2. 自然资源部矿产勘查技术指导中心, 北京 10008;
3. 中国科学院地质与地球物理研究所, 中国科学院矿产资源研究重点实验室, 北京 100029
2. Mineral Exploration Technical Guidance Center, Ministry of Natural Resources Beijing 10008;
3. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
中亚造山带位于西伯利亚板块、塔里木板块、华北板块和东欧板块之间,是全球显生宙以来最大的增生型造山带之一,是研究古亚洲洋俯冲消减与大陆增生-改造过程的天然实验室(肖文交等, 2008; 图 1a)。北山造山带处于中亚造山带南缘,从早古生代到中生代经历了长期多阶段的俯冲、拼贴,是记录中亚造山带南缘构造演化与古亚洲洋闭合的重要区域(Jahn et al., 2000; 左国朝等, 2003; Xiao et al., 2010, 2018; He et al., 2018)。北山地区岩浆活动频繁,不同规模、类型以及成因的岩浆岩广泛分布,出露面积超过总基岩面积的三分之一,反映了岩浆-热事件在地壳演化中的重要作用(杨合群等, 2006)。其中,花岗岩类约占侵入岩的95%(江思宏和聂凤军, 2006)。根据前人年代学研究结果,北山地区主要经历了前寒武纪、早古生代、晚古生代、早中生代四期岩浆事件(梅华林等, 1999; 周济元等, 2000;胡朋, 2007;赵泽辉等, 2007;Mao et al., 2010;Xiao et al., 2010;毛启贵等, 2010;李舢等, 2011; 张文等, 2011; Li et al., 2012; 冯继承等, 2012; 朱江, 2013;王疆涛等, 2016),记录了北山造山带各时期不同性质的构造事件。
![]() |
图 1 中亚造山带构造位置(a,据He et al., 2018)及北山造山带构造简图(b,据Song et al., 2013; Xiao et al., 2018) Fig. 1 Simplified tectonic map of Central Asian Orogenic Belt (a, modified after He et al., 2018) and the Beishan orogenic belt (b, modified after Xiao et al., 2018; Song et al., 2013) |
北山造山带以红柳河-洗肠井蛇绿岩带为分界,分为北带与南带。近年来学者对北山南带花岗岩开展了丰富的研究。基于不同的证据,学者对北山南带构造环境存在不同观点:部分学者认为,在早泥盆世北山南带已转入造山晚期伸展环境(赵泽辉等, 2007; 李舢等, 2009, 2011);也有学者认为,泥盆纪北山南带仍以俯冲作用为主导(Xiao et al., 2010;Song et al., 2013;Zhu et al., 2016; 王疆涛等, 2016)。前人研究中对北山南带晚泥盆世的花岗岩报道较少,也限制了对本地区构造演化事件的解释推断。本文基于对甘肃北山南带花牛山幅、长流水幅1∶50000矿产地质调查成果,对双峰山南复式岩体展开岩石学、锆石U-Pb年代学、Hf同位素、全岩地球化学及Sr-Nd同位素分析,为探讨北山南带晚泥盆世构造-岩浆事件提供依据。
1 地质背景及样品特征北山造山带位于中亚造山带南缘,南接敦煌地块,北至蒙古造山带,西部以星星峡走滑断裂与东天山接邻,东部以弱水走滑断裂掩于巴丹吉林沙漠(刘雪亚和王荃, 1995; 姜洪颖等, 2013)。由于其特殊的构造位置与复杂的构造背景,北山造山带由一系列岛弧、蛇绿混杂岩带和微陆块构成。以红柳河-洗肠井蛇绿岩带为界,北山造山带分为北带与南带。北带由北至南以红石山绿混杂岩带和(星星峡-)石板井-小黄山蛇绿混杂岩带分隔划分为雀儿山岛弧带、黑鹰山-旱山岛弧带、马鬃山岛弧带(又称为公婆泉-东七一山弧);南带由北至南以柳园蛇绿混杂岩带分隔划分为双鹰山-花牛山岛弧带和石板山岛弧带(图 1b,Xiao et al., 2010; He et al., 2018)。
研究区位于甘肃柳园镇北东方向约35km的花牛山-长流水一带,属于北山南带的双鹰山-花牛山岛弧带(图 2)。构造格架主要以近东西向和北东向两组为主。研究区地层出露由老至新为:太古宙-中元古代敦煌岩群中深变质岩,前人对北山南带中敦煌岩群中眼球状片麻岩进行了锆石U-Pb测年,年龄结果在920~850Ma(梅华林等, 1999; Liu et al., 2015; Saktura et al., 2017);南华系-震旦系洗肠井群,为一套浅变质沉积岩;早古生代寒武系双鹰山组、西双鹰山组,奥陶系花牛山群、白云山组,总体为一套浅变质或基本未变质的碎屑岩夹有少量碳酸盐岩及火山岩;中-晚古生代泥盆系墩墩山群、石炭系红柳园组、二叠系双堡堂组和金塔组,总体为一套海相火山岩-碎屑岩(甘肃省地质矿产局, 1987①)。
① 甘肃省地质矿产局. 1987. 花牛山幅等四幅1/5万区域地质调查报告、地质图及说明书(内部资料)
