[1] |
Akaike H. Information theory and an extension of the maximum likelihood principle[C]//Kotz S, Johnson NL, eds. Breakthroughs in Statistics. New York:Springer, 1992. DOI:10.1007/978-1-4612-0919-5_38.
|
|
[2] |
Schwarz G.
Estimating the dimension of a model[J]. Annals Stat, 1978, 6(2): 461–464.
DOI:10.1214/aos/1176344136 |
|
[3] |
Mallows CL.
Some comments on Cp[J]. Technometrics, 1973, 15(4): 661–675.
DOI:10.1080/00401706.1973.10489103 |
|
[4] |
Chen JH, Chen ZH.
Extended Bayesian information criteria for model selection with large model spaces[J]. Biometrika, 2008, 95(3): 759–771.
DOI:10.1093/biomet/asn034 |
|
[5] |
Fan JQ, Li RZ.
Variable selection via nonconcave penalized likelihood and its oracle properties[J]. J Am Stat Assoc, 2001, 96(456): 1348–1360.
DOI:10.1198/016214501753382273 |
|
[6] |
Zou H.
The adaptive lasso and its oracle properties[J]. J Am Stat Assoc, 2006, 101(476): 1418–1429.
DOI:10.1198/016214506000000735 |
|
[7] |
Candes E, Tao T.
The Dantzig selector:statistical estimation when p is much larger than n[J]. Ann Stat, 2007, 35(6): 2313–2351.
DOI:10.1214/009053606000001523 |
|
[8] |
Zhang CH.
Nearly unbiased variable selection under minimax concave penalty[J]. Ann Stat, 2010, 38(2): 894–942.
DOI:10.1214/09-AOS729 |
|
[9] |
Fan JQ, Lv JC.
Sure independence screening for ultrahigh dimensional feature space[J]. J Roy Stat Soc:Ser B:Stat Methodol, 2008, 70(5): 849–911.
DOI:10.1111/j.1467-9868.2008.00674.x |
|
[10] |
李根, 邹国华, 张新雨.
高维模型选择方法综述[J]. 数理统计与管理, 2012, 31(4): 640–658.
Li G, Zou GH, Zhang XY.
Model selection for high-dimensional data:a review[J]. J Appl Stat Manag, 2012, 31(4): 640–658.
DOI:10.13860/j.cnki.sltj.2012.04.004 |
|
[11] |
Fan JQ, Lv JC.
A selective overview of variable selection in high dimensional feature space[J]. Stat Sin, 2010, 20(1): 101–148.
DOI:10.1063/1.3660805 |
|
[12] |
Luo S, Chen Z.
Sequential lasso cum EBIC for feature selection with ultra-high dimensional feature space[J]. J Am Stat Assoc, 2014, 109(507): 1229–1240.
DOI:10.1080/01621459.2013.877275 |
|
[13] |
Wang XQ, Jiang YL, Huang M, et al.
Robust variable selection with exponential squared loss[J]. J Am Stat Assoc, 2013, 108(502): 632–643.
DOI:10.1080/01621459.2013.766613 |
|
[14] |
Jiang Y, He XY, Zhang HP.
Variable selection with prior information for generalized linear models via the prior LASSO method[J]. J Am Stat Assoc, 2016, 111(513): 355–376.
DOI:10.1080/01621459.2015.1008363 |
|
[15] |
Song QF, Liang FM.
High-dimensional variable selection with reciprocal L1-regularization[J]. J Am Stat Assoc, 2015, 110(512): 1607–1620.
DOI:10.1080/01621459.2014.984812 |
|
[16] |
Mitchell TJ, Beauchamp JJ.
Bayesian variable selection in linear regression[J]. J Am Stat Assoc, 1988, 83(404): 1023–1032.
DOI:10.1080/01621459.1988.10478694 |
|
[17] |
George EI, McCulloch RE.
Variable selection via gibbs sampling[J]. J Am Stat Assoc, 1993, 88(423): 881–889.
DOI:10.1080/01621459.1993.10476353 |
|
[18] |
Shin M, Bhattacharya A, Johnson VE.
Scalable Bayesian variable selection using nonlocal prior densities in ultrahigh-dimensional settings[J]. Statistics, 2015, 72(1): 51–58.
|
|
[19] |
Nikooienejad A, Wang WY, Johnson VE.
Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors[J]. Bioinformatics, 2016, 32(9): 1338–1345.
DOI:10.1093/bioinformatics/btv764 |
|
[20] |
Castillo I, Schmidt-Hieber J, van der Vaart A.
Bayesian linear regression with sparse priors[J]. Ann Stat, 2015, 43(5): 1986–2018.
DOI:10.1214/15-aos1334 |
|
[21] |
Johnson VE, Rossell D.
On the use of non-local prior densities in Bayesian hypothesis tests[J]. J Roy Stat Soc, 2010, 72(2): 143–170.
