2. 中国地质调查局造山带地质研究中心, 中国地质调查局西安地质调查中心, 西安 710054
2. Center for Orogenic Belt Geology, Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
造山带中发育有与板块俯冲-碰撞过程有关的不同成因类型的沉积盆地,甄别这些沉积盆地类型和演化历史对重建造山带演化历史具有重要的意义(Ingersoll and Busby, 1995; 闫臻等, 2008, 2018; Cawood et al., 2009, 2012; 胡修棉等, 2021)。尽管这些盆地会被构造变形改造,但沉积物的物质组成和扩散(dispersion)模式可以有效记录物源区和构造环境信息,反映盆地演化历史。例如,与俯冲带相关的盆地沉积物主要来源于同时期的弧岩浆岩(包括弧火山岩及侵入岩),而与碰撞相关的盆地沉积物物源主要为具有俯冲杂岩、碰撞造山带混合物源特征的再旋回造山带碎屑(Dickinson and Suczek, 1979; 闫臻等, 2018)。沉积物由源(source)到汇(sink)的过程中往往经历了一系列复杂的物理、化学过程,包括风化、剥蚀、搬运、固结成岩以及可能的变质作用。因此,强抗风化、物理化学性质稳定的矿物或矿物组合能够很好地揭示物源区性质(Morton et al., 2016)。锆石是常见的强抗风化矿物,其在沉积过程中物理化学性质极其稳定,广泛分布于各种陆源碎屑岩中。同时锆石具有高U、204Pb含量低、封闭温度高(900℃)的特点,是开展U-Pb定年的良好载体。沉积物中碎屑锆石分析能够很好的反映物源区的性质,如母岩时代、物源区岩石组合、风化剥蚀强度、岩浆作用强度等等,揭示造山带演化过程,是目前造山带地质研究最主要的手段之一(Dickinson and Gehrels, 2009; Cawood et al., 2012; Gehrels, 2014; Sharman et al., 2015; Tang et al., 2021)。
祁连造山带保留了典型的沟-弧-盆演化体系,记录了原特提斯洋演化过程中大洋俯冲和碰撞造山过程(李春昱等, 1978; 左国朝和刘寄陈, 1987; 许志琴等, 1994; 冯益民等, 2002; 吴才来等, 2004; Xiao et al., 2009; Gehrels et al., 2011; Song et al., 2013, 2014; Yan et al., 2015, 2019b; 张建新等, 2015; 夏林圻等, 2016; Wang et al., 2017a; Fu et al., 2018; 马蓁等, 2018; Ma et al., 2020; Yu et al., 2021)。中祁连南缘存在一条约2000km的早古生代岩浆岩带,包括大量的寒武纪-奥陶纪弧-弧后盆地杂岩(Song et al., 2014, 2017; Wang et al., 2017a; Fu et al., 2018; Gao et al., 2018; Yang et al., 2019; Zhao et al., 2020)。该岩浆岩带沿拉脊山-党河南山一带NWW向展布,反映了俯冲带不同阶段演化历史,保留了弧岩浆演化的重要信息(图 1a)。目前,对该岩浆岩带形成环境仍然存在不同认识:(1)有学者认为该岩浆岩带是原特提斯洋向北俯冲形成的增生杂岩,发育洋底高原、洋岛/海山、弧前玄武岩和洋中脊岩石组合(Song et al., 2017;Zhang et al., 2017; Fu et al., 2018; Yan et al., 2019a);(2)也有学者认为它形成于早古生代裂谷型小洋盆(曾广策等, 1997; 杨巍然等, 2000, 2002)或弧后盆地环境(黄增保等, 2016; Gao et al., 2018; Tao et al., 2018; Zhao et al., 2020)。沿该岩浆岩带广泛分布着一系列奥陶-志留系火山-沉积岩系,对该沉积岩系的成因研究能够为解决上述争议问题提供新途径。本文选取中祁连党河南山-木里地区早古生代火山-沉积岩系作为研究对象,综合岩相学、碎屑锆石U-Pb年代学及Hf同位素特征的研究,来探讨中-南祁连早古生代沉积岩系盆地性质及构造演化历史,为进一步研究祁连造山带演化提供新资料。
|
图 1 祁连山区域地质简图(a, 据Wang et al., 2017a修改)、党河南山地区早古生代火山-沉积岩系分布图(b)及木里地区早古生代火山-沉积岩系分布图(c, 据甘肃省地质矿产局, 1975①, 1979②, 1985③) Fig. 1 Simplified geological map of Qilian Orogen (a, Wang et al., 2017a), outcrops map of Early Paleozoic volcanic-sedimentary rocks in Danghenanshan area (b) and distribution map of Early Paleozoic volcanic-sedimentary rocks in Muli area (c) |
① 甘肃省地质矿产局. 1975. 1/20万月牙湖幅区域地质调查报告
② 甘肃省地质矿产局. 1979. 1/20万多索卡幅区域地质调查报告
③ 甘肃省地质矿产局. 1985. 1/20万下环仓幅区域地质调查报告
1 区域地质背景及样品特征 1.1 区域地质背景祁连造山带北邻阿拉善板块,南接全吉地块和柴北缘超高压变质带,向西以阿尔金走滑断裂带为界与塔里木地块相邻,向东延伸与秦岭造山带相连(图 1a)。祁连造山带自北向南可划分为北祁连、中祁连和南祁连3个构造带(冯益民等, 2002)。
北祁连构造带由早古生代蛇绿岩、岛弧杂岩及俯冲杂岩组成(详见Song et al., 2013及其参考文献)。
中祁连构造带主要由前寒武纪基底、早古生代岩浆岩(岛弧火山岩、中酸性侵入岩、少量基性-超基性岩体)和沉积岩系组成(苏建平等, 2004a, b; 李建锋等, 2010; 齐瑞荣, 2012; 黄增保等, 2015; Wang et al., 2017a; Li et al., 2020; Ma et al., 2020; Zhao et al., 2020),其中的前寒武纪基底包括野马南山群、湟源群、马衔山群深变质岩系和党河群、湟中群、兴隆山群浅变质岩系,时代上主要集中在中-新元古代(张建新等, 2021)。早古生代岩浆岩主要形成于530~410Ma之间(Wang et al., 2017a)。早古生代沉积岩系主要包括中祁连构造带西段党河南山-木里地区吾力沟组、盐池湾组、多索曲组(图 1a, c)和东段拉脊山地区寒武系深沟组和六道沟组、奥陶系花抱山组、阿夷山组、茶铺组、药水泉组(甘肃省地质矿产局, 1989)。新的研究表明花抱山组和药水泉组形成于晚奥陶世-早志留世(450~420Ma)的弧后前陆盆地环境(Yan et al., 2019a)。
南祁连构造带中西段物质组成主要表现为一套原划为志留系的巴龙贡嘎尔组碎屑沉积岩及花岗质岩石(图 1a)。其中的花岗质岩石主要形成于460~445Ma,而原巴龙贡嘎尔组碎屑沉积岩中不断被解体出新元古代和寒武-奥陶纪岩石组合(计波等, 2018, 2020, 2021; Li et al., 2019; 王磊等, 2019)。Li et al. (2019)根据碎屑锆石谱系特征和野外变质变形特征差异,将巴龙贡噶尔组划分为A和B两个单元。单元A主要为浊积岩相厚层杂砂岩,碎屑锆石年龄大于0.7Ga,具有2.2~1.8Ga和0.8~0.7Ga两个年龄峰值。单元B为强烈变形变沉积岩系,沉积时代小于560Ma,碎屑锆石具有0.56~0.68Ga、1.2~0.9Ga和1.60Ga三个年龄峰值,具有冈瓦纳大陆超级扇沉积特征。南祁连构造带东段主要为化隆杂岩,其中的940~850Ma花岗质岩石、变火山-沉积岩系遭受了470~440Ma岩浆侵入和变质事件改造(Yan et al., 2015)。
本文研究区位于中祁连构造带南缘党河南山-木里地区,出露大范围的早古生代花岗质岩石和早古生代-新生界沉积岩系,其中,沉积地层有奥陶系、志留系、泥盆系、石炭系、侏罗系以及新生界地层,以奥陶-志留系吾力沟组、盐池湾组、多索曲组和志留系巴龙贡嘎尔组地层为主。本文以研究区奥陶-志留系地层为主要研究对象,其中吾力沟组、盐池湾组主要分布于党河南山地区(图 1b),多索曲组分布于天峻县木里地区(图 1c)。
吾力沟组层型剖面(起点坐标为39°12′00″N、95°24′00″E)位于甘肃省肃北县扎子沟(甘肃省地质矿产局, 1975)。吾力沟组由下至上依次为中基性火山岩段、沉积岩段、中酸性火山岩段及顶部的结晶灰岩段四个岩性段。吾力沟组主要由底部发育气孔、杏仁构造的玄武安山岩到顶部玄武质火山碎屑岩组成(图 2、图 3b)。扎子沟吾力沟组顶部为盐池湾组,为断层接触。扎子沟盐池湾组岩性组合为灰色砂岩、粉砂岩及板岩,夹少量薄层灰岩。
|