![]() |
图 2 双峰山-花牛山-长流水一带地质简图(据王春女等, 2019; 甘肃省地质矿产局, 1987修改) Fig. 2 Geological map of Shuangfengshan-Huaniushan-Changshui region (modified after Wang et al., 2019) |
研究区内岩浆活动频繁,多呈岩基、岩株和岩墙状产出,从超基性至酸性岩均有出露,主要以花岗质侵入体为主。侵入岩在空间上呈三个分带:南部沿柳园-东大泉一带分布,被一系列平行的北东向断裂错断,岩性主要为闪长岩、石英闪长岩、似斑状二长花岗岩,局部有一定片麻状变形,形成时代主要在晚奥陶世-早志留世460~430Ma(赵泽辉等, 2007; 毛启贵等, 2010; Wang et al., 2019)。中部为花牛山-长流水一带连续分布的正长花岗岩-二长花岗岩,形成时代主要在三叠纪(Li et al., 2012; 朱江, 2013; 李增达, 2018),是本区侵入年龄最新的酸性侵入体,与研究区中铅锌矿、金矿关系密切(朱江, 2013; 李增达, 2018)。北部为一套复式岩体,沿双峰山-长黑山一带分布,主要为花岗闪长岩-二长花岗岩,根据前人研究结果,大山头、双峰山一带石英闪长岩-花岗闪长岩的年龄为334~362Ma(王怀涛, 2019)。在北山北带马鬃山弧南缘,研究区东北方向牛圈子南的花岗闪长质北山杂岩体和算井子花岗岩中也分别得到374Ma和351Ma的年龄(Song et al., 2013; 赵宏刚等, 2019),表明在红柳河-洗肠井南北两侧,晚泥盆世-早石炭世发生了一起较广泛的岩浆事件。研究区还广泛发育基性脉岩,主要岩性为辉绿岩,走向以北东向和近东西为主(孙海瑞等, 2020)。
本次研究采集样品为研究区北部双峰山南的中酸性复式岩体,其中TW6237、TW6239在双峰山-长黑山南侧,TW6240在长流水东北部。复式岩体近东西向略向南呈弧形展布,岩体呈岩基状产出(图 2),受后期岩浆及构造作用强烈改造,形态不规则,侵入于震旦系洗肠井群和寒武系双鹰山组,与围岩接触界线呈交错状、港湾状,接触面凹凸不平或波状起伏。TW6237为灰白色花岗闪长岩,中粒花岗结构,块状构造,边缘相微具似片麻状构造,粒度一般为2~3mm(图 3a, c)。主要矿物成分为斜长石(30%~35%)、钾长石(15%~20%)、石英(20%~25%)、角闪石(10%~15%)和黑云母(<5%)。其中,斜长石板状、半自形晶,环带构造清晰;钾长石以微斜长石和条纹长石为主,粒状;黑云母呈鳞片状,发生绿泥石化,局部析出磁铁矿(图 3e)。TW6239、TW6240样品为浅灰色-浅肉红色二长花岗岩,中粗粒花岗结构,块状构造,主要矿物成分为钾长石(35%~40%)、斜长石(30%~35%)、石英(25%~30%),黑云母(<5%)及少量角闪石(<5%)(图 3b, d)。钾长石以条纹长石和微斜长石为主,粒状;斜长石半自形板状,局部包围钾长石颗粒呈阴影状,发条纹状;石英呈他形粒状,裂痕发育;黑云母呈不规则片状,蚀变为绿泥石,析出铁钛物质(图 3f-h)。
![]() |
图 3 双峰山南复式岩体岩性野外及显微照片 花岗闪长岩(a)和二长花岗岩(b)野外照片;花岗闪长岩TW6237-2(c)和二长花岗岩TW6240-1(d)手标本照片;花岗闪长岩TW6237(e)、二长花岗岩TW6239(f、g)和二长花岗岩TW6240 (h)显微照片. Pl-斜长石Qz-石英Kfs-钾长石Bt-黑云母Amp-角闪石Ser-绢云母 Fig. 3 Field outcrops and micrographs of the South Shuangfengshan complex Field outcrops of the granodiorite (a) and the monzogranite (b); hand specimens of the granodiorite (Sample TW6237-2) (c) and the monzogranite (Sample TW6240-1) (d); micrographs of the granodiorite (Sample TW6237) (e), the monzogranite (Sample TW6239) (f, g) and the monzogranite (Sample TW6240) (h). Pl-Plagioclase; QZ-quartz; Kfs-K-feldspar; Bt-biotite; Amp-amphibole; Ser-sericite |
