苯、有机氯农药、多环芳烃的浓度常超过中国和国际的浓度限值[45]。中国的多溴联苯醚水平在多溴联苯醚生产区、电子废物拆解区、工业区较高[46]。中国人群血液中多溴联苯醚的浓度与美国人群报告的结果相当,但明显高于欧洲地区人群[47]。另外,在对中国31个省份饮用水中的17种全氟烷基酸进行检测后发现,云南省、江苏省、江西省饮用水中全氟烷基酸的浓度高于建议的饮用水浓度限值[48]。
2. 持久性有机污染物暴露与CVD:持久性有机污染物这类化合物由于具有生物积累和生物放大的能力,相对于初始浓度,它们可以被生物浓缩至7万倍[49]。已有研究显示持久性有机污染物会增加患高血压[50-51]、糖尿病[52-56]、肥胖[57]以及血脂异常[57]的风险,上述因素都与CVD的发生发展相关[58]。同时,一项对387名西班牙人进行的15年队列研究结果也显示,脂肪组织中的持久性有机污染物浓度与CVD相关的15年药物消费量呈现显著的正相关关系,提示长期接触持久性有机污染物可能是CVD的危险因素之一[59]。
(1)多氯联苯:美国NHANES队列[60]和瑞典两项队列研究[61-62]均观察到血液或饮食中的多氯联苯水平与心血管死亡风险之间存在正相关关系。其中NHANES队列研究结果显示在脂肪量介于21.0 kg和31.5 kg之间的老年人群中,较高的多氯联苯暴露水平导致的CVD死亡风险是较低多氯联苯暴露水平的3.42倍(HR=3.42,95%CI:1.02~11.40),随着人群脂肪含量增加,多氯联苯与CVD的关联不再显著[60]。研究结果提示脂肪组织是亲脂性的持久性有机污染物的“避风港”,从而保护其他重要器官免受持久性有机污染物的攻击[63]。韩国一项大型前瞻性队列研究提示,与血清2,2-双(4-氯苯基)-1,1,1-三氯乙烷最低浓度的受试者相比,血清2,2-双(4-氯苯基)-1,1,1-三氯乙烷最高浓度的受试者脑卒中HR值为4.10(95%CI:1.58~10.59),多氯联苯-118、多氯联苯-156和多氯联苯-138也发现了类似的关联。结果提示血清持久性有机污染物水平升高与脑卒中风险增加有关,特别是缺血性卒中[64]。另外一项包括11篇研究的Meta分析也同样表明多氯联苯-138和多氯联苯-153会增加CVD的风险(OR=1.35,95%CI:1.10~1.66;OR=1.35,95%CI:1.13~1.62)[65]。
(2)有机氯类农药:作为一类重要的持久性有机污染物所造成的污染和危害已引起普遍关注。截至2021年,《关于持久性有机污染物的斯德哥摩公约》中列入受控名单的30种持久性有机污染物中,有16种是有机氯农药[66]。有机氯农药主要包括二氯二苯基三氯乙烷、六氯环己烷等。自2001年,《斯德哥尔摩公约》已明令禁止有机氯农药的使用[67]。但由于其低挥发、难降解以及较强的脂溶性和生物蓄积能力[68],有机氯农药仍持续存在于环境介质中[69]。已有Meta分析和队列研究提示有机氯农药与糖尿病[70]、高血压[71]等已知的CVD危险因素密切相关。此外,一项队列研究发现,在脂肪含量低于21 kg的美国老年人中,接触较高浓度有机氯农药人群的CVD死亡风险是接触较低浓度有机氯农药人群的4.54倍(HR=4.54,95%CI:1.38~15.00);但在脂肪含量较高的人群中,未发现有机氯农药的浓度与CVD死亡风险之间的显著关联[60]。一项包括11篇研究的Meta分析也表明,暴露于二氯二苯基三氯乙烷人群患CVD的风险是未暴露者的1.20倍(OR=1.20,95%CI:1.08~1.34)[65]。
(3)多溴联苯醚:是一类特定的溴化阻燃剂,被广泛用于各种消费品和工业产品,包括建筑材料、电子产品、家具和塑料[72]。然而目前仍缺乏探究多溴联苯醚暴露与CVD发病或死亡风险的流行病学研究。
(4)二噁英:是一类由含氯化合物的生产和燃烧产生的多环芳烃类环境污染物[73]。已有许多流行病学研究探究了二噁英暴露对CVD的影响,但大多都是职业性二噁英暴露。一项来自12个国家的36个队列的Meta分析显示,从职业暴露开始随访10~19年,观察到循环系统疾病的发病风险显著增加,尤其是缺血性心脏病(RR=1.67,95%CI:1.23~2.26)[74]。因此,暴露于高水平的二噁英可能与未来的CVD发病风险有关,但仍需要更多的前瞻性队列研究去探究一般人群中二噁英暴露与CVD发病和死亡风险的关联。
(5)全氟烷基物质:被广泛用于制造工业和消费品,如表面活性剂、润滑剂、抛光剂、纸张和纺织涂料、食品包装和阻燃泡沫[75],人们可以通过直接接触、呼吸等多种方式接触全氟烷基物质,所以全氟烷基物质普遍暴露于职业人群和一般人群中[76]。目前,已有很多流行病学探究全氟烷基物质暴露与CVD危险因素的关联,如糖尿病[77]、高血脂[78-79]、高血压[80-81]、肥胖[82]。