图 2 吾力沟组和盐池湾组剖面地层柱状图(剖面实测资料据甘肃省地质矿产局, 1975) Fig. 2 Lithostratigraphy of the Wuligou and Yanchiwan formations |
|
图 3 代表性野外露头照片 (a)吾力沟组中酸性火山岩段宏观照片;(b)吾力沟组玄武安山岩;(c)盐池湾组砾岩夹砂岩;(d)盐池湾组岩屑砂岩;(e)多索曲组砂岩;(f)多索曲组流纹岩;(g)多索曲组砾岩 Fig. 3 Representative field images of Early Paleozoic volcanic-sedimentary rocks (a) field photos showing intermediate-felsic volcanic rocks of Wuligou Formation; (b) basaltic andesite of the Wuligou Formation; (c) sandstone and conglomerate of the Yanchiwan Formation; (d) lithic sandstone of the Yanchiwan Formation; (e) sandstone of the Duosuoqu Formation; (f) rhyolite of the Duosuoqu Formation; (g) conglomerate of the Duosuoqu Formation |
盐池湾组的层型剖面(起点坐标为38°49′00″N、95°56′00″E)位于甘肃省肃北县吾力沟和黑刺沟(甘肃省地质矿产局, 1975)。盐池湾组未见底、顶,主要由灰、灰绿色杂砂岩、长石砂岩、长石质杂砂岩,灰绿、暗灰绿、黑色板岩与砾岩夹层组成(图 2、图 3c, d)。除最下部由砂、板岩夹少量砾岩和灰岩组成的不完整旋回之外,全组由中-巨厚层砾岩起始向上变细为粉砂质板岩、粉砂岩或砂、板岩互层的三个正粒序旋回组成,且砾岩厚度由下至上逐渐减小(图 2),砾石成分主要为石英岩、花岗岩和灰岩等(图 3c)。
前人在天峻县多索曲南部对多索曲组进行了剖面实测,多索曲组与下伏盐池湾组呈整合接触,与上覆下三叠统江河组呈断层接触。多索曲组主要由火山岩及火山碎屑岩沉积组成(图 3e-g),顶部沉积一套特征长石杂砂岩,岩相特征、沉积序列和地球化学特征表明多索曲组为一套弧火山-沉积岩系(白旭东等,2018)。
1.2 样品特征本文分别对党河南山-木里地区奥陶-志留系火山-沉积岩系中的1件玄武安山岩和6件碎屑岩进行了锆石年代学分析。
玄武安山岩样品20CQ-108 来自盐池湾地区扎子沟吾力沟组层型剖面的中-基性火山岩段,采样位置见图 1b。玄武安山岩中气孔构造发育,可见方解石填充物。镜下有较多的脱玻化斜长石微晶及绢云母(图 4a)。
|
图 4 代表性岩石正交偏光下显微照片 (a)吾力沟组玄武安山岩;(b)多索曲组流纹岩;(c)盐池湾组岩屑砂岩;(d)盐池湾组砾岩. Cal-方解石; Q-石英; Kfs-钾长石; Ms-白云母; Lv-火山岩屑; Lm-变质岩岩屑 Fig. 4 Representative micrographs under cross-polarized light of Early Paleozoic volcanic-sedimentary rocks (a) basaltic andesite of the Wuligou Formation; (b) rhyolite of the Duosuoqu Formation; (c) lithic sandstone of the Yanchiwan Formation; (d) conglomerate of the Yanchiwan Formation. Cal-calcite; Q-quartz; Kfs-K-feldspar; Ms-muscovite; Lv-volcanic lithic fragments; Lm-metamorphic lithic fragments |
盐池湾组 样品20CQ-5、16HC-1采自盐池湾地区吾力沟-黑刺沟层型剖面,16CQ-1采自黑刺沟以南地区盐池湾组地层,采样位置见图 1b。样品20CQ-5为砾岩,砾岩中砾石含量约为60%,主要为石英岩、灰岩和火山岩(图 3c)。砾石分选磨圆均较好,砾石粒径介于2~5cm之间。正交偏光下砾岩中填隙物主要由火山岩屑、变质岩屑、石英、白云母等(约占全岩35%)和亮晶方解石胶结物(约占5%)组成(图 4d)。样品16HC-1岩性为砂岩。16CQ-1为岩屑砂岩,野外露头上呈紫红色,镜下主要碎屑为火成岩岩屑及石英(图 4c);杂基含量较高,主要为方解石,呈他形充填于颗粒之间。
多索曲组 2个碎屑锆石样品采自木里地区沙柳河地区(13SLH04、13SQL10,图 1c),岩性为砂岩,变质程度较浅(图 3e)。1个样品采自扎子沟西北(17QL-31-2,图 1b),岩性为凝灰质砂岩。此外,沙柳河地区多索曲组中还含有大量基性火山岩(白旭东等,2018)。朱小辉等(未发表)也在该地区多索曲组中发现流纹岩及砾岩(图 3f, g),砾石成分主要为花岗岩、火山岩。17QL-31-2为彭岩等(2014)样品12-99-R1的补采样品(图 1b),手标本及镜下描述详见彭岩等(2014)。
2 分析方法锆石挑选由河北省廊坊市宇能岩石矿物分选技术服务有限公司完成。锆石制靶、透反射光和阴极发光(CL)在西北大学大陆动力学国家重点实验室完成。根据锆石透、反射光和CL图像,仔细观察锆石的晶体形态和内部特征,避开存在裂隙和包裹体的锆石,选取环带清晰和晶形良好的锆石进行U-Pb-Hf同位素分析。
锆石U-Pb-Hf同位素测试在中国地质调查局西安地质调查中心自然资源部岩浆作用成矿与找矿重点实验室完成。分析仪器为Agilent 7700x型四级杆型等离子体质谱仪、Neptune Plus型多接收等离子体质谱仪及与之配套的GeoLas Pro激光剥蚀系统,实验过程中以He作为载气、Ar为补偿气用以调节灵敏度。样品气溶胶部分被输送到四级杆型等离子体质谱仪进行锆石微量元素和U-Pb同位素年龄测定,另一部分被输送到多接收等离子体质谱仪中进行Hf同位素测试。详细仪器参数和测试过程可参考李艳广等(2015)。锆石U-Pb测年以91500标准锆石作为外标,GJ-1同时作为锆石测年和Hf同位素监控标样,U、Th含量以NIST 610为外标。对锆石U-Pb年龄数据的处理使用Glitter 4.0,年龄数据计算、谐和图使用Isoplot R (Vermeesch, 2018),碎屑锆石频谱的绘制使用KDredX2。对于年龄小于1200Ma的锆石,采用206Pb/238U年龄,大于1200Ma的锆石采用207Pb/206Pb年龄(Gehrels, 2014)。单点年龄及同位素比值误差均为1σ。6件碎屑锆石样品选取谐和度大于90%的碎屑锆石年龄绘制碎屑锆石频谱图。锆石U-Pb年龄分析结果见附表 1。Hf同位素校正计算采用实验室计算机程序Hfllow来完成,本次测试GJ-1标样176Hf/177Hf同位素测试精度为0.282030±20(2σ)。Lu-Hf同位素分析结果见附表 2。
|
|
附表 1 锆石U-Pb同位素年龄数据 Appendix Table 1 Zircon LA-ICP-MS U-Pb isotopic age data |
|
|
附表 2 锆石(样品号16CQ-1砂岩)Lu-Hf同位素分析数据 Appendix Table 2 Zircon LA-ICP-MS Lu-Hf isotopic analytical data of sandstone (Sample 16CQ-1) |
吾力沟组玄武安山岩样品(20CQ-108) 的锆石呈短柱状,长宽比约为3∶1~1.5∶1。锆石中Th、U的放射性元素含量较高,Th/U比值介于0.52~0.99之间,平均值为0.78。锆石阴极发光图像(CL)发光性较弱,震荡环带不清晰。锆石发育非常窄的亮边(图 5),可能代表后期流体作用影响(玄武安山岩岩石地球化学烧失量约为4.2%,未发表数据)。该样品下交点年龄为472±10Ma (MSWD=0.59,n=5),代表了吾力沟组玄武安山岩形成年龄,为早奥陶世(图 6)。
|
图 5 典型锆石CL图像、Th/U比值及U-Pb年龄(Ma)(激光斑束直径24μm) Fig. 5 Representative CL images、Th/U ratios and U-Pb ages of zircons (laser diameter is 24μm) |
|
图 6 吾力沟组玄武安山岩(20CQ-108)锆石U-Pb年龄谐和图(数据误差=1σ) Fig. 6 Zircon U-Pb concordia diagram of basaltic andesite from the Wuligou Formation (data error=1σ) |