锆石的分选由首钢地质勘查院完成,样品破碎至80目,重力磁力分选后利用双目镜把锆石颗粒挑出,后由北京锆年领航科技有限公司完成制靶和阴极发光照相。锆石的U、Th、Pb同位素由北京燕都中实测试技术有限公司完成。激光剥蚀系统为New Wave公司UP213固体激光剥蚀系统,ICP-MS型号为布鲁克M90。本次测试剥蚀光斑直径30μm,每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。U-Pb同位素定年中采用锆石标准91500和Plesovice作为外标进行同位素分馏校正。锆石微量元素含量利用SRM610作为多外标、Si作内标的方法进行定量计算。实验所得数据使用采用软件ICP-MS-Data-Cal进行处理和校正(Liu et al., 2010),校正后结果用Isoplot(version 3.0,Ludwig, 2003)完成年龄计算和协和图绘制。
2.2 全岩主微量元素分析样品碎样由首钢地质勘查院完成,将岩石粗碎至厘米级的块体,选取无蚀变及脉体穿插的新鲜样品用纯化水冲洗干净,烘干并粉碎至200目以备测试使用。全岩主微量分析由北京燕都中实测试技术有限公司完成,主量元素测试首先将粉末样品称量后加入Li2B4O7 (1∶8)助熔剂混合,并使用融样机加热至1150℃使其在金铂坩埚中熔融成均一玻璃片体,后使用XRF(Zetium, PANalytical)测试。测试结果保证数据误差小于1%。微量元素测试将200目粉末样品称量后置放入聚四氟乙烯溶样罐,然后加入HF+HNO3,在干燥箱中将高压消解罐保持在190℃下72小时,后取出经过赶酸并将溶液定容为稀溶液上机测试。测试使用ICP-MS(M90,analytikjena)完成,所测数据根据监控标样GSR-2显示误差小于5%,部分挥发性元素及极低含量元素的分析误差小于10%。
2.3 Lu-Hf同位素分析样品完成锆石U-Pb测年实验后,由西北大学大陆动力学国家重点实验室进行锆石微区原位Lu-Hf同位素分析。实验仪器为193nm准分子激光剥蚀系统(RESOlution M-50, ASI)和Nu Instrument双聚焦多接收等离子体质谱仪。激光能量密度为6J/cm2, 频率为5Hz,斑束为43μm,载气为高纯氦气。Lu-Hf同位素分馏校正采用指数法则计算,采用176Lu/175Lu=0.02656和176Yb/173Yb=0.78696比值扣除176Lu和176Yb对176Hf的干扰,获得准确的176Hf信号值。Hf和Lu同位素比值采用179Hf/177Hf=0.7325进行仪器质量歧视效应校正,Yb同位素比值采用173Yb/171Yb=1.12346进行仪器质量歧视效应校正。在分析过程中,国际标准锆石样品91500和Mudtank作为监控样品,每8个样品插入一组国际标样,数据采集模式为TRA模式,积分时间为0.2s,背景采集时间为30s,样品积分时间为50s,吹扫时间为40s。
2.4 Rb-Sr、Sm-Nd同位素分析本次样品Rb-Sr、Sm-Nd同位素测试分析在核工业北京地质研究院分析测试研究中心完成。Rb-Sr同位素分析采用ISOPROBE-T热电离质谱计,单带,M+,可调多法拉第接收器接收。用86Sr/88Sr=0.1194校正质量分馏;标准测量结果:NBS987为0.710250±7;实验室流程的本底为:Rb=2×10-10g,Sr=2×10-10g。Sm-Nd同位素分析采用ISOPROBE-T热电离质谱计,三带,M+,可调多法拉第接收器接收。用146Nd/144Nd=0.7219校正质量分馏;标准测量结果:JMC为143Nd/144Nd= 0.512109±3。
3 测试结果 3.1 锆石U-Pb年代学本文对双峰山南复式岩体中不同样品进行了锆石U-Pb定年,测试结果如表 1,中酸性侵入体中锆石阴极发光(CL)图像如图 4。锆石样品均呈无色透明,自形-半自形棱柱状,长50~200μm,长宽比1∶1~1∶3,发育明显的震荡环带。本次测试的锆石样品中Th/U比值在0.21~1.74,均大于0.1,表现出典型的岩浆锆石特征(Hoskin and Schaltegger, 2003)。
![]() |
表 1 双峰山南复式岩体锆石LA-ICP-MS U-Pb定年结果 Table 1 Zircon LA-ICP-MS U-Pb isotopic data of the South Shuangfengshan complex |
![]() |
图 4 山南复式岩体样品锆石阴极发光图像 Fig. 4 Cathodoluminescence images of zircons for South Shuangfengshan complex |
花岗闪长岩TW6237-3测定的23个样品206Pb/238U加权平均年龄为366.3±2.2Ma(n=23,MSWD=0.046)(图 5a)。二长花岗岩TW6239-1测定的21个样品206Pb/238U加权平均年龄为367.5±1.7Ma(n=21,MSWD=0.046)(图 5b);TW6240-1测定的17个样品206Pb/238U加权平均年龄为368.0±1.8Ma(n=17,MSWD=0.040)(图 5c)。双峰山南复式岩体中各样品得到年龄基本一致,均为晚泥盆世366~368Ma侵位形成的花岗质岩体。
![]() |
图 5 双峰山南复式岩体锆石年龄协和图 Fig. 5 Zircon U-Pb diagrams diagrams of South Shuangfengshan complex |