全氟辛酸(PFOA)是常见的全氟烷基物质品种。一项由1 216名NHANES参与者组成的横断面研究结果显示,较高的PFOA暴露水平(女性:> 5.6 ng/ml;男性 > 6.1 ng/ml)比较低PFOA暴露水平(女性:< 2.9 ng/ml;男性:< 3.0 ng/ml)的CVD风险高1.01倍(OR=2.01,95%CI:1.12~3.60)[83]。另一项NHANES研究也通过对每种全氟烷基物质的单独分析证明了12种全氟烷基物质均与CVD发病风险呈正相关[84]。然而,在日常生活中,全氟烷基物质暴露多为混合暴露,而非单一的暴露。因此,一项由7 904名NHANES参与者组成的横断面研究试图探究混合全氟烷基物质暴露与CVD发病风险的关联性,研究结果显示混合全氟烷基物质暴露与总CVD发病风险之间存在正相关关系[76]。然而,以上的研究发现应该谨慎解释,未来需要更多的大规模前瞻性研究进行探讨。
三、结语与展望金属或类金属和持久性有机污染物等环境化学污染物暴露与CVD的发生发展密切相关。控制环境污染,加快生态文明体制改革,是引领美丽中国建设的航向目标。在此背景下,探寻更快、更安全、更可靠灵敏的环境化学污染物测量分析技术,探究长期低剂量的环境化学污染物暴露与CVD的关联性和毒性机制,对保障人类环境健康、降低人群CVD风险具有极其重要的意义。然而,国内目前仍缺乏对低剂量环境化学污染物暴露引起的CVD风险的机制研究。更重要的是,对于环境化学污染物复合暴露所引发的心血管效应同样缺乏更深的认识。
综上所述,环境化学污染物复合暴露对CVD的危害仍然被低估,并且环境中多种化学污染物复合暴露的评价和治理,给CVD的防控带来巨大的挑战。因此,未来中国亟需精准、科学、依法治污;急需协同推进减污扩绿,推进生态优先、节约集约;急需强化监管力度和联防联控,健全现代环境治理体系,持续深入打好蓝天、碧水、净土保卫战;急需通过完善相关法律法规等有效举措,从根源上预防和控制环境化学物暴露。同时,识别并发现新兴环境化学污染物暴露(如发育性神经毒物、内分泌干扰物、抗生素等)对CVD的影响,加大对多种低剂量环境化学污染物的分析检测技术和复合暴露风险评估技术的开发,深入探究环境污染物对CVD的毒性作用机制和复合暴露的心血管毒性是本领域的重要研究方向。此外,采用大样本量、科学合理的设计、偏倚和混杂因素控制严格的高质量前瞻性队列研究将有助于精确评估环境化学污染物复合暴露及其交互作用对CVD的健康风险,为相关公共卫生政策的制定提供科学依据。
利益冲突 所有作者声明无利益冲突
作者贡献声明 王茜、尹瑜:文献检索、论文撰写;王豪、龙品品、陈卫红:论文指导;袁瑜、邬堂春:论文指导、支持性贡献
[1] |
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019:update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. DOI:10.1016/j.jacc.2020.11.010 |
[2] |
GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017:a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1736-1788. DOI:10.1016/s0140-6736(18)32203-7 |
[3] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578. The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2021:an updated summary[J]. Chin Circulat J, 2022, 37(6): 553-578. DOI:10.3969/j.issn.1000-3614.2022.06.001 |
[4] |
Landrigan PJ, Fuller R, Acosta NJR, et al. The Lancet commission on pollution and health[J]. Lancet, 2018, 391(10119): 462-512. DOI:10.1016/s0140-6736(17)32345-0 |
[5] |
Münzel T, Miller MR, SØrensen M, et al. Reduction of environmental pollutants for prevention of cardiovascular disease: it's time to act[J]. Eur Heart J, 2020, 41(41): 3989-3997. DOI:10.1093/eurheartj/ehaa745 |
[6] |
Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease[J]. Nat Rev Cardiol, 2015, 12(11): 627-642. DOI:10.1038/nrcardio.2015.152 |
[7] |
习近平. 高举中国特色社会主义伟大旗帜为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[M]. 北京: 人民出版社, 2022.