盐池湾组和多索曲组碎屑锆石样品中大部分锆石粒径介于70~150μm,锆石呈长柱状,自形程度较好,磨圆中等(13SQL-10、13SLH04、16HC-1、16CQ-1和17QL-31-2, 图 5)。少量锆石呈棱角-次棱角状(20CQ-5, 图 5)。CL图像显示锆石均发育较为清晰的振荡环带,指示其为岩浆成因锆石。
盐池湾组碎屑锆石样品包括20CQ-5、16CQ-1和16HC-1,分析结果如下:
样品20CQ-5(砾岩)共得到62个有效锆石年龄数据(图 7a)。碎屑锆石年龄介于1670~440Ma之间,其中4个锆石年龄位于1670~1028Ma区间(6.5%),58个碎屑锆石年龄(93.5%)介于544~444Ma之间,最年轻碎屑锆石峰值年龄为467Ma(图 8a)。
|
图 7 碎屑锆石U-Pb年龄谐和图 12-99-R1样品数据彭岩等, 2014;数据误差=1σ Fig. 7 U-Pb concordia diagrams of detrital zircons Detrital zircon data of 12-99-R1 sourced from Peng et al., 2014. data error=1σ |
|
图 8 党河南山-木里地区早古生代盐池湾组(a-c)、多索曲组(d-f)碎屑锆石频谱图 Fig. 8 Normalized probability density plots for Early Paleozoic detrital zircons from the Danghenanshan-Muli areas |
样品16CQ-1(岩屑砂岩)共得到65个有效锆石年龄数据(图 7b)。碎屑锆石年龄介于2187~447Ma之间,其中,12个测点位于2187~1310Ma区间(18.5%),10个测点数据介于1144~856Ma区间(12.3%),43个碎屑锆石年龄(66.2%)介于559~447Ma之间,最年轻碎屑锆石峰值年龄为491Ma(图 8b)。
样品16HC-1(砂岩)共得到38个有效锆石年龄数据(图 7c)。所有年龄数据介于2446~401Ma之间,其中,1个测点获得古元古代锆石年龄(2446Ma,3%),5个数据点位于1599~1100Ma区间(13%),32个碎屑锆石年龄(占比约84%)介于506~401Ma之间,最年轻碎屑锆石峰值年龄为461Ma(图 8c)。
多索曲组碎屑锆石样品包括13SLH04、13SQL10和17QL-31-2,分析结果如下:
样品13SLH04(砂岩)共得到71个有效锆石年龄数据(图 7d),介于2882~436Ma之间。存在三个明显的年龄区间:2917~2299Ma (25.4%)、1379~941Ma (47.9%)和764~436Ma (16.9%),另外还存在一个较弱的年龄峰值区间1859~1659Ma (9.8%)。其中最年轻年龄区间的碎屑锆石峰值年龄为455Ma(图 8d)。
样品13SQL10(砂岩)共得到72个有效锆石年龄数据(图 7e),介于3498~494Ma之间。主要的年龄峰值区间为1205~706Ma(47.2%)、1780~1425Ma(22.2%)、2679~2281Ma(26.4%)。最年轻碎屑锆石峰值年龄为975Ma(图 8e)。
样品17QL-31-2(砂岩)仅得到24个有效锆石数据,但彭岩等(2014)在相同地点采集样品12-99-R1并得到35个有效锆石数据,即两个样品共得到59个有效锆石年龄数据(图 7f),其值介于2565~429Ma之间。主要年龄峰值区间为2043~1432Ma (40.7%)、1342~736Ma (39%)、446~429Ma (15.3%),另有3颗古元古代-新太古代锆石(2483Ma、2549Ma、2565Ma,5.1%)。最年轻碎屑锆石数据的加权平均年龄为441±1Ma (MSWD=3.06,n=9)。
3.2 锆石Hf同位素在锆石U-Pb测年基础上,本文对16CQ-1砂岩样品中47颗锆石进行Hf同位素测试(图 9)。结果显示,所有锆石εHf(t)介于-38~-2.7之间,均为负值,176Hf/177Hf比值(0.281692~0.282645)。除少量前寒武纪古老碎屑锆石以外,中祁连西段早古生代弧花岗岩锆石Hf同位素与盐池湾组16CQ-1砂岩样品中早古生代碎屑锆石Hf同位素具有一致性(图 9)。
|
图 9 盐池湾组16CQ-1砂岩碎屑锆石Hf同位素图解 中祁连西段弧花岗岩数据武美云,2021 Fig. 9 Diagram of εHf(t) vs. U-Pb ages of zircon grains from 16CQ-1 sandstone, the Yanchiwan Formation Arc granite data of western part of Central Qilian belt sourced from Wu, 2021 |
依据吾力沟组、盐池湾组中发现的腕足类Hesperonomia sp., Toquimia sp., Syntrophopsis sp., Sytrophinella sp., Tritoechia sp., Anomalorthis sp., Finkelnburgia sp., 鹦鹉螺Discoceras sp., 腹足类Euomphalidae等化石,甘肃省地质矿产局(1975)在《1∶20万月牙湖幅区域地质调查报告》中将这些地层时代定为早-中奥陶世。但也有学者依据扎子沟剖面中基性火山岩和花岗岩中获得的684.89±71Ma、666.63±1.6Ma、510.85±14Ma的Rb-Sr等时线年龄(赵虹等,2001;李厚民等,2003;刘志武等,2006),认为该套中基性火山岩形成于震旦纪。本文获得扎子沟吾力沟组层型剖面中的玄武安山岩锆石U-Pb年龄为472±10Ma,代表了吾力沟组中基性火山岩更加精确的同位素时代。
本文获得盐池湾组底部砾岩最年轻碎屑锆石峰值年龄为467Ma (20CQ-5)、盐池湾组顶部16HC-1砂岩最年轻锆石峰值年龄为461Ma。另外,白旭东等(2018)在南祁连天峻县多索曲地区测得多索曲组与盐池湾组呈整合接触,并获得多索曲组基性火山岩的锆石U-Pb年龄分别为449.9±1.5Ma和449.5±1.8Ma。朱小辉等(未发表资料)获得沙柳河多索曲组流纹岩的U-Pb年龄为440Ma。本文获得多索曲组最年轻碎屑锆石峰值年龄为455~444Ma(图 8d, f)。这些新数据限定盐池湾组沉积时代应当介于467~450Ma之间,多索曲组的形成时代为450~440Ma。
4.2 物源分析 4.2.1 盐池湾组、多索曲组物源分析盐池湾组与多索曲组碎屑锆石频谱表现出了截然不同的特征(图 8a-f)。盐池湾组样品碎屑锆石频谱中主要为早古生代峰值,年龄峰值分别为467Ma、491Ma、461Ma,仅有极少量的前寒武纪碎屑锆石(图 8a-c),显示了物源较为单一的特征。多索曲组样品中记录了中-新元古代和早古生代多个碎屑锆石年龄峰值(图 8d-f),代表了复杂的源区特征。
盐池湾组碎屑锆石谱系特征与中祁连西段花岗岩锆石年龄数据峰值特征较为一致(图 5、图 10a)。另外,党河南山地区盐池湾组碎屑锆石εHf(t)也与中祁连西段弧花岗岩一致(图 9),而与阳康地区盐池湾组火山岩的锆石Hf同位素特征不同(εHf(t)介于+4.8~+12之间,未发表数据)。这些数据说明盐池湾组中大量早古生代碎屑锆石可能来自中祁连西段弧花岗岩。
|
图 10 早古生代(500~400Ma)锆石年龄KDE曲线(a)和前寒武纪碎屑锆石年龄KDE曲线(b) 图(a)中: 南祁连花岗岩年龄数据廖华等, 2014; 师江朋等, 2015; 张蒙, 2016; Tung et al., 2016; Wang et al., 2017a, 2018; 计波等, 2019. 拉脊山晚奥陶-志留系沉积地层碎屑锆石年龄(沉积时代约为450~420Ma)数据引自Yan et al., 2019a. 中祁连西段花岗岩年龄数据引自Gehrels et al., 2003; Cowgill et al., 2003; 李建锋等, 2010; 齐瑞荣, 2012; 张莉莉等, 2013; 黄增保等, 2015; 张翔, 2015; 侯荣娜等, 2015; 罗志文等, 2015; Wang et al., 2017a; 武美云, 2021及未发表数据.N-单颗粒碎屑锆石年龄; n-花岗质岩石样品加权平均年龄. 