双峰山南复式岩体的全岩主量、微量元素测试数据见表 2。花岗闪长岩样品SiO2=64.39%~70.64%,钾含量相对较低,K2O=1.26%~2.89%,碱含量为5.01%~5.66%,在TAS图解中主要上落于花岗闪长岩区域(图 6a),在SiO2-K2O图解中落钙碱系列(图 6b)。二长花岗岩样品硅含量相对较高,SiO2=71.03%~74.59%,钾含量变化较大,K2O=2.36%~6.88%,且相对富碱,Na2O+K2O=6.20%~9.21%,在TAS图解中主要上落于花岗岩区域(图 6a)。双峰山南复式岩体所有样品A/CNK值在0.88~1.00,属于准铝质(图 7)。
![]() |
表 2 双峰山南复式岩体全岩主量(wt%)和微量(×10-6)元素数据表 Table 2 Whole rock major (wt%) and trace (×10-6) elements of the South Shuangfengshan complex |
![]() |
图 6 双峰山南复式岩体TAS图解(a,底图据Middlemost, 1994)和SiO2-K2O图解(b,底图据Peccerillo and Taylor, 1976) 花牛山、大山头石英闪长岩据王怀涛(2019); 图 12-图 14数据同此图 Fig. 6 TAS (a, base map after Middlemost, 1994) and SiO2 vs. K2O (b, base map after Peccerillo and Taylor, 1976) diagrams for the South Shuangfengshan complex Huaniushan and Dashantou quartz diorites data from Wang (2019); data sources in Fig. 12-Fig. 14 are same as this figure |
![]() |
图 7 双峰山南复式岩体A/NK-A/CNK图(底图据Maniar and Piccoli, 1989) Fig. 7 A/NK vs. A/CNK diagram for the South Shuangfengshan complex (base map after Maniar and Piccoli, 1989) |
所有样品稀土总量偏高(ΣREE=90.83×10-6~298.4×10-6),在球粒陨石标准化稀土元素配分图中(图 8a)呈轻稀土元素富集、重稀土元素平坦的右倾型((La/Yb)N=6.23~23.0)。花岗闪长岩表现出较强的Eu负异常(δEu=0.53~0.69),二长花岗岩Eu负异常更强烈(δEu=0.31~0.55)。在原始地幔标准化微量元素蛛网图中(图 8b),所有复式岩体样品均表现出富集Rb、Th、U等大离子亲石元素(LILE),贫高场强元素(HFSE),P、Ti明显亏损,较强烈亏损Nb。其中二长花岗岩样品表现出富集LILE和亏损HFSE特征更为明显。
![]() |
图 8 双峰山南复式岩体球粒陨石标准化稀土元素配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider (b) diagrams of the South Shuangfengshan complex (normalization values after Sun and McDonough, 1989) |
锆石Hf同位素分析结果见表 3。花岗闪长岩(TW6237-3)测点16个,176Hf/177Hf初始比值在0.282623~0.282715之间,εHf(t)值为+2.7~+6.0,tDM2为860~1028Ma(图 9)。二长花岗岩(TW6239-1、TW6240-1)测点32个,176Hf/177Hf初始比值在0.282457~0.282678之间,εHf(t)值为-3.1~+4.7,tDM2为928~1326Ma(图 9)。双峰山南复式岩体的Hf同位素特征基本一致,二长花岗岩相较花岗闪长岩εHf(t)更小,tDM2更高。
![]() |
表 3 双峰山南复式岩体锆石Hf同位素组成 Table 3 Zircon Hf isotopic compositions of the South Shuangfengshan complex |
![]() |
图 9 甘肃双峰山南复式岩体样品锆石Hf同位素组成(底图据吴福元等, 2007) Fig. 9 Zircon Hf isotopic compositions of the South Shuangfengshan complex (base map after Wu et al., 2007) |
全岩Sr-Nd同位素分析结果见表 4。花岗闪长岩(TW6237)的(87Sr/86Sr)i和εNd(t)分别在0.705607~0.706358和-2.5~-2.0之间(图 10);二长花岗岩(TW6239、TW6240)的(87Sr/86Sr)i和εNd(t) 在0.706268~0.708523和-4.1~-1.9之间(图 10)。双峰山南复式岩体的Sr-Nd同位素组成具有一致性。
