[1] |
Yang WZ. Early warning for infectious disease outbreak[M]. Cambridge: Academic Press, 2017.
|
|
[2] |
杨维中. 传染病预警理论与实践[M]. 北京: 人民卫生出版社, 2012. Yang WZ. Early warning of infectious disease theory and practice[M]. Beijing: People's Medical Publishing House, 2012.
|
|
[3] |
Buckeridge DL, Okhmatovskaia A, Tu S, et al. Understanding detection performance in public health surveillance: modeling aberrancy-detection algorithms[J]. J Am Med Inform Assoc, 2008, 15(6): 760-769. DOI:10.1197/jamia.M2799 |
|
[4] |
Jia P, Yang SJ. Early warning of epidemics: towards a national intelligent syndromic surveillance system (NISSS) in China[J]. BMJ Glob Health, 2020, 5(10): e002925. DOI:10.1136/bmjgh-2020-002925 |
|
[5] |
Sellick JAJr. The use of statistical process control charts in hospital epidemiology[J]. Infect Control Hosp Epidemiol, 1993, 14(11): 649-656. DOI:10.1086/646659 |
|
[6] |
Baker AW, Nehls N, Ilieş I, et al. Use of optimised dual statistical process control charts for early detection of surgical site infection outbreaks[J]. BMJ Qual Saf, 2020, 29(6): 517-520. DOI:10.1136/bmjqs-2019-010586 |
|
[7] |
Howard L. Statistical process control: a quantitative approach to ensuring quality[J]. Admit Manage J, 1990, 15(3): 6-7. |
|
[8] |
Zhang HL, Li ZJ, Lai SJ, et al. Evaluation of the performance of a dengue outbreak detection tool for China[J]. PLoS One, 2014, 9(8): e106144. DOI:10.1371/journal.pone.0106144 |
|
[9] |
Hutwagner L, Thompson W, Seeman GM, et al. The bioterrorism preparedness and response Early Aberration Reporting System (EARS)[J]. J Urban Health, 2003, 80(2 Suppl 1): i89-96. DOI:10.1007/pl00022319 |
|
[10] |
Li ZJ, Lai SJ, Zhang HL, et al. Hand, foot and mouth disease in China: evaluating an automated system for the detection of outbreaks[J]. Bull World Health Organ, 2014, 92(9): 656-663. DOI:10.2471/Blt.13.130666 |
|
[11] |
Unkel S, Farrington CP, Garthwaite PH, et al. Statistical methods for the prospective detection of infectious disease outbreaks: a review[J]. J Roy Statist Soc Ser A Stat Soc, 2012, 175(1): 49-82. DOI:10.1111/j.1467-985X.2011.00714.x |
|
[12] |
Takahashi K, Shimadzu H. Detecting multiple spatial disease clusters: information criterion and scan statistic approach[J]. Int J Health Geogr, 2020, 19(1): 33. DOI:10.1186/s12942-020-00228-y |
|
[13] |
Shariati M, Mesgari T, Kasraee M, et al. Spatiotemporal analysis and hotspots detection of COVID-19 using geographic information system (March and April, 2020)[J]. J Environ Health Sci Eng, 2020, 18(2): 1499-1507. DOI:10.1007/s40201-020-00565-x |
|
[14] |
Saffary T, Adegboye OA, Gayawan E, et al. Analysis of COVID-19 cases' spatial dependence in US counties reveals health inequalities[J]. Front Public Health, 2020, 8: 579190. DOI:10.3389/fpubh.2020.579190 |
|
[15] | |
|
[16] |
Yang WZ, Li Z, Lan YJ, et al. A nationwide web-based automated system for outbreak early detection and rapid response in China[J]. Western Pac Surveill Response J, 2011, 2(1): 10-15. DOI:10.5365/WPSAR.2010.1.1.009 |
|
[17] |
Kulldorff M, Heffernan R, Hartman J, et al. A space-time permutation scan statistic for disease outbreak detection[J]. PLoS Med, 2005, 2(3): e59. DOI:10.1371/journal.pmed.0020059 |
|
[18] |
Hohl A, Delmelle EM, Desjardins MR, et al. Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States[J]. Spat Spat Temp Epidemiol, 2020, 34: 100354. DOI:10.1016/j.sste.2020.100354 |
|
[19] |
Takahashi K, Kulldorff M, Tango T, et al. A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring[J]. Int J Health Geogr, 2008, 7: 14. DOI:10.1186/1476-072X-7-14 |
|
[20] |
Kraemer MUG, Reiner RC, Brady OJ, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus[J]. Nat Microbiol, 2019, 4(5): 854-863. DOI:10.1038/s41564-019-0376-y |
|
[21] |
Odhiambo JN, Kalinda C, Macharia PM, et al. Spatial and spatio-temporal methods for mapping malaria risk: a systematic review[J]. BMJ Glob Health, 2020, 5(10): e002919. DOI:10.1136/bmjgh-2020-002919 |
|
[22] |
Dopson SA. Early warning infectious disease surveillance[J]. Biosecur Bioterror, 2009, 7(1): 55-60. DOI:10.1089/bsp.2008.0021 |
|
[23] |