图(b)中: 中祁连碎屑锆石数据董国安等, 2007; 陆松年等, 2009; 王忠良, 2013; Wang et al., 2017b; Wu et al., 2017; Liu et al., 2018; Zuza et al., 2018; Li et al., 2018, 2020; Gao et al., 2021; 湟源群、马衔山群年龄数据引自Li et al., 2020; 化隆群碎屑锆石数据引自Yan et al., 2015; Gao et al., 2021; 巴龙贡嘎尔组碎屑锆石数据引自Li et al., 2019 Fig. 10 Kernal Density Estimate (KDE) curves of Early Paleozoic zircon ages (a) and age probability diagrams for the detrital zircons grains with Precambrian ages (b) from the Qilian orogen In Fig. 10a: zircon ages from Early Paleozoic granite, South Qilian belt, data cited from Liao et al., 2014; Shi et al., 2015; Zhang, 2016; Tung et al., 2016; Wang et al., 2017a, 2018; Ji et al., 2019; Ages of detrital zircons from Early Paleozoic strata in Lajishan, Central Qilian belt, data cited from Yan et al., 2019a(deposited between 450Ma and 420Ma); zircon ages from Early Paleozoic granite, western part of Central Qilian belt, data cited from Gehrels et al., 2003; Cowgill et al., 2003; Li et al., 2010; Qi, 2012; Zhang et al., 2013, 2015; Huang et al., 2015; Hou et al., 2015; Luo et al., 2015; Wang et al., 2017b; Wu, 2021 and unpublished data. In Fig. 10b: Precambrian detrital zircon data of Central Qilian cited from Wang, 2013; Dong et al., 2007; Lu et al., 2020; Wang et al., 2017; Wu et al., 2017; Liu et al., 2018; Li et al., 2018, 2020; Zuza et al., 2018; Gao et al., 2021; Huangyuan and Maxianshan Group age data cited from Li et al., 2020; Detrital zircon data of Hualong Group cited from Yan et al., 2015, Gao et al., 2021; Detrital zircon data of Balonggonggaer Formation cited from Li et al., 2019 |
多索曲组碎屑锆石频谱主要由一个早古生代碎屑锆石峰值和多个前寒武纪碎屑锆石峰值组成(图 8d-f),其中早古生代碎屑锆石峰值年龄分别为444Ma及490Ma (图 10a)。多索曲组中早古生代锆石年龄峰值与该组中的火山岩(白旭东等, 2018; 朱小辉等, 未发表资料)和南祁连广泛发育的花岗岩(峰值年龄约440Ma)时代近乎一致(图 10a)。多索曲组碎屑样品中的前寒武碎屑锆石谱系主要分为中-新元古代以及太古宙峰值,主要有900~1200Ma、1500~1700Ma和2400~2600Ma三个峰值区间。这些前寒武碎屑锆石年龄谱峰与中祁连前寒武纪碎屑锆石谱系特征和岩浆记录(如湟源群、马衔山群)具有相似性(图 10b,Li et al., 2020),但与南祁连巴龙贡嘎尔组、化隆群中较为缺少>900Ma的中元古代碎屑锆石记录特征不同(图 10b);另外,多索曲组碎屑锆石谱系中也缺少巴龙贡嘎尔组中显著的700~800Ma碎屑锆石年龄峰值(图 10b)。因此,南祁连巴龙贡嘎尔组和化隆群可能没有为多索曲组提供沉积物源。综合分析说明,多索曲组早古生代碎屑物质来源于南祁连花岗岩或者该组中的火山岩,中-新元古代碎屑锆石物源应该来自于中祁连,更古老的古元古代-太古宙碎屑锆石可能来自再循环的地壳物质。
需要注意的是,在南祁连南侧的全吉地块的变质基底中也存在古元古代-新太古代锆石年龄(Chen et al., 2013; Lu et al., 2018);此外,在全吉地块北部的乌北地体的变质岩中也具有900~1200Ma,1500Ma的年龄(Wang et al., 2016; Yu et al., 2019)。但多索曲组主要为一套近源堆积的火山-沉积岩系,地层中含有大量成分和结构成熟度较差的砾岩(图 3g)、长石砂岩等(白旭东等,2018)。另一方面,如果全吉地块和乌北地体为多索曲组提供了物源,那么南祁连巴龙贡嘎尔组应该也会为多索曲组碎屑岩提供物源,但本文样品缺少这些信息。因此,作者排除较远的全吉地块和乌北地体为多索曲组碎屑岩提供物源的可能性。
与盐池湾组单一碎屑锆石峰值相比,多索曲组中出现了大量古老碎屑锆石记录,仅有少量早古生代锆石,表明碎屑物源由下伏盐池湾组的中祁连弧岩浆岩过渡为多索曲组的造山带再旋回的古老基底,暗示了由盐池湾组沉积期到多索曲组沉积期的构造活动引发了沉积物源的显著变化。
4.2.2 党河南山-木里多索曲组与拉脊山早古生代碎屑物源对比本文分析结果表明多索曲组中具有奥陶-志留系地层组分。多索曲组地层(450~440Ma)与东段拉脊山早古生代花抱山组、药水泉组地层在时代上基本一致(450~420Ma, Yan et al., 2019a),碎屑物源能够进行对比(图 10a)。
党河南山-木里地区多索曲组碎屑锆石样品显示了4个明显的古生代和元古宙峰值年龄,主要的峰值年龄为455Ma、985Ma、1680Ma和2483Ma(图 11a)。中祁连东段拉脊山地区拉脊山地区早古生代花抱山、药水泉组碎屑锆石频谱主要的峰值年龄为462Ma、957Ma、1631Ma和2483Ma (图 11b)。通过对比碎屑锆石频谱和古流向数据,Yan et al. (2019a)认为该套地层代表了弧后前陆盆地背景下河流相沉积,其中早古生代碎屑物质来源于南祁连,而更古老的前寒武纪碎屑锆石则来源于中祁连。花抱山组和药水泉组碎屑锆石谱系和物源特征与本文多索曲组基本一致,表明多索曲组沉积期大地构造体制可能与东段早古生代花抱山、药水泉组相同,揭示中祁连东、西段均于450Ma左右进入前陆盆地演化阶段。
|
图 11 早古生代多索曲组(a)和拉脊山早古生代地层(b,数据引自Yan et al., 2019a)碎屑锆石频谱 Fig. 11 Age spectra of detrital zircons of the Duosuoqu Formation (a) and Early Paleozoic strata in the Lajishan area (b, data sourced from Yan et al., 2019a) |
近几年来,许多学者对中祁连南缘大道尔吉、干沟、木里以及拉脊山-永靖等地的基性-超基性杂岩进行了大量研究(付长垒等, 2014; 黄增保等, 2016; Zhang et al., 2017; 陶刚, 2018; Yan et al., 2019b)。但是,对该岩浆岩带形成的构造环境还存在较大争议。中祁连东段拉脊山基性-超基性混杂岩最初被认为是形成于早古生代裂谷型小洋盆(曾广策等, 1997; 杨巍然等, 2000, 2002)。付长垒等(2014)发现拉脊山混杂岩中的辉绿岩具有典型的OIB和MORB地球化学特征,并认为可能形成于晚寒武世洋岛/海山和洋中脊环境。也有学者根据拉脊山混杂岩中的一系列岛弧相关枕状熔岩、玻安岩及OIB玄武岩,认为其是南祁连洋向北俯冲形成的弧后盆地,岩浆来源于俯冲板片脱水交代地幔楔及板片后撤引发的软流圈地幔上涌导致的部分熔融(Gao et al., 2018; Tao et al., 2018; 陶璐, 2020)。但是,Zhang et al. (2017)报道了拉脊山混杂岩中具有地幔柱地球化学特征的玄武岩及苦橄岩,并估算了地幔温度为1489~1600℃,认为其岩石成因为与俯冲带无关的洋底高原,通过洋壳俯冲增生拼贴至祁连地块陆缘,是地幔柱型(洋底高原型)蛇绿混杂岩。相比之下,黄增保等(2016)、陶刚(2018)和Yan et al. (2019b)分别根据党河南山大道尔吉、干沟和木里等地基性-超基性岩石地球化学特征,认为三者同属于南祁连洋北向俯冲形成的SSZ型蛇绿岩,但大道尔吉基性-超基性岩石和干沟基性-超基性岩石形成于弧后扩张,木里基性-超基性岩石属于弧前环境。而Zhao et al. (2020)在盐池湾地区识别出了一系列475Ma左右的高钾-钾玄质玄武岩-玄武安山岩、高Ca玻安岩、OIB和MORB组成的弧后盆地火山岩组合,认为该套岩石组合形成于北祁连洋向南俯冲引发的弧后扩张。因此,争议的焦点主要是中祁连南缘火山-沉积岩系是俯冲-增生杂岩还是弧后盆地杂岩?如若是弧后盆地环境,它究竟是形成于南祁连洋向北俯冲还是北祁连洋盆向南俯冲?