|
[8] |
路凤, 赵峰, 蔡嘉旖, 等. 重金属暴露与心血管疾病关系的流行病学研究进展[J]. 中华流行病学杂志, 2018, 39(1): 102-106. Lu F, Zhao F, Cai JY, et al. Progress in research of relationship between heavy metal exposure and cardiovascular disease[J]. Chin J Epidemiol, 2018, 39(1): 102-106. DOI:10.3760/cma.j.issn.0254-6450.2018.01.022 |
[9] |
Shi LM, Yuan Y, Xiao Y, et al. Associations of plasma metal concentrations with the risks of all-cause and cardiovascular disease mortality in Chinese adults[J]. Environ Int, 2021, 157: 106808. DOI:10.1016/j.envint.2021.106808 |
[10] |
Yuan Y, Xiao Y, Feng W, et al. Plasma metal concentrations and incident coronary heart disease in Chinese adults: the Dongfeng-Tongji cohort[J]. Environ Health Perspect, 2017, 125(10): 107007. DOI:10.1289/ehp1521 |
[11] |
Wang TY, Lu YL, Zhang H, et al. Contamination of persistent organic pollutants (POPs) and relevant management in China[J]. Environ Int, 2005, 31(6): 813-821. DOI:10.1016/j.envint.2005.05.043 |
[12] |
Jones KC. Persistent Organic Pollutants (POPs) and related chemicals in the global environment: some personal reflections[J]. Environ Sci Technol, 2021, 55(14): 9400-9412. DOI:10.1021/acs.est.0c08093 |
[13] |
World Health Organization. The public health impact of chemicals: knowns and unknowns[EB/OL]. (2016-05-23)[2022-11-05].
https://www.who.int/publications/i/item/WHO-FWC-PHE-EPE-16-01.
|
[14] |
Arnold C. Mix masters: using a new tool to identify commonly occurring chemical mixtures[J]. Environ Health Perspect, 2017, 125(12): 124002. DOI:10.1289/EHP2325 |
[15] |
Konkel L. Compound interest: assessing the effects of chemical mixtures in vivo[J]. Environ Health Perspect, 2017, 125(12): 124001. DOI:10.1289/EHP2341 |
[16] |
Centers for Disease Control and Prevention. National report on human exposure to environmental chemicals[R]. Centers for Disease Control and Prevention, 2022.
|
[17] |
Health Canada. Minister of Health, Ottawa. Sixth report on human biomonitoring of environmental chemicals in Canada[EB/OL]. (2021-12-14)[2022-11-10].
https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/sixth-report-human-biomonitoring.html.