![]() |
表 4 甘肃双峰山南复式岩体全岩Sr-Nd同位素组成 Table 4 The whole rock Sr-Nd isotopic composition of the South Shuangfengshan complex |
![]() |
图 10 甘肃双峰山南复式岩体样品全岩Sr-Nd同位素组成(底图据洪大卫等, 2000; Ding et al., 2017) Fig. 10 The whole rock Sr-Nd isotopic composition of the South Shuangfengshan complex (base map after Hong et al. 2000; Ding et al., 2017) |
根据测试结果,双峰山南复式岩体中黑云母花岗闪长岩年龄为366.3±2.2Ma,黑云母二长花岗岩年龄为367.5±1.7Ma和368.0±1.8Ma,由此判断双峰山南复式岩体为北山南带在晚泥盆世岩浆活动的产物,岩体形成时代为366~368Ma。
前人的年代学研究将北山南带花岗质岩体分为四期,分别为新元古代、晚志留世-早泥盆世、晚石炭世-早二叠世和三叠纪(朱江, 2013, 表 5),但相对缺乏晚泥盆世花岗岩的报道。近期,王怀涛(2019)对双鹰山-花牛山岛弧带中各类岩体进行了较细致的年代学研究,在花牛山、双峰山一带测得花岗闪长岩等年龄数据为334~363Ma;而在北山北带南缘的马鬃山岛弧带中,也有关于晚泥盆世到早石炭世花岗质岩体的报道(Song et al., 2013; 王鑫玉, 2018; 赵宏刚等, 2019)。本文所获得的年龄数据与这些成果相近,由此佐证了该地区晚泥盆世花岗岩的存在。此外,由于红柳河-洗肠井洋在早泥盆世前已闭合(张元元和郭召杰, 2008),说明晚泥盆世红柳河-洗肠井缝合带南北两侧的岩体可能具有同样的成因及构造背景。此时,北山地区应该存在一起较广泛的岩浆事件。
![]() |
表 5 北山南带花岗质侵入体同位素年代学年龄统计 Table 5 Isotopic chronology statistics of granitiod plutons in the southern BOB |
双峰山南复式岩体中花岗闪长岩与二长花岗岩主要矿物组合均为斜长石+角闪石+石英+钾长石+黑云母,副矿物为磷灰石、锆石和磁铁矿,具有I型花岗岩的特征。在Nb-10000×Ga/Al图中(图 11a),样品落入A型与I、S型花岗岩之间;在FeOT/MgO-(Zr+Nb+Ce+Y)判别图中(图 11b),多数样品落入未分异的I、S、M类型的花岗岩之中,也表明不具备A型花岗岩特征。岩体样品A/CNK值在0.88~1.00,属准铝质。岩体样品中P2O5含量均低于0.20%,且与SiO2呈负相关(图 12c),具备典型的I型花岗岩特征(Chappel, 1999)。
![]() |
图 11 双峰山南复式岩体类型判别图(底图据Whalen et al., 1987) (a)Nb-10000×Ga/Al图; (b)FeOT/MgO-(Zr+Nb+Ce+Y)图 Fig. 11 Discrimination diagrams of the South Shuangfengshan complex (base map after Whalen et al., 1987) (a) Nb vs. 10000×Ga/Al diagram; (b) FeOT/MgO vs. (Zr+Nb+Ce+Y) diagram |
![]() |
图 12 双峰山南复式岩体Hacker图解 Fig. 12 Hacker diagrams of the studied samples from the South Shuangfengshan complex |
在微量元素蛛网图和稀土元素配分图(图 8)中可见,所有样品普遍表现出亏损Ba、Sr,并均有较强烈的Eu负异常(δEu=0.31~0.81)。在Hacker图解中可见(图 12d, f),随着SiO2增加Sr和δEu下降,说明岩浆源区存在斜长石残留,并在结晶过程中受到斜长石分离影响。根据Th/Nd-Th图(图 13),样品主要表现出部分熔融或岩浆混合的成因(Schiano et al., 2010)。
![]() |
图 13 双峰山南复式岩体成因判别图(底图据Schiano et al., 2010) CH、CM代表极不相容元素(H)、中不相容元素(M) Fig. 13 Genetic discrimination charts of the South Shuangfengshan complex (base map after Schiano et al., 2010) CH, CM represent incompatible elements (H) and medium incompatible elements (M) respectively |