党河南山地区早奥陶世吾力沟组主要由一套厚达数千米的双峰式火山岩、凝灰岩、火山碎屑岩及顶部灰岩组成(计波等, 2021),表明其可能形成于早期裂谷环境。盐池湾组由下至上,由中-厚层砾岩到中-薄层砂岩、粉砂岩组成(图 2)。砂岩、砾岩中含有大量的岩屑和火山砾石(图 3c, d、图 4c, d),且碳酸盐沉积逐渐减少,顶部为一套薄层板岩、页岩,缺乏碳酸盐沉积。木里地区多索曲组主要为一套钙碱性火山岩及近源火山碎屑岩沉积,顶部沉积一套特征长石杂砂岩(白旭东等,2018)。研究区碎屑岩整体上自下而上由吾力沟组到盐池湾组呈现逐渐变细的特征;空间上,自北向南沿远离中祁连岛弧方向水体逐渐变深。这在沉积序列上与典型的弧前盆地、弧后前陆盆地向上变粗水体变浅的沉积特征不同(Dickinson and Suczek, 1979; DeCelles and Giles, 1996;闫臻等, 2018; 胡修棉等, 2021)。
作者通过野外调查,观察到大道尔吉和木里等地基性-超基性混杂岩中缺少深海远洋沉积,俯冲增生杂岩的强烈变质变形特征在党河南山-木里地区并不明显。这些基性-超基性杂岩在野外主要呈侵入体状产出,且与这些侵入体毗邻的火山岩主要为中性火山岩。这些特征与蛇绿岩或者蛇绿混杂岩的特征并不完全吻合。结合党河南山-木里地区的岩浆岩具有弧后盆地环境特征(黄增保等, 2016; Gao et al., 2018; Tao et al., 2018; 陶刚, 2018; 陶璐, 2020; Zhao et al., 2020),本文认为中祁连南缘岩浆岩带可能不是代表南祁连洋存在的蛇绿岩带。再结合目前中祁连已经报道的与盐池湾组中碎屑岩同时期的大量弧岩浆记录(吴才来等, 2004; Gehrels et al., 2011; 侯荣娜等, 2015; Wang et al., 2017a; Zhao et al., 2020; 武美云,2021),本文认为该岩浆岩带是北祁连洋向南俯冲形成的弧后盆地产物。
盐池湾组碎屑岩物源主要来自于中祁连弧岩浆岩,说明了弧地体的抬升剥蚀主要作用于中祁连古老基底之上快速生长的弧杂岩体(图 12b),弧杂岩体的生长速率远大于风化剥蚀速率。而多索曲组碎屑岩中加入了大量中祁连古老基底碎屑物质,说明中祁连弧的进一步抬升剥蚀,此时中祁连弧的岩浆作用也趋于减弱(图 10c),弧杂岩体的生长速率小于风化剥蚀速率,沉积物源由早期弧岩浆岩转变为中祁连基底。随后,多索曲组中加入了南祁连早古生代碎屑物质,指示了弧后盆地的关闭过程,可能代表了弧后前陆盆地的特征(Yan et al., 2019a)。因此,本文推测党河南山-木里地区的火山-沉积岩系可能形成于由弧后盆地到弧后前陆盆地演化的构造背景(图 12),而不代表一个俯冲增生杂岩带。
|
图 12 党河南山-木里地区早古生代构造演化模式图 (a)吾力沟组沉积期,弧后盆地打开; (b)盐池湾组沉积期,弧后盆地由扩张转变为俯冲; (c)多索曲组沉积期,弧后盆地关闭,形成前陆盆地 Fig. 12 Cartoon diagrams illustrating possible tectonic and depositional relationships for Danghenanshan-Muli areas during Early Paleozoic (a) deposition stage of the Wuligou Formation: back-arc basin spreading; (b) deposition stage of the Yanchiwan Formation: transition of back-arc basin from development to closure; (c) deposition stage of the Duosuoqu Formtion: back-arc basin was closed and changed to the stage of foreland basin |
(1) 本文对中祁连南缘党河南山-木里地区之间出露的早古生代地层进行了LA-ICP-MS锆石U-Pb测年:吾力沟组玄武安山岩形成时代为472±10Ma;盐池湾组沉积时代介于467~450Ma之间;多索曲组形成时代介于450~440Ma之间。
(2) 盐池湾组碎屑物质主要来源于中祁连弧花岗岩;多索曲组的早古生代碎屑物质来源于该组中的火山岩或南祁连花岗岩,中元古代末-新元古代早期碎屑物质可能来源于中祁连,更老的古元古代-太古宙碎屑锆石可能来自祁连地块再循环的古老基底。
(3) 综合党河南山-木里地区早古生代地层物质组成、锆石U-Pb年代学及沉积序列特征,吾力沟组为中祁连弧后裂谷火山岩组合,盐池湾组可能代表了弧后盆地沉积演化序列,而多索曲组则代表了中祁连西段南缘前陆盆地沉积。
致谢 感谢课题组马得青、李雪在野外采样以及实验分析过程中的帮助!感谢中国地质科学院闫臻研究员与张建新研究员的宝贵意见和建议;感谢编辑部老师在文章修改和校对过程中的指导和帮助。
Bai XD, Yang B, Zhao ZG, Ouyang GW, Zhang ZQ and Hao CL. 2018. LA-MC-ICP-MS zircon U-Pb dating and geochemical characteristics of Late Ordovician volcanic rocks in southern Qilian Mountains, Qinghai Province. Northwestern Geology, 51(1): 125-136 (in Chinese with English abstract)
|
Bureau of Geology and Mineral Resources of Gansu Province (BGMRG). 1989. Regional Geology of Gansu Province. Beijing: Geological Publishing House, 1-646 (in Chinese)
|
Cawood PA, Kroner A, Collins WJ, Kusky TM, Mooney WD and Windley BF. 2009. Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318: 1-36 DOI:10.1144/SP318.1
|
Cawood PA, Hawkesworth CJ and Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875-878 DOI:10.1130/G32945.1
|
Chen NS, Liao FX, Wang L, Santosh M, Sun M, Wang QY and Mustafa HA. 2013. Late Paleoproterozoic multiple metamorphic events in the Quanji Massif: Links with Tarim and North China cratons and implications for assembly of the Columbia supercontinent. Precambrian Research, 228: 102-116 DOI:10.1016/j.precamres.2013.01.013
|
Cowgill E, Yin A, Harrison TM and Wang XF. 2003. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B7): 2346
|
DeCelles PG and Giles KA. 1996. Foreland basin systems. Basin Research, 8(2): 105-123 DOI:10.1046/j.1365-2117.1996.01491.x
|
Dickinson WR and Suczek CA. 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12): 2164-2182
|
Dickinson WR and Gehrels GE. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1-2): 115-125 DOI:10.1016/j.epsl.2009.09.013
|
Feng YM, Cao XD, Zhang EP and Hu YX. 2002. Structure, Orogenic Process and Geodynamics of the West Qinling Orogenic Belt. Xi'an: Xi'an Cartographic Publishing House, 1-263 (in Chinese)
|
Fu CL, Yan Z, Guo XQ, Niu ML, Xia WJ, Wang ZQ and Li JL. 2014. Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane. Acta Petrologica Sinica, 30(6): 1695-1706 (in Chinese with English abstract)
|
Fu CL, Yan Z, Wang ZQ, Buckman S, Aitchison JC, Niu ML, Cao B, Guo XQ, Li XC, Li YS and Li JL. 2018. Lajishankou ophiolite complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian Belt. Tectonics, 37(5): 1321-1346 DOI:10.1029/2017TC004740
|
Gao YL, Long XP, Luo J, Dong YP, Lan CY, Huang ZY and Zhao J. 2021. Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Research, 357: 106153 DOI:10.1016/j.precamres.2021.106153
|
Gao Z, Zhang HF, Yang H, Luo BJ, Guo L, Xu WC and Pan FB. 2018. Geochemistry of Early Paleozoic boninites from the Central Qilian Block, Northwest China: Constraints on petrogenesis and back-arc basin development. Journal of Asian Earth Sciences, 158: 227-239 DOI:10.1016/j.jseaes.2018.02.022
|
Gehrels G, Yin A and Wang XF. 2003. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B9): 2423
|
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of Pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016
|
Gehrels G. 2014. Detrital zircon U-Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences, 42: 127-149 DOI:10.1146/annurev-earth-050212-124012
|
Hou RN, Wang SH, Zhang X, Hou KX, Zhang C and Wang JR. 2015. Geochemical characteristics and tectonic significance of the granitoids in the western section of the Mid-Qilian. Advances in Earth Science, 30(9): 1034-1049 (in Chinese with English abstract)
|
Hu XM, Xue WW, Lai W, Wang JG, An W and Li J. 2021. Sedimentary basins in orogenic belt and continental geodynamics. Acta Geologica Sinica, 95(1): 139-158 (in Chinese with English abstract)
|
Huang ZB, Zheng JP, Li BH, Wei ZJ, Qi W and Chen X. 2015. Geochronology and geochemistry of Yemashan batholiths in western Central Qilian and its tectonic implications. Geology in China, 42(2): 406-420 (in Chinese with English abstract)
|
Huang ZB, Zheng JP, Li BH, Qi W, Wei ZJ and Chen X. 2016. Age and geochemistry of the Early Paleozoic back-arc type ophiolite in Dadaoerji area, South Qilian, China. Geotectonica et Metallogenia, 40(4): 826-838 (in Chinese with English abstract)
|
Ingersoll RV and Busby CJ. 1995. Tectonics of Sedimentary Basins. Cambridge: Blackwell
|
Ji B, Yu JY, Li XM, Huang BT and Wang L. 2018. The disintegration of Balonggongge'er Formation and the definition of lithostratigraphic unit in Danghenanshan area of South Qilian Mountain: Evidence from petrology and chronology. Geological Bulletin of China, 37(4): 621-633 (in Chinese with English abstract)
|
Ji B, Huang BT, Li XM and Wang L. 2019. Geochronology and geochemical characteristics of the Early Ordovician granite from Hongmiaogou area in northwest margin of South Qilian and its geological significance. Northwestern Geology, 52(4): 63-75 (in Chinese with English abstract)
|
Ji B, Li XM, Huang BT, Wang L and Wang GQ. 2020. Zircon U-Pb dating and geochemistry of basalt in Guaizhangshan Group from the southern Danghe Mountains in South Qilian and its tectonic setting. Geology in China: 1-21, https://kns.cnki.net/kcms/detail/11.1167.P.20201007.1904.002.html (in Chinese with English abstract)
|
Ji B, Li XM, Huang BT, Wang L and Wang GQ. 2021. Geochronology of detrital zircons from the Guaizhangshan Group from the southern Danghe Mountains in South Qilian and its geological implications. Acta Geologica Sinica, 95(3): 765-778 (in Chinese with English abstract)
|
Li CY, Liu YW, Zhu BQ, Feng YM and Wu HQ. 1978. Tectonic history of the Qinling and Qilian mountains. Northwestern Geology, 4: 1-12 (in Chinese)
|
Li HM, Wang CL, Liu JQ, Liu ZW and Shen YC. 2003. Geological feature and chronology of intermediate-basic volcanic rocks in the northern part of Danghenanshan districts in Qilian Mountains. Journal of Mineralogy and Petrology, 23(1): 1-4 (in Chinese with English abstract)