|
[18] |
den Hond E, Govarts E, Willems H, et al. First steps toward harmonized human biomonitoring in Europe: demonstration project to perform human biomonitoring on a European scale[J]. Environ Health Perspect, 2015, 123(3): 255-263. DOI:10.1289/ehp.1408616 |
[19] |
张福钢, 丁春光, 张爱华, 等. 中国八省份一般人群全血中镓、铟、铊水平分布研究[J]. 中华预防医学杂志, 2014, 48(2): 138-140. Zhang FG, Ding CG, Zhang AH, et al. Study of distribution of gallium, indium and thallium in whole blood among population in 8 provinces in China[J]. Chin J Prev Med, 2014, 48(2): 138-140. DOI:10.3760/cma.j.issn.0253-9624.2014.02.013 |
[20] |
潘亚娟, 丁春光, 张爱华, 等. 中国八省份一般人群血和尿中锰、钴、钼水平分布的研究[J]. 中华预防医学杂志, 2014, 48(9): 784-790. Pan YJ, Ding CG, Zhang AH, et al. Distribution of manganese, cobalt and molybdenum in blood and urine among general population in 8 provinces of China[J]. Chin J Prev Med, 2014, 48(9): 784-790. DOI:10.3760/cma.j.issn.0253-9624.2014.09.008 |
[21] |
潘兴富, 丁春光, 潘亚娟, 等. 中国八省市一般人群全血中铜、锌水平分布研究[J]. 中华预防医学杂志, 2014, 48(2): 109-113. Pan XF, Ding CG, Pan YJ, et al. Distribution of copper and zinc in blood among general population from 8 provinces in China[J]. Chin J Prev Med, 2014, 48(2): 109-113. DOI:10.3760/cma.j.issn.0253-9624.2014.02.007 |
[22] |
丁春光, 潘亚娟, 张爱华, 等. 中国八省份一般人群血和尿液中铅、镉水平及影响因素调查[J]. 中华预防医学杂志, 2014, 48(2): 91-96. Ding CG, Pan YJ, Zhang AH, et al. Study of distribution and influencing factors of lead and cadmium in whole blood and urine among population in 8 provinces in China[J]. Chin J Prev Med, 2014, 48(2): 91-96. DOI:10.3760/cma.j.issn.0253-9624.2014.02.004 |
[23] |
Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review[J]. Curr Atheroscler Rep, 2012, 14(6): 542-555. DOI:10.1007/s11883-012-0280-x |
[24] |
Moon KA, Oberoi S, Barchowsky A, et al. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease[J]. Int J Epidemiol, 2017, 46(6): 1924-1939. DOI:10.1093/ije/dyx202 |
[25] |
Xu LQ, Mondal D, Polya DA. Positive association of cardiovascular disease (CVD) with chronic exposure to drinking water arsenic (As) at concentrations below the WHO provisional guideline value: a systematic review and meta-analysis[J]. Int J Environ Res Public Health, 2020, 17(7): 2536. DOI:10.3390/ijerph17072536 |
[26] |
Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Appl Geochem, 2002, 17(5): 517-568. DOI:10.1016/S0883-2927(02)00018-5 |
[27] |
Wu F, Jasmine F, Kibriya MG, et al. Interaction between arsenic exposure from drinking water and genetic polymorphisms on cardiovascular disease in Bangladesh: a prospective case-cohort study[J]. Environ Health Perspect, 2015, 123(5): 451-457. DOI:10.1289/ehp.1307883 |
[28] |
Chowdhury R, Ramond A, O'Keeffe LM, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis[J]. BMJ, 2018, 362: k3310. DOI:10.1136/bmj.k3310 |
[29] |
Lanphear BP, Rauch S, Auinger P, et al. Low-level lead exposure and mortality in US adults: a population-based cohort study[J]. Lancet Public Health, 2018, 3(4): e177-184. DOI:10.1016/S2468-2667(18)30025-2 |
[30] |
Brown L, Lynch M, Belova A, et al. Developing a health impact model for adult lead exposure and cardiovascular disease mortality[J]. Environ Health Perspect, 2020, 128(9): 097005. DOI:10.1289/EHP6552 |
[31] |
Guo XW, Su WY, Li N, et al. Association of urinary or blood heavy metals and mortality from all causes, cardiovascular disease, and cancer in the general population: a systematic review and meta-analysis of cohort studies[J]. Environ Sci Pollut Res, 2022, 29(45): 67483-67503. DOI:10.1007/s11356-022-22353-w |
[32] |
Tellez-Plaza M, Jones MR, Dominguez-Lucas A, et al. Cadmium exposure and clinical cardiovascular disease: a systematic review[J]. Curr Atheroscler Rep, 2013, 15(10): 356. DOI:10.1007/s11883-013-0356-2 |
[33] |