杨维中, 兰亚佳, 李中杰, 等. 国家传染病自动预警系统的设计与应用[J]. 中华流行病学杂志, 2010, 31(11): 1240-1244. Yang WZ, Lan YJ, Li ZJ, et al. The application of national outbreak automatic detection and response system, China[J]. Chin J Epidemiol, 2010, 31(11): 1240-1244. DOI:10.3760/cma.j.issn.0254-6450.2010.11.009 |
|
[24] |
Zhang HL, Wang LP, Lai SJ, et al. Surveillance and early warning systems of infectious disease in China: From 2012 to 2014[J]. Int J Health Plann Manag, 2017, 32(3): 329-338. DOI:10.1002/hpm.2434 |
|
[25] |
Vlieg WL, Fanoy EB, van Asten L, et al. Comparing national infectious disease surveillance systems: China and the Netherlands[J]. BMC Public Health, 2017, 17(1): 415. DOI:10.1186/s12889-017-4319-3 |
|
[26] |
Cakici B, Hebing K, Grünewald M, et al. CASE: a framework for computer supported outbreak detection[J]. BMC Med Inform Decis Mak, 2010, 10: 14. DOI:10.1186/1472-6947-10-14 |
|
[27] |
Alsentzer E, Ballard SB, Neyra J, et al. Assessing 3 outbreak detection algorithms in an electronic syndromic surveillance system in a resource-limited setting[J]. Emerg Infect Dis, 2020, 26(9): 2196-2200. DOI:10.3201/eid2609.191315 |
|
[28] | |
|
[29] | |
|
[30] |
Rolland C, Lazarus C, Giese C, et al. Early detection of public health emergencies of international concern through undiagnosed disease reports in ProMED-mail[J]. Emerg Infect Dis, 2020, 26(2): 336-339. DOI:10.3201/eid2602.191043 |
|
[31] |
Jin LM, Ma JQ, Lv WJ, et al. Chapter 5-Development of early warning information systems[M]//Yang WZ. Early warning for infectious disease outbreak: theory and practice. New York: Academic Press, 2017: 99-112.
|
|
[32] |
杨维中, 兰亚佳, 吕炜, 等. 建立我国传染病智慧化预警多点触发机制和多渠道监测预警机制[J]. 中华流行病学杂志, 2020, 41(11): 1753-1757. Yang WZ, Lan YJ, Lyu W, et al. Establishment of multi-point trigger and multi-channel surveillance mechanism for intelligent early warning of infectious diseases in China[J]. Chin J Epidemiol, 2020, 41(11): 1753-1757. DOI:10.3760/cma.j.cn112338-20200722-00972 |
|
[33] |
Kogan NE, Clemente L, Liautaud P, et al. An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time[J]. Sci Adv, 2021, 7(10): eabd6989. DOI:10.1126/sciadv.abd6989 |
|
[34] | |
|
[35] |
Lai SJ, Ruktanonchai NW, Zhou LC, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020, 585(7825): 410-413. DOI:10.1038/s41586-020-2293-x |
|
[36] |
Tian HY, Liu YH, Li YD, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020, 368(6491): 638-642. DOI:10.1126/science.abb6105 |
|
[37] |
Kraemer MUG, Yang CH, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020, 368(6490): 493-497. DOI:10.1126/science.abb4218 |
|
[38] |
Bengtsson L, Gaudart J, Lu X, et al. Using mobile phone data to predict the spatial spread of cholera[J]. Sci Rep, 2015, 5: 8923. DOI:10.1038/srep08923 |
|
[39] |
Peak CM, Wesolowski A, Zu Erbach-Schoenberg E, et al. Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data[J]. Int J Epidemiol, 2018, 47(5): 1562-1570. DOI:10.1093/ije/dyy095 |
|
[40] | |
|
[41] |
Yin L, Zhang H, Li Y, et al. Effectiveness of contact tracing, mask wearing and prompt testing on suppressing COVID-19 resurgences in megacities: an individual-based modelling study[J]. SSRN, 2021. DOI:10.2139/ssrn.3750214 |
|
[42] |
Huang B, Wang JH, Cai JX, et al. Integrated vaccination and physical distancing interventions to prevent future COVID-19 waves in Chinese cities[J]. Nat Hum Behav, 2021, 5(6): 695-705. DOI:10.1038/s41562-021-01063-2 |
|
[43] |
Lai SJ, Ruktanonchai NW, Carioli A, et al. Assessing the effect of global travel and contact restrictions on mitigating the COVID-19 pandemic[J]. Engineering, 2021. DOI:10.1016/j.eng.2021.03.017 |
|
[44] |
Yang J, Li J, Lai SJ, et al. Uncovering two phases of early intercontinental COVID-19 transmission dynamics[J]. J Travel Med, 2020, 27(8): taaa200. DOI:10.1093/jtm/taaa200 |
|
[45] |
Ruktanonchai NW, Floyd JR, Lai S, et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe[J]. Science, 2020, 369(6510): 1465-1470. DOI:10.1126/science.abc5096 |
|
[46] |
Li RY, Chen B, Zhang T, et al. Global COVID-19 pandemic demands joint interventions for the suppression of future waves[J]. Proc Natl Acad Sci USA, 2020, 117(42): 26151-26157. DOI:10.1073/pnas.2012002117 |
|
[47] | |
|