|
Li JF, Zhang ZC and Han BF. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications. Acta Petrologica Sinica, 26(8): 2431-2444 (in Chinese with English abstract)
|
Li M, Wang C, Li RS, Meert JG, Peng Y and Zhang JH. 2019. Identifying Late Neoproterozoic-Early Paleozoic sediments in the South Qilian Belt, China: A peri-Gondwana connection in the northern Tibetan Plateau. Gondwana Research, 76: 173-184 DOI:10.1016/j.gr.2019.06.010
|
Li YG, Wang SS, Liu MW, Meng E, Wei XY, Zhao HB and Jin MQ. 2015. U-Pb dating study of baddeleyite by LA-ICP-MS: Technique and application. Acta Geologica Sinica, 89(12): 2400-2418 (in Chinese with English abstract)
|
Li YL, Tong X, Zhu YH, Lin JW, Zheng JP and Brouwer FM. 2018. Tectonic affinity and evolution of the Precambrian Qilian Block: Insights from petrology, geochemistry and geochronology of the Hualong Group in the Qilian Orogen, NW China. Precambrian Research, 315: 179-200 DOI:10.1016/j.precamres.2018.07.025
|
Li YL, Xiao WJ, Li ZY, Wang K, Zheng JP and Brouwer FM. 2020. Early Neoproterozoic magmatism in the Central Qilian Block, NW China: Geochronological and petrogenetic constraints for Rodinia assembly. Geological Society of America Bulletin, 132(11-12): 2415-2431 DOI:10.1130/B35637.1
|
Liao H, Hu DG, Zhang XJ, Yu WL and Guo T. 2014. Zircon U-Pb age for granite of the Ordovician Formation and its tectonic significance in the southern Qilian. Journal of Geomechanics, 20(3): 292-298 (in Chinese with English abstract)
|
Liu CF, Wu C, Zhou ZG, Yan Z, Jiang T, Song ZJ, Liu WC, Yang X and Zhang HY. 2018. U-Pb detrital zircon geochronology from the basement of the Central Qilian Terrane: Implications for tectonic evolution of northeastern Tibetan Plateau. International Journal of Earth Sciences, 107(2): 673-686 DOI:10.1007/s00531-017-1522-5
|
Liu ZW, Wang CL and Shi XH. 2006. Granitoids characteristics and tectonic setting of Danghenanshan area in South Qilian Mountains. Geoscience, 20(4): 545-554 (in Chinese with English abstract)
|
Lu SN, Li HK, Wang HC, Chen ZH, Zheng JK and Xiang ZQ. 2009. Detrital zircon population of Proterozoic metasedimentary strata in the Qinling-Qilian-Kunlun Orogen. Acta Petrologica Sinica, 25(9): 2195-2208 (in Chinese with English abstract)
|
Lu ZL, Zhang JX and Mattinson C. 2018. Tectonic erosion related to continental subduction: An example from the eastern North Qaidam Mountains, NW China. Journal of Metamorphic Geology, 36(5): 653-666 DOI:10.1111/jmg.12305
|
Luo ZW, Zhang ZC, Li JF, Feng ZS and Tang WH. 2015. Geochronology of two kinds of Paleozoic granitic plutons from Sangewatang in Subei, the western margin of Central-South Qilian and their geological implications. Acta Petrologica Sinica, 31(1): 176-188 (in Chinese with English abstract)
|
Ma Z, Liu Z, Liu YX and Wang JR. 2018. Geochemical characteristics and tectonic significance of Shibandun mafic-ultramafic cumulates in western part of the Central Qilian. Geoscience, 32(4): 667-679 (in Chinese with English abstract)
|
Ma Z, Wang JR, Zhang LL, Liu YX, Gao YY, Zhang X, Yu S and Zhang C. 2020. Petrogenesis and tectonic significance of the Early Paleozoic Delenuoer ophiolite in the Central Qilian Shan, northeastern Tibetan Plateau. Geoscience Frontiers, 11(6): 2017-2029 DOI:10.1016/j.gsf.2020.06.002
|
Morton A, Knox R and Frei D. 2016. Heavy mineral and zircon age constraints on provenance of the Sherwood Sandstone Group (Triassic) in the eastern Wessex Basin, UK. Proceedings of the Geologists' Association, 127(4): 514-526 DOI:10.1016/j.pgeola.2016.06.001
|
Peng Y, Li RS, Ji WH, Wang C, Li M, Zhang HS and Wu ZN. 2014. SHRMP U-Pb geochronological verification on the identification of Early Paleozoic volcanic clasolite zircons from the Beidahe Complex-Group in the western segment of the Middle Qilian Mountains, China. Northwestern Geology, 47(4): 178-186 (in Chinese with English abstract)
|
Qi RR. 2012. LA-ICP-MS zircon U-Pb ages and geological implications for the Bagadeerji granitic plutons in the central Qilian Mountains, Gansu. Sedimentary Geology and Tethyan Geology, 32(4): 86-93 (in Chinese with English abstract)
|
Sharman GR, Graham SA, Grove M, Kimbrough DL and Wright JE. 2015. Detrital zircon provenance of the Late Cretaceous-Eocene California forearc: Influence of Laramide low-angle subduction on sediment dispersal and paleogeography. Geological Society of America Bulletin, 127(1-2): 38-60 DOI:10.1130/B31065.1
|
Shi JP, Huo TF, Lai Q, Peng XH, Du SY and Yang DB. 2015. Petrogenesis of Early Silurian Gangchadasi granites in the eastern segment of the northern South Qilian Block: Constraints from LA-ICP-MS Zircon U-Pb geochronology and geochemistry. Acta Geoscientica Sinica, 36(6): 781-789 (in Chinese with English abstract)
|
Song SG, Niu YL, Su L and Xia XH. 2013. Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 23(4): 1378-1401 DOI:10.1016/j.gr.2012.02.004
|
Song SG, Niu YL, Su L, Wei CJ and Zhang LF. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta, 130: 42-62 DOI:10.1016/j.gca.2014.01.008
|
Song SG, Yang LM, Zhang YQ, Niu YL, Wang C, Su L and Gao YL. 2017. Qi-Qin accretionary belt in Central China Orogen: Accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62(15): 1035-1038 DOI:10.1016/j.scib.2017.07.009
|
Su JP, Hu NG, Zhang HF and Feng BZ. 2004a. U-Pb zircon dating and genesis of the Heigouliangzi granitic intrusion in the western segment of the Middle Qilian Mountains. Geoscience, 18(1): 70-74 (in Chinese with English abstract)
|
Su JP, Zhang XH, Hu NG, Fu GM and Zhang HF. 2004b. Geochemical characteristics and genesis of adakite-like granites at Yema Nanshan in the western segment of the Central Qilian Mountains. Geology in China, 31(4): 365-371 (in Chinese with English abstract)
|
Tang M, Ji WQ, Chu X, Wu AB and Chen C. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1): 76-80 DOI:10.1130/G47745.1
|
Tao G. 2018. The Ocean-Continent evolution process in Shule River, Qilian: Constraints from the Early Paleozoic geological records. Ph. D. Dissertation. Chengdu: Chengdu University of Technology (in Chinese with English abstract)
|
Tao L, Zhang HF, Yang H, Gao Z, Pan FB and Luo BJ. 2018. Initial back-arc extension: Evidence from petrogenesis of Early Paleozoic MORB-like gabbro at the southern Central Qilian block, NW China. Lithos, 322: 166-178 DOI:10.1016/j.lithos.2018.10.015
|
Tao L. 2020. Petrogenesis and geodynamic process for the Early Paleozoic mafic intrusive rocks at Hualong-Lajishan area, South Central Qilian. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English abstract)
|
Tung KA, Yang HJ, Yang HY, Liu DY, Zhang JX, Wan YS and Tseng CY. 2007. Shrimp U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chinese Science Bulletin, 52(19): 2687-2701 DOI:10.1007/s11434-007-0356-0
|
Tung KA, Yang HY, Yang HJ, Smith A, Liu DY, Zhang JX, Wu CL, Shau YH, Wen DJ and Tseng CY. 2016. Magma sources and petrogenesis of the Early-Middle Paleozoic backarc granitoids from the central part of the Qilian block, NW China. Gondwana Research, 38: 197-219 DOI:10.1016/j.gr.2015.11.012
|
Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5): 1479-1493 DOI:10.1016/j.gsf.2018.04.001
|
Wang C, Li RS, Smithies RH, Li M, Peng Y, Chen FN and He SP. 2017a. Early Paleozoic felsic magmatic evolution of the western Central Qilian Belt, northwestern China, and constraints on convergent margin processes. Gondwana Research, 41: 301-324 DOI:10.1016/j.gr.2015.12.009
|
Wang DS, Wang T, Yan J and Lin X. 2018. Petrogenesis and tectonic implications of Early Paleozoic igneous rocks of the western South Qilian Belt, central China. International Geology Review, 60(7): 844-864 DOI:10.1080/00206814.2017.1356247
|