Liu JL, Li YL, Li D, et al. The burden of coronary heart disease and stroke attributable to dietary cadmium exposure in Chinese adults, 2017[J]. Sci Total Environ, 2022, 825: 153997. DOI:10.1016/j.scitotenv.2022.153997 |
[34] |
Larsson SC, Wolk A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and meta-analysis of cohort studies[J]. Int J Epidemiol, 2016, 45(3): 782-791. DOI:10.1093/ije/dyv086 |
[35] |
Hu XF, Lowe M, Chan HM. Mercury exposure, cardiovascular disease, and mortality: a systematic review and dose-response meta-analysis[J]. Environ Res, 2021, 193: 110538. DOI:10.1016/j.envres.2020.110538 |
[36] |
Virtanen JK, Voutilainen S, Rissanen TH, et al. Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland[J]. Arterioscler Thromb Vasc Biol, 2005, 25(1): 228-233. DOI:10.1161/01.Atv.0000150040.20950.61 |
[37] |
Salcedo-Bellido I, Gutiérrez-González E, García-Esquinas E, et al. Toxic metals in toenails as biomarkers of exposure: a review[J]. Environ Res, 2021, 197: 111028. DOI:10.1016/j.envres.2021.111028 |
[38] |
Mozaffarian D, Shi PL, Morris JS, et al. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts[J]. N Engl J Med, 2011, 364(12): 1116-1125. DOI:10.1056/NEJMoa1006876 |
[39] |
Kuria A, Tian HD, Li M, et al. Selenium status in the body and cardiovascular disease: a systematic review and meta-analysis[J]. Crit Rev Food Sci Nutr, 2021, 61(21): 3616-3625. DOI:10.1080/10408398.2020.1803200 |
[40] |
Hurst R, Collings R, Harvey LJ, et al. EURRECA-Estimating selenium requirements for deriving dietary reference values[J]. Crit Rev Food Sci Nutr, 2013, 53(10): 1077-1096. DOI:10.1080/10408398.2012.742861 |
[41] |
Jenkins DJA, Kitts D, Giovannucci EL, et al. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials[J]. Am J Clin Nutr, 2020, 112(6): 1642-1652. DOI:10.1093/ajcn/nqaa245 |
[42] |
肖飏. 血浆多种金属水平与新发脑卒中及高血压的关联性研究[D]. 武汉: 华中科技大学, 2019. Xiao Y. Plasma multiple metal concentrations with incident stroke and hypertension in Chinese adults[D]. Wuhan: Huazhong University of Science and Technology, 2019. |
[43] |
Fry K, Power MC. Persistent organic pollutants and mortality in the United States, NHANES 1999-2011[J]. Environ Health, 2017, 16(1): 105. DOI:10.1186/s12940-017-0313-6 |
[44] |
Lind PM, Lind L. Are persistent organic pollutants linked to lipid abnormalities, atherosclerosis and cardiovascular disease? A review[J]. J Lipid Atheroscler, 2020, 9(3): 334-348. DOI:10.12997/jla.2020.9.3.334 |
[45] |
Han DM, Currell MJ. Persistent organic pollutants in China's surface water systems[J]. Sci Total Environ, 2017, 580: 602-625. DOI:10.1016/j.scitotenv.2016.12.007 |
[46] |
Jiang YF, Yuan LM, Lin QH, et al. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: a review[J]. Sci Total Environ, 2019, 696: 133902. DOI:10.1016/j.scitotenv.2019.133902 |
[47] |
Tang J, Zhai JX. Distribution of polybrominated diphenyl ethers in breast milk, cord blood and placentas: a systematic review[J]. Environ Sci Pollut Res, 2017, 24(27): 21548-21573. DOI:10.1007/s11356-017-9821-8 |
[48] |
Li YN, Li JF, Zhang LF, et al. Perfluoroalkyl acids in drinking water of China in 2017:distribution characteristics, influencing factors and potential risks[J]. Environ Int, 2019, 123: 87-95. DOI:10.1016/j.envint.2018.11.036 |
[49] |
Hernández AF, Parrón T, Tsatsakis AM, et al. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health[J]. Toxicology, 2013, 307: 136-145. DOI:10.1016/j.tox.2012.06.009 |
[50] |
Raffetti E, Donat-Vargas C, Mentasti S, et al. Association between exposure to polychlorinated biphenyls and risk of hypertension: a systematic review and meta-analysis[J]. Chemosphere, 2020, 255: 126984. DOI:10.1016/j.chemosphere.2020.126984 |
[51] |