DOI:10.1111/j.1467-9868.2009.00730.x |
|
[22] |
Johnson VE, Rossell D.
Bayesian model selection in high-dimensional settings[J]. J Am Stat Assoc, 2012, 107(498).
DOI:10.1080/01621459.2012.682536 |
|
[23] |
O'Hagan A.
Fractional bayes factors for model comparison[J]. J Roy Stat Soc, 1995, 57(1): 99–118.
|
|
[24] |
Berger JO, Pericchi LR.
The intrinsic bayes factor for model selection and prediction[J]. J Am Stat Assoc, 1996, 91(433): 109–122.
DOI:10.1080/01621459.1996.10476668 |
|
[25] |
George EI, McCulloch RE.
Approaches for Bayesian variable selection[J]. Stat Sin, 1997, 7: 339–373.
|
|
[26] |
West M, Nevins JR, Marks JR, et al.
DNA microarray data analysis and regression modeling for genetic expression profiling[J]. ISDS Discussion, 2000.
|
|
[27] |
Lee KE, Sha N, Dougherty ER, et al.
Gene selection:a Bayesian variable selection approach[J]. Bioinformatics, 2003, 19(1): 90–97.
DOI:10.1093/bioinformatics/19.1.90 |
|
[28] |
Liang F, Paulo R, Molina G, et al.
Mixtures of g Priors for bayesian variable selection[J]. J Am Stat Assoc, 2008, 103(481): 410–423.
DOI:10.1198/016214507000001337 |
|
[29] |
Zellner A.
On assessing prior distributions and bayesian regression analysis with g-prior distributions[J]. Bayesian Infer Decis Tech, 1985, 6: 233–243.
|
|
[30] |
Kass RE, Raftery AE.
Bayes Factors[J]. J Am Stat Assoc, 1995, 90(430): 773–795.
DOI:10.1080/01621459.1995.10476572 |
|
[31] |
Foster DP, George EI.
The risk inflation criterion for multiple regression[J]. Anna Stat, 1994, 22(4): 1947–1975.
DOI:10.1080/01621459.2012.761942 |
|
[32] |
Fernández C, Ley E, Steel MFJ.
Benchmark priors for Bayesian model averaging[J]. J Econom, 2001, 100(2): 381–427.
DOI:10.1016/S0304-4076(00)00076-2 |
|
[33] |
Strawderman EW.
Proper bayes minimax estimators of the multivariate normal mean[J]. Anna Mathemat Stat, 1971, 42(1): 385–388.
DOI:10.1214/aoms/1177693528 |
|
[34] |
Womack AJ, León-Novelo L, Casella G.
Inference from intrinsic bayes' procedures under model selection and uncertainty[J]. J Am Stat Assoc, 2014, 109(507): 1040–1053.
DOI:10.1080/01621459.2014.880348 |
|
[35] |
Ročková V, George EI.
EMVS:The EM approach to Bayesian variable selection[J]. J Am Stat Assoc, 2014, 109(506): 828–846.
DOI:10.1080/01621459.2013.869223 |
|
[36] |
Ročková V, George EI.
The spike-and-slab LASSO[J]. J Am Stat Assoc, 2016.
DOI:10.1080/01621459.2016.1260469 |
|
[37] |
Rossell D, Telesca D, Johnson VE.
High-dimensional Bayesian classifiers using non-local priors[J]. Stat Mod Data Analy, 2013: 305–313.
DOI:10.1007/978-3-319-00032-9_35 |
|
[38] |
Rossell D, Telesca D.
Non-local priors for high-dimensional estimation[J]. J Am Stat Assoc, 2015: 1–33.
DOI:10.1080/01621459.2015.1130634 |
|
[39] |
Bondell HD, Reich BJ.
Consistent high-dimensional Bayesian variable selection via penalized credible regions[J]. J Am Stat Assoc, 2012, 107(500): 1610–1624.
DOI:10.1080/01621459.2012.716344 |
|
[40] |
Liang FM, Song QF, Yu K.
Bayesian subset modeling for high-dimensional generalized linear models[J]. J Am Stat Assoc, 2013, 108(502): 589–606.
DOI:10.1080/01621459.2012.761942 |
|
[41] |
Wang XY, Leng CL.
High dimensional ordinary least squares projection for screening variables[J]. J Roy Stat Soc, 2016, 78(3): 589–611.
DOI:10.1111/rssb.12127 |
|
[42] |
Stefanski LA, Wu Y, White K.
Variable selection in nonparametric classification via measurement error model selection likelihoods[J]. J Am Stat Assoc, 2014, 109(506): 574–589.
DOI:10.1080/01621459.2013.858630 |
|
[43] |
Bertsimas D, King A, Mazumder R.
Best subset selection via a modern optimization lens[J]. Annal Stat, 2015, 44(2): 813–852.
DOI:10.1214/15-AOS1388 |
|