Wang L, Wang H, He C, Chen NS, Santosh M, Sun M, Wang QY, Jin LL and Liao FX. 2016. Mesoproterozoic continental breakup in NW China: Evidence from gray gneisses from the North Wulan terrane. Precambrian Research, 281: 521-536 DOI:10.1016/j.precamres.2016.06.016
|
Wang L, Li XM, Hu ZG, Yang C, Guo LF, Yan HZ, Ge RC and Ji B. 2019. Zircon U-Pb dating and geochemistry of Kebasitao basalt from the middle part of southern Danghe Mountains in southern Qilian and its geological implication. Geotectonica et Metallogenia, 43(5): 1069-1077 (in Chinese with English abstract)
|
Wang ZL. 2013. The disintegration of Tuolai Group in the Shangrimuceer area, eastern Central Qilian Block and its geological significance. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English abstract)
|
Wang ZM, Han CM, Xiao WJ, Su BX, Ding JX and Song SH. 2017b. Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the Mid-Qilian Terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault. Precambrian Research, 294: 284-306 DOI:10.1016/j.precamres.2017.04.005
|
Wu C, Zuza AV, Yin A, Liu CF, Reith RC, Zhang JY, Liu WC and Zhou ZG. 2017. Geochronology and geochemistry of Neoproterozoic granitoids in the Central Qilian Shan of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere, 9(4): 609-636
|
Wu CL, Yang JS, Xu ZQ, Wooden JL, Ireland T, Li HB, Shi RD, Meng FC, Chen SY, Persing H and Meibom A. 2004. Granitic magmatism on the Early Paleozoic UHP Belt of northern Qaidam, NW China. Acta Geologica Sinica, 78(5): 658-674 (in Chinese with English abstract)
|
Wu MY. 2021. Genesis and arc magmas evolution of Wulanyaodong pluton in Yanchiwan area, western part of Central Qilian Belt. Master Degree Thesis. Xi'an: Northwest University (in Chinese with English abstract)
|
Xia LQ, Li XM, Yu JY and Wang GQ. 2016. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain. Geology in China, 43(4): 1087-1138 (in Chinese with English abstract)
|
Xiao WJ, Windley BF, Yong Y, Yan Z, Yuan C, Liu CZ and Li JL. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences, 35(3-4): 323-333 DOI:10.1016/j.jseaes.2008.10.001
|
Xu ZQ, Xu HF, Zhang JX, Li HB, Zhu ZZ, Qu JC, Chen DZ, Chen JL and Yang KC. 1994. The Zhoulangnanshan Caledonian subductive complex in the northern Qilian Mountains and its dynamics. Acta Geologica Sinica, 68(1): 1-15 (in Chinese with English abstract)
|
Yan Z, Wang ZQ, Li JL, Yan QR, Wang T, Chen JL and Xu XY. 2008. Restoring the original tectonic types of sedimentary basins in the orogenic belt. Geological Bulletin of China, 27(12): 2001-2013 (in Chinese with English abstract)
|
Yan Z, Aitchison JC, Fu CL, Guo XQ, Niu ML, Xia WJ and Li JL. 2015. Hualong Complex, South Qilian Terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Research, 266: 65-85 DOI:10.1016/j.precamres.2015.05.001
|
Yan Z, Wang ZQ, Yan QR, Fang AM and Chen JL. 2018. Identification and reconstruction of tectonic archetype of the sedimentary basin within the orogenic belt developed along convergent margin. Acta Petrologica Sinica, 34(7): 1943-1958 (in Chinese with English abstract)
|
Yan Z, Fu CL, Aitchison JC, Buckman S, Niu ML, Cao B, Sun Y, Guo XQ, Wang ZQ and Zhou RJ. 2019a. Retro-foreland basin development in response to Proto-Tethyan Ocean closure, NE Tibet Plateau. Tectonics, 38(12): 4229-4248 DOI:10.1029/2019TC005560
|
Yan Z, Fu CL, Aitchison JC, Niu ML, Buckman S and Cao B. 2019b. Early Cambrian Muli arc-ophiolite complex: A relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China. International Journal of Earth Sciences, 108(4): 1147-1164 DOI:10.1007/s00531-019-01699-6
|
Yang LM, Song SG, Su L, Allen MB, Niu YL, Zhang GB and Zhang YQ. 2019. Heterogeneous oceanic arc volcanic rocks in the South Qilian accretionary belt (Qilian Orogen, NW China). Journal of Petrology, 60(1): 85-116 DOI:10.1093/petrology/egy107
|
Yang WR, Deng QL and Wu XL. 2000. Faulting of Laji orogenic belt and its relationship to volcanic rocks and ophiolites. Geological Science and Technology Information, 19(2): 5-11 (in Chinese with English abstract)
|
Yang WR, Deng QL and Wu XL. 2002. Major characteristics of the Lajishan orogenic belt of the South Qiilan Mountains and its geotectonic attribute. Acta Geologica Sinica, 76(1): 106 (in Chinese)
|
Yu SY, Li SZ, Zhang JX, Liu YJ, Peng YB, Sun DY and Li YS. 2019. Grenvillian orogeny in the Oulongbuluke block, NW China: Constraints from an ~1.1Ga Andean-type arc magmatism and metamorphism. Precambrian Research, 320: 424-437 DOI:10.1016/j.precamres.2018.11.001
|
Yu SY, Peng YB, Zhang JX, Li SZ, Santosh M, Li YS, Liu YJ, Gao XY, Ji WT, Lv P, Li CZ, Jiang XZ, Qi LL, Xie WM and Xu LJ. 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547 DOI:10.1016/j.earscirev.2021.103547
|
Zeng GC, Qiu JX and Zhu YH. 1997. Ophiolitic suite of Lajishan orogenic belt and its paleotectonic setting. Qinghai Geology, 6(1): 1-6 (in Chinese with English abstract)
|
Zhang JX, Yu SY, Li YS, Yu XX, Lin YH and Mao XH. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554 (in Chinese with English abstract)
|
Zhang JX, Lu ZL, Mao XH, Teng X, Zhou GS, Wu YW and Guo Q. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74-102 (in Chinese with English abstract) DOI:10.18654/1000-0569/2021.01.06
|
Zhang LL, Dai S, Zhang X, Zhang R, Zhang MZ, Wang LB and Liu HJ. 2013. Lithogeochemistry of Jijiaogou intrusive complex in the Danghenanshan area, South Qilian Mountain and its tectonic implications. Journal of Lanzhou University (Natural Sciences), 49(6): 733-740 (in Chinese with English abstract)
|
Zhang M. 2016. Analysis of southern Qilian Hala Lake Nanshan rock magma sources and tectonic environments. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese with English abstract)
|
Zhang X. 2015. Chronology and geochemistry of the Early Paleozoic intermediate-acid plutons and its implications on gold mineralization in Danghenanshan Mt., South Qilian. Ph. D. Dissertation. Lanzhou: Lanzhou University (in Chinese with English abstract)
|
Zhang YQ, Song SG, Yang LM, Su L, Niu YL, Allen MB and Xu X. 2017. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian oceanic plateau?. Lithos, 278-281: 97-110 DOI:10.1016/j.lithos.2017.01.027
|
Zhao GJ, Wang C, Zhu XH, Hao JB, Li H, Meert JG, Gai YS, Long XP and Ma T. 2020. Intraoceanic back-arc magma diversity: Insights from a relic of the Proto-Tethys oceanic lithosphere in the western Qilian orogen, NW China. Chemical Geology, 550: 119756 DOI:10.1016/j.chemgeo.2020.119756
|
Zhao H, Jin ZP, Dang B and Wang CL. 2001. Recognizing the time of Early Paleozoic volcanic rock in the north slope of Danghe Southern Mountain in Subei County, Gansu Province. Journal of Xi'an Engineering University, 3: 26-29 (in Chinese with English abstract)
|
Zuo GC and Liu JC. 1987. The evolution of tectonic of Early Paleozoic in North Qilian range, China. Chinese Journal of Geology, (1): 14-24 (in Chinese with English abstract)
|
Zuza AV, Wu C, Reith RC, Yin A, Li JH, Zhang JY, Zhang YX, Wu L and Liu WC. 2018. Tectonic evolution of the Qilian Shan: An Early Paleozoic orogen reactivated in the Cenozoic. Geological Society of America Bulletin, 130(5-6): 881-925 DOI:10.1130/B31721.1
|
白旭东, 杨波, 赵忠国, 欧阳光文, 张志青, 郝呈禄. 2018. 青海南祁连晚奥陶世火山岩LA-MC-ICPMS锆石U-Pb年龄及其地球化学特征. 西北地质, 51(1): 125-136. DOI:10.3969/j.issn.1009-6248.2018.01.013 |
曾广策, 邱家骧, 朱云海. 1997. 拉鸡山造山带的蛇绿岩套及古构造环境. 青海地质, 6(1): 1-6. |
董国安, 杨怀仁, 杨宏仪, 刘敦一, 张建新, 万渝生, 曾建元. 2007. 祁连地块前寒武纪基底锆石SHRIMP U-Pb年代学及其地质意义. 科学通报, 52(13): 1572-1585. DOI:10.3321/j.issn:0023-074X.2007.13.015 |
冯益民, 曹宣铎, 张二朋, 胡云绪. 2002. 西安: 西安地图出版社, 1-263
|
付长垒, 闫臻, 郭现轻, 牛漫兰, 夏文静, 王宗起, 李继亮. 2014. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄. 岩石学报, 30(6): 1695-706. |
甘肃省地质矿产局. 1989. 甘肃省区域地质志. 北京: 地质出版社, 1-646.