双峰山南复式岩体样品Zr/Hf=29.4~35.0,平均值32.6,接近壳源岩石(33左右,Taylor and McLennan, 1985)。样品在(87Sr/86Sr)i-εNd(t)图(图 10)展现出地壳演化源区,与中亚造山带微陆块表现一致(洪大卫等, 2000; Ding et al., 2017)。εHf(t)值为-3.1~+6.0,Hf模式年龄tDM2为860~1326Ma,指示岩体的源区主要为中元古代到新元古代下地壳,与前人对本区古生代花岗质岩体Hf同位素特征研究结果基本一致(He et al., 2018)。εHf(t)跨度较大,说明岩浆源区存在幔源物质贡献。样品Mg#=14.3~48.9,也指示源区有幔源组分加入。复式岩体中,花岗闪长岩相对二长花岗岩有更高的εHf(t)值、Mg#值,说明花岗闪长岩受到幔源组分更多影响。但复式岩体样品整体MgO含量较低(0.19%~2.25%),表明幔源组分贡献有限。
4.3 构造环境分析双峰山南复式岩体为一套钙碱系列的花岗闪长岩-二长花岗岩岩石组合,前人也在该区域发现了早石炭世石英闪长岩-英云闪长岩(王怀涛, 2019),同为钙碱系列(图 6b),表现为大陆边缘弧特征,与伸展环境形成的花岗岩特征不同。双峰山南复式岩体富集Rb、Th、U等大离子亲石元素(LILE),亏损高场强元素(HFSE),Hf同位素研究表明岩体成因主要为下地壳部分熔融,并混有不同程度的幔源物质,在Nb-Y和Rb-Y+Nb构造环境判别图中(图 14)大部分落入火山弧环境花岗岩。这些地球化学及同位素特征表明,双峰山南复式岩体的构造背景可能为活动大陆边缘。同时,在本区域还发育上泥盆统墩墩山群安山岩-流纹岩,表现俯冲消减环境下弧火山岩特征(Guo et al., 2014, 2017)。在北山南带出露的基性-超基性岩体,形成时代同为中晚泥盆世,指示为俯冲过程中亏损岩石圈地幔部分熔融的产物(Xie et al., 2012; 谢燮等, 2015; 杨建国等, 2016)。综上,幔源岩浆底侵加热下地壳使其部分熔融,并与之不同程度的混合,最终在双峰山南侵位形成了花岗闪长岩与二长花岗岩的复式岩体,并在区域上形成了超基性岩、安山岩-流纹岩(图 15)。
![]() |
图 14 双峰山南复式岩体构造环境判别图(底图据Pearce et al., 1984) (a)Rb-(Y+Nb)图; (b)Nb-Yb图 Fig. 14 Determination of tectonic environments of the South Shuangfengshan complex (base map after Pearce et al., 1984) (a) Rb vs. (Y+Nb) diagram; (b) Nb vs. Yb diagram |
![]() |
图 15 甘肃北山南带花牛山-双鹰山弧地区泥盆纪构造演化模型示意图(据王疆涛等, 2016;Guo et al., 2017修改) Fig. 15 Schematic tectonic model of the Devonian Huniushan-Shuangyingshan arc in the southern BOB (modified after Wang et al., 2016; Guo et al., 2017) |
前人研究提出,北山南带晚志留-早中泥盆世(424~395Ma)的花岗岩主要为S型与A型,判断其构造环境为造山晚期的伸展环境(赵泽辉等, 2007; 李舢等, 2009, 2011; Wang et al., 2018),与本研究中晚泥盆世花岗质岩体特征不同,这可能为该时期北山南带在红柳河-洗肠井洋闭合后,受后造山晚期的伸展环境主导所致。通过本文及前人研究成果(Song et al., 2013;王疆涛等, 2016; He et al., 2018; 王怀涛, 2019),红柳河-洗肠井洋于早泥盆世闭合后,作为古亚洲洋残留的柳园洋从晚泥盆世到早石炭世持续向北俯冲,重新主导了北山南带双鹰山-花牛山岛弧带地区的大地构造环境。
5 结论(1) 对双峰山南复式岩体的花岗闪长岩、二长花岗岩进行LA-ICP-MS锆石U-Pb定年得到花岗闪长岩年龄为366.3±2.2Ma,二长花岗岩年龄为367.5±1.7Ma和368.0±1.8Ma,它们均为晚泥盆世同一期岩浆事件的产物。
(2) 双峰山南复式岩体具有I型花岗岩特征,结合Lu-Hf、Sr-Nd同位素特征,表明岩体成因主要为下地壳部分熔融,并混有不同程度的幔源物质。
(3) 双峰山南复式岩体形成环境为活动大陆边缘,表明晚泥盆世柳园洋持续向北俯冲,重新主导了北山南带岩浆事件的构造环境。
致谢 野外调查工作得到了中国地质调查局西安地质调查中心杨建国研究员和甘肃省地矿局第一地质矿产勘查院梁明宏总工的热心指导,同时也得到了甘肃省地质调查院王怀涛、把建业、董国强,甘肃省地矿局第四地质矿产勘查院杨镇熙等同志的指导与帮助;实验测试得到中国地质大学(北京)黄式庭、袁伟恒硕士的协助;中国地质调查局发展研究中心公凡影、孙海瑞、宓奎峰同志与作者进行了讨论并对本文给予了指导;两名审稿人对本文也提供了宝贵的修改意见;在此一并表示感谢!