Peters JL, Fabian MP, Levy JI. Combined impact of lead, cadmium, polychlorinated biphenyls and non-chemical risk factors on blood pressure in NHANES[J]. Environ Res, 2014, 132: 93-99. DOI:10.1016/j.envres.2014.03.038 |
[52] |
Airaksinen R, Rantakokko P, Eriksson JG, et al. Association between type 2 diabetes and exposure to persistent organic pollutants[J]. Diabetes Care, 2011, 34(9): 1972-1979. DOI:10.2337/dc10-2303 |
[53] |
Lee DH, Porta M, Jacobs DR, et al. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes[J]. Endocr Rev, 2014, 35(4): 557-601. DOI:10.1210/er.2013-1084 |
[54] |
Porta M. Persistent organic pollutants and the burden of diabetes[J]. Lancet, 2006, 368(9535): 558-559. DOI:10.1016/S0140-6736(06)69174-5 |
[55] |
Magliano DJ, Rancière F, Slama R, et al. Exposure to persistent organic pollutants and the risk of type 2 diabetes: a case-cohort study[J]. Diabetes Metab, 2021, 47(5): 101234. DOI:10.1016/j.diabet.2021.101234 |
[56] |
Bresson SE, Isom S, Jensen ET, et al. Associations between persistent organic pollutants and type 1 diabetes in youth[J]. Environ Int, 2022, 163: 107175. DOI:10.1016/j.envint.2022.107175 |
[57] |
Arrebola JP, Ocaña-Riola R, Arrebola-Moreno AL, et al. Associations of accumulated exposure to persistent organic pollutants with serum lipids and obesity in an adult cohort from Southern Spain[J]. Environ Pollut, 2014, 195: 9-15. DOI:10.1016/j.envpol.2014.08.003 |
[58] |
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-639. DOI:10.1161/cir.0000000000001052 |
[59] |
Pérez-Carrascosa FM, Gómez-Peña C, Echeverría R, et al. Historical exposure to persistent organic pollutants and cardiovascular disease: a 15-year longitudinal analysis focused on pharmaceutical consumption in primary care[J]. Environ Int, 2021, 156: 106734. DOI:10.1016/j.envint.2021.106734 |
[60] |
Kim SA, Kim KS, Lee YM, et al. Associations of organochlorine pesticides and polychlorinated biphenyls with total, cardiovascular, and cancer mortality in elders with differing fat mass[J]. Environ Res, 2015, 138: 1-7. DOI:10.1016/j.envres.2015.01.021 |
[61] |
Donat-Vargas C, Bellavia A, Berglund M, et al. Cardiovascular and cancer mortality in relation to dietary polychlorinated biphenyls and marine polyunsaturated fatty acids: a nutritional-toxicological aspect of fish consumption[J]. J Intern Med, 2020, 287(2): 197-209. DOI:10.1111/joim.12995 |
[62] |
Lind PM, Salihovic S, Stubleski J, et al. Association of exposure to persistent organic pollutants with mortality risk: an analysis of data from the prospective investigation of vasculature in Uppsala Seniors (PIVUS) Study[J]. JAMA Netw Open, 2019, 2(4): e193070. DOI:10.1001/jamanetworkopen.2019.3070 |
[63] |
Mustieles V, Fernández MF, Martin-Olmedo P, et al. Human adipose tissue levels of persistent organic pollutants and metabolic syndrome components: combining a cross-sectional with a 10-year longitudinal study using a multi-pollutant approach[J]. Environ Int, 2017, 104: 48-57. DOI:10.1016/j.envint.2017.04.002 |
[64] |
Lim JE, Lee S, Lee S, et al. Serum persistent organic pollutants levels and stroke risk[J]. Environ Pollut, 2018, 233: 855-861. DOI:10.1016/j.envpol.2017.12.031 |
[65] |
Fu XJ, Xu J, Zhang RY, et al. The association between environmental endocrine disruptors and cardiovascular diseases: a systematic review and meta-analysis[J]. Environ Res, 2020, 187: 109464. DOI:10.1016/j.envres.2020.109464 |
[66] |
Wang ZY, Adu-Kumi S, Diamond ML, et al. Enhancing scientific support for the Stockholm convention's implementation: an analysis of policy needs for scientific evidence[J]. Environ Sci Technol, 2022, 56(5): 2936-2949. DOI:10.1021/acs.est.1c06120 |
[67] |