|
侯荣娜, 王淑华, 张翔, 侯克选, 张铖, 王金荣. 2015. 中祁连西段花岗岩类的地球化学特征及构造意义. 地球科学进展, 30(9): 1034-1049. |
胡修棉, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158. |
黄增保, 郑建平, 李葆华, 魏志军, 漆玮, 陈旭. 2015. 中祁连西段野马山岩基年代学、地球化学特征及地质意义. 中国地质, 42(2): 406-420. DOI:10.3969/j.issn.1000-3657.2015.02.004 |
黄增保, 郑建平, 李葆华, 漆玮, 魏志军, 陈旭. 2016. 南祁连大道尔吉早古生代弧后盆地型蛇绿岩的年代学、地球化学特征及意义. 大地构造与成矿学, 40(4): 826-838. |
计波, 余吉远, 李向民, 黄博涛, 王磊. 2018. 南祁连党河南山地区巴龙贡噶尔组的解体与岩石地层单位厘定――来自岩石学与年代学的证据. 地质通报, 37(4): 621-633. |
计波, 黄博涛, 李向民, 王磊. 2019. 南祁连西北缘肃北红庙沟地区早奥陶世花岗岩年代学、地球化学特征及其地质意义. 西北地质, 52(4): 63-75. DOI:10.3969/j.issn.1009-6248.2019.04.005 |
计波, 李向民, 黄博涛, 王磊, 王国强. 2020. 南祁连党河南山地区拐杖山岩群玄武岩年代学、地球化学及其构造环境. 中国地质: 1-21, https://kns.cnki.net/kcms/detail/11.1167.P.20201007.1904.002.html
|
计波, 李向民, 黄博涛, 王磊, 王国强. 2021. 南祁连党河南山地区新元古代拐杖山岩群碎屑锆石U-Pb年代学及其地质意义. 地质学报, 95(3): 765-778. DOI:10.3969/j.issn.0001-5717.2021.03.011 |
李春昱, 刘仰文, 朱宝清, 冯益民, 吴汉泉. 1978. 秦岭及祁连山构造发展史. 西北地质, 4: 1-12. |
李厚民, 王崇礼, 刘继庆, 刘志武, 沈远超. 2003. 祁连党河南山北坡中-基性火山岩地质特征及时代. 矿物岩石, 23(1): 1-4. |
李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431-2444. |
李艳广, 汪双双, 刘民武, 孟恩, 魏小燕, 赵慧博, 靳梦琪. 2015. 斜锆石LA-ICP-MS U-Pb定年方法及应用. 地质学报, 89(12): 2400-2418. DOI:10.3969/j.issn.0001-5717.2015.12.015 |
廖华, 胡道功, 张绪教, 余文林, 郭涛. 2014. 南祁连奥陶纪花岗岩锆石U-Pb年龄及地质意义. 地质力学学报, 20(3): 292-298. DOI:10.3969/j.issn.1006-6616.2014.03.008 |
刘志武, 王崇礼, 石小虎. 2006. 南祁连党河南山花岗岩类特征及其构造环境. 现代地质, 20(4): 545-554. DOI:10.3969/j.issn.1000-8527.2006.04.004 |
陆松年, 李怀坤, 王惠初, 陈志宏, 郑健康, 相振群. 2009. 秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究. 岩石学报, 25(9): 2195-2208. |
罗志文, 张志诚, 李建锋, 冯志硕, 汤文豪. 2015. 中南祁连西缘肃北三个洼塘地区古生代两类花岗质侵入岩年代学及其地质意义. 岩石学报, 31(1): 176-188. |
马蓁, 刘铮, 刘懿馨, 王金荣. 2018. 中祁连西段石板墩堆晶岩的地球化学特征及构造意义. 现代地质, 32(4): 667-679. |
彭岩, 李荣社, 计文化, 王超, 李猛, 张辉善, 吴中楠. 2014. 中祁连西段北大河岩群中早古生代火山碎屑岩的识别――来自锆石U-Pb年代学的证据. 西北地质, 47(4): 178-186. DOI:10.3969/j.issn.1009-6248.2014.04.019 |
齐瑞荣. 2012. 中祁连西段巴嘎德尔基岩体LA-ICP-MS锆石U-Pb年龄及地质意义. 沉积与特提斯地质, 32(4): 86-93. DOI:10.3969/j.issn.1009-3850.2012.04.013 |
师江朋, 霍腾飞, 来强, 彭祥华, 杜孙岩, 杨德彬. 2015. 南祁连北缘东段早志留世刚察大寺花岗岩的成因——锆石LA-ICP-MS U-Pb年代学和岩石地球化学制约. 地球学报, 36(6): 781-789. |
苏建平, 胡能高, 张海峰, 冯备战. 2004a. 中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因. 现代地质, 18(1): 70-74. |
苏建平, 张新虎, 胡能高, 付国民, 张海峰. 2004b. 中祁连西段野马南山埃达克质花岗岩的地球化学特征及成因. 中国地质, 31(4): 365-371. |
陶刚. 2018. 祁连疏勒河地区早古生代地质记录对洋陆过程的约束. 博士学位论文. 成都: 成都理工大学
|
陶璐. 2020. 中祁连南缘化隆-拉脊山地区早古生代镁铁质侵入岩的岩石成因及其深部过程. 博士学位论文. 武汉: 中国地质大学
|
王磊, 李向民, 胡兆国, 杨超, 郭令芬, 闫海忠, 葛瑞臣, 计波. 2019. 南祁连党河南山中段科克巴斯陶玄武岩年代学、地球化学特征及其地质意义. 大地构造与成矿学, 43(5): 1069-1077. |
王忠良. 2013. 中祁连西段上日木策尔地区托赖岩群的解体及其地质意义. 硕士学位论文. 北京: 中国地质大学
|
吴才来, 杨经绥, 许志琴, Wooden JL, Ireland T, 李海兵, 史仁灯, 孟繁聪, 陈松永, Persing H, Meibom A. 2004. 柴达木盆地北缘古生代超高压带中花岗质岩浆作用. 地质学报, 78(5): 658-674. DOI:10.3321/j.issn:0001-5717.2004.05.010 |
武美云. 2021. 中祁连西段盐池湾地区乌兰窑洞花岗质杂岩体成因与弧岩浆演化. 硕士学位论文. 西安: 西北大学
|
夏林圻, 李向民, 余吉远, 王国强. 2016. 祁连山新元古代中-晚期至早古生代火山作用与构造演化. 中国地质, 43(4): 1087-1138. |
许志琴, 徐惠芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1-15. |
闫臻, 王宗起, 李继亮, 闫全人, 王涛, 陈隽璐, 徐学义. 2008. 造山带沉积盆地构造原型恢复. 地质通报, 27(12): 2001-2013. DOI:10.3969/j.issn.1671-2552.2008.12.005 |
闫臻, 王宗起, 闫全人, 方爱民, 陈隽璐. 2018. 造山带汇聚板块边缘沉积盆地的鉴别与恢复. 岩石学报, 34(7): 1943-1958. |
杨巍然, 邓清禄, 吴秀玲. 2000. 拉脊山造山带断裂作用特征及与火山岩、蛇绿岩套的关系. 地质科技情报, 19(2): 5-11. DOI:10.3969/j.issn.1000-7849.2000.02.002 |
杨巍然, 邓清禄, 吴秀玲. 2002. 南祁连拉脊山造山带基本特征及大地构造属性. 地质学报, 76(1): 106. |
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554. |
张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74-102. |
张莉莉, 戴霜, 张翔, 张瑞, 张明震, 汪禄波, 刘海娇. 2013. 南祁连党河南山地区鸡叫沟复式岩体岩石地球化学特征及构造环境. 兰州大学学报(自然科学版), 49(6): 733-740. |
张蒙. 2016. 南祁连哈拉湖南山岩体岩浆来源和构造环境分析. 硕士学位论文. 北京: 中国地质大学
|
张翔. 2015. 南祁连党河南山早古生代中酸性侵入岩年代学、岩石地球化学与金矿成矿. 博士学位论文. 兰州: 兰州大学
|
赵虹, 金治鹏, 党犇, 王崇礼. 2001. 甘肃党河南山北坡早古生代火山岩时代探讨. 西安工程学院学报, 23(3): 26-29. DOI:10.3969/j.issn.1672-6561.2001.03.005 |
左国朝, 刘寄陈. 1987. 北祁连早古生代大地构造演化. 地质科学, (1): 14-24. |
2022, Vol. 38