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
|
Ding JX, Han CM, Xiao WJ, Wang ZM and Song DF. 2017. Geochronology, geochemistry and Sr-Nd isotopes of the granitic rocks associated with tungsten deposits in Beishan district, NW China, Central Asian Orogenic Belt: Petrogenesis, metallogenic and tectonic implications. Ore Geology Reviews, 89: 441-462 DOI:10.1016/j.oregeorev.2017.06.018
|
Feng JC, Zhang W, Wu TR, Zheng RG, Luo HL and He YK. 2012. Geochronology and geochemistry of granite pluton in the north of Qiaowan, Beishan Mountain, Gansu Province, China, and its geological significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 61-70 (in Chinese with English abstract)
|
Guo QQ, Xiao WJ, Hou QL, Windley BF, Han CM, Tian ZH and Song DF. 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt. Lithos, 184-187: 361-378 DOI:10.1016/j.lithos.2013.11.007
|
Guo QQ, Chung SL, Xiao WJ, Hou QL and Li S. 2017. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints. Lithos, 278-281: 84-96 DOI:10.1016/j.lithos.2017.01.017
|
He ZY, Zong KQ, Jiang HY, Xiang H and Zhang ZM. 2014. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids. Acta Petrologica Sinica, 30(8): 2324-2338 (in Chinese with English abstract)
|
He ZY, Klemd R, Yan LL and Zhang ZM. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14 DOI:10.1016/j.earscirev.2018.05.012
|
Hong DW, Wang SG, Xie XL and Zhang JS. 2000. Genesis of positive εNd(t) granitoids in the Da Hinggan MTS.: Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract)
|
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
|
Hu P. 2007. Tectono-magmatic evolution and gold metallogeny in South Beishan Mountain, Northwest China. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)
|
Jahn BM, Wu FY and Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193 DOI:10.1017/S0263593300007367
|
Jiang HY, He ZY, Zong KQ, Zhang ZM and Zhao ZD. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract)
|
Jiang SH and Nie FJ. 2006. Nd-isotope constraints on origin of granitoids in Beishan Mountain area. Acta Geologica Sinica, 80(6): 826-842 (in Chinese with English abstract)
|
Li S, Wang T, Tong Y, Hong DW and Ouyang ZX. 2009. Identification of the Early Devonian Shuangfengshan A-type granites in Liuyuan area of Beishan and its implications to tectonic evolution. Acta Petrologica et Mineralogica, 28(5): 407-422 (in Chinese with English abstract)
|
Li S, Wang T, Tong Y, Wang YB, Hong DW and Ouyang ZX. 2011. Zircon U-Pb age, origin and its tectonic significances of Huitongshan Devonian K-feldspar granites from Beishan orogen, NW China. Acta Petrologica Sinica, 27(10): 3055-3070 (in Chinese with English abstract)
|
Li S, Wang T, Wilde SA, Tong Y, Hong DW and Guo QQ. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123-145 DOI:10.1016/j.lithos.2011.12.005
|
Li ZD. 2018. Magmatic mineralization and prospecting of the Huaniushan lead-zinc-silver polymetallic ore field in Gansu Province, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
|
Liu Q, Zhao GC, Sun M, Eizenhöfer PR, Han YG, Hou WZ, Zhang XR, Wang B, Liu DX and Xu B. 2015. Ages and tectonic implications of Neoproterozoic ortho- and paragneisses in the Beishan Orogenic Belt, China. Precambrian Research, 266: 551-578 DOI:10.1016/j.precamres.2015.05.022
|
Liu XY and Wang Q. 1995. Tectonics of orogenic belts in Beishan MTS., western China and their evolution. In: Collected Works of Institute of Geology, Chinese Academy of Geological Sciences (28). Beijing: Geological Publishing House, 42-53 (in Chinese with English abstract)
|
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Re-appraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 DOI:10.1007/s11434-010-3052-4
|
Ludwig KR. 2003. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Kenneth R. Ludwig
|
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
|
Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Zhang JE, Ao SJ and Li JL. 2010. Discovery of Middle Silurian adakite granite and its tectonic significance in Liuyuan area, Beishan Moutains, NW China. Acta Petrologica Sinica, 26(2): 584-596 (in Chinese with English abstract)
|
Mei HL, Li HM, Lu SN, Yu HF, Zuo YC and Li Q. 1999. The age and origin of the Liuyuan granitoid, northwestern Gansu. Acta Petrologica et Mineralogica, 18(1): 14-17 (in Chinese with English abstract)
|
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
|
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
|
Peccerillo A and Taylor SR. 1976. Rare earth elements in East Carpathian volcanic rocks. Earth and Planetary Science Letters, 32(2): 121-126 DOI:10.1016/0012-821X(76)90050-9