Porta M, Zumeta E. Implementing the Stockholm treaty on persistent organic pollutants[J]. Occup Environ Med, 2002, 59(10): 651-652. DOI:10.1136/oem.59.10.651 |
[68] |
Yigit N, Velioglu YS. Effects of processing and storage on pesticide residues in foods[J]. Crit Rev Food Sci Nutr, 2020, 60(21): 3622-3641. DOI:10.1080/10408398.2019.1702501 |
[69] |
Dietz R, Rigét FF, Sonne C, et al. Three decades (1983-2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 1:legacy organochlorine contaminants[J]. Environ Int, 2013, 59: 485-493. DOI:10.1016/j.envint.2012.09.004 |
[70] |
Yu YP, Liu ZL, Lu YH, et al. Assessing the risk of diabetes in participants with DDT DDE exposure-A systematic review and meta-analysis[J]. Environ Res, 2022, 210: 113018. DOI:10.1016/j.envres.2022.113018 |
[71] |
Hernández-Mariano JÁ, Baltazar-Reyes MC, Salazar-Martínez E, et al. Exposure to the pesticide DDT and risk of diabetes and hypertension: systematic review and meta-analysis of prospective studies[J]. Int J Hyg Environ Health, 2022, 239: 113865. DOI:10.1016/j.ijheh.2021.113865 |
[72] |
Gump BB, Yun S, Kannan K. Polybrominated diphenyl ether (PBDE) exposure in children: possible associations with cardiovascular and psychological functions[J]. Environ Res, 2014, 132: 244-250. DOI:10.1016/j.envres.2014.04.009 |
[73] |
魏宇轩, 李栋, 田苗, 等. 二噁英的生成及防治研究现状[J]. 有色金属科学与工程, 2022, 13(6): 119-126. Wei YX, Li D, Tian M, et al. Research status of the generation and prevention of dioxins[J]. Nonferr Met Sci Eng, 2022, 13(6): 119-126. DOI:10.13264/j.cnki.ysjskx.2022.06.016 |
[74] |
Vena J, Boffetta P, Becher H, et al. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers[J]. Environ Health Perspect, 1998, 106 Suppl 2(Suppl 2): 645-653. DOI:10.1289/ehp.98106645 |
[75] |
Cui L, Zhou QF, Liao CY, et al. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis[J]. Arch Environ Contam Toxicol, 2009, 56(2): 338-349. DOI:10.1007/s00244-008-9194-6 |
[76] |
Feng XH, Long GF, Zeng GW, et al. Association of increased risk of cardiovascular diseases with higher levels of perfluoroalkylated substances in the serum of adults[J]. Environ Sci Pollut Res, 2022, 29(59): 89081-89092. DOI:10.1007/s11356-022-22021-z |
[77] |
Jain RB. Impact of the co-occurrence of obesity with diabetes, anemia, hypertension, and albuminuria on concentrations of selected perfluoroalkyl acids[J]. Environ Pollut, 2020, 266: 115207. DOI:10.1016/j.envpol.2020.115207 |
[78] |
Geiger SD, Xiao J, Ducatman A, et al. The association between PFOA, PFOS and serum lipid levels in adolescents[J]. Chemosphere, 2014, 98: 78-83. DOI:10.1016/j.chemosphere.2013.10.005 |
[79] |
Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population[J]. Environ Health Perspect, 2010, 118(2): 197-202.. DOI:10.1289/ehp.0901165 |
[80] |
Liao SE, Yao WM, Cheang I, et al. Association between perfluoroalkyl acids and the prevalence of hypertension among US adults[J]. Ecotoxicol Environ Saf, 2020, 196: 110589. DOI:10.1016/j.ecoenv.2020.110589 |
[81] |
Min JY, Lee KJ, Park JB, et al. Perfluorooctanoic acid exposure is associated with elevated homocysteine and hypertension in US adults[J]. Occup Environ Med, 2012, 69(9): 658-662. DOI:10.1136/oemed-2011-100288 |
[82] |
Liu HN, Hu WL, Li X, et al. Do perfluoroalkyl substances aggravate the occurrence of obesity-associated glucolipid metabolic disease?[J]. Environ Res, 2021, 202: 111724. DOI:10.1016/j.envres.2021.111724 |
[83] |
Shankar A, Xiao J, Ducatman A. Perfluorooctanoic acid and cardiovascular disease in US adults[J]. Arch Intern Med, 2012, 172(18): 1397-1403. DOI:10.1001/archinternmed.2012.3393 |
[84] |
Huang MM, Jiao JJ, Zhuang P, et al. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population[J]. Environ Int, 2018, 119: 37-46. DOI:10.1016/j.envint.2018.05.051 |