|
Saktura WM, Buckman S, Nutman AP, Belousova EA, Yan Z and Aitchison JC. 2017. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 294-295: 20-38 DOI:10.1016/j.lithos.2017.10.004
|
Schiano P, Monzier M, Eissen JP, Martin H and Koga KT. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312 DOI:10.1007/s00410-009-0478-2
|
Song DF, Xiao WJ, Han CM, Li JL, Qu JF, Guo QQ, Lin LN and Wang ZM. 2013. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Research, 227: 368-388 DOI:10.1016/j.precamres.2012.06.011
|
Song DF, Xiao WJ, Windley BF, Han CM and Yang L. 2016. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147 DOI:10.1016/j.tecto.2016.09.012
|
Sun HR, Lü ZC, Yu XF, Li YS, Du ZZ, Lü X, Du YL and Gong FY. 2020. Early Mesozoic tectonic evolution of Beishan Orogenic Belt: Constraints from chronology and geochemistry of the Late Triassic diabase dyke in Liuyuan area, Gansu Province. Acta Petrologica Sinica, 36(6): 1755-1768 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.07
|
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds.). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Taylor SR and McClennan SM. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 91-92
|
Wang CN, Du ZZ, Yu XF, Li YS, Lv X, Sun HR and Du YL. 2019. 1∶50000 mineral geological map database of the Huaniushan map-sheet, Gansu. Geology in China, 46(Suppl.1): 55-65 (in Chinese with English abstract)
|
Wang HT. 2019. Tectono-magmatism and its geological significance in the Beishan area of the southern part of the Central Asian Orogenic Belt. Ph. D. Dissertation. Lanzhou: Lanzhou University (in Chinese with English summary)
|
Wang JT, Dong YP, Zeng ZC, Yang Z, Sun SS, Zhang FF, Zhou B and Sun JP. 2016. Geochronology, geochemistry and geological significance of the Huangcaotan pluton in the southern Beishan Orogenic Belt. Geoscience, 30(5): 937-949 (in Chinese with English abstract)
|
Wang XY, Yuan C, Zhang YY, Long XP, Sun M, Wang LX, Soldner J and Lin ZF. 2018. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition. Journal of Asian Earth Sciences, 153: 206-222 DOI:10.1016/j.jseaes.2017.07.037
|
Wang XY, Yuan C, Long XP, Zhang YY and Lin ZF. 2018. Geochronological, geochemical, and geological significance of Jianshan and Shibanjing granites in the Gongpoquan Arc, Beishan Orogenic Belt. Geochimica, 47(1): 63-78 (in Chinese with English abstract)
|
Whalen JB, Currie KL and Chappel BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
|
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
|
Xiao WJ, Shu LS, Gao J, Xiong XL, Wang JB, Guo ZJ, Li JY and Sun M. 2008. Continental dynamics of the Central Asian Orogenic Belt and its metallogeny. Xinjiang Geology, 26(1): 4-8 (in Chinese with English abstract)
|
Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang JE, Ao SJ, Guo QQ, Cleven NR, Lin SF, Shan YH and Li JL. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310(10): 1553-1594 DOI:10.2475/10.2010.12
|
Xiao WJ, Windley BF, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY and Song DF. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94-128 DOI:10.1016/j.earscirev.2017.09.020
|
Xie W, Song XY, Deng YF, Wang YS, Ba DH, Zheng WQ and Li XB. 2012. Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt. Lithos, 144-145: 209-230 DOI:10.1016/j.lithos.2012.03.010
|
Xie X, Yang JG, Wang XH, Wang L, Jiang L and Jiang AD. 2015. Zircon SHRIMP U-Pb dating of Hongliugou mafic-ultramafic complex in the Beishan area of Gansu Province and its geological significance. Geology in China, 42(2): 396-405 (in Chinese with English abstract)
|
Yang HQ, Li Y, Yang JG, Li WM, Yang LJ, Zhao GB, Ye DJ, Zhao YQ, Zhao JG, Shen CL, Wang XL and Su XX. 2006. Main metallogenic characteristics in the Beishan Orogen. Northwestern Geology, 39(2): 78-95 (in Chinese with English abstract)
|
Yang JG, Wang L, Xie X, Wang XH, Qi Q, Jiang AD and Zhang ZY. 2016. SHRIMP zircon U-Pb age and its signification of Guaishishan mafic-ultramafic complex in Beishan Mountains, Gansu Province. Geotectonica et Metallogenia, 40(1): 98-108 (in Chinese with English abstract)
|
Zhang W, Feng JC, Zheng RG, Wu TR, Luo HL, He YK and Jing X. 2011. LA-ICP MS zircon U-Pb ages of the granites from the south of Yin’aoxia and their tectonic significances. Acta Petrologica Sinica, 27(6): 1649-1661 (in Chinese with English abstract)
|
Zhang YY and Guo ZJ. 2008. Accurate constraint on formation andemplacement age of Hongliuhe ophiolite, boundary region between Xinjiang and Gansu provinces and its tectonic implications. Acta Petrologica Sinica, 24(4): 803-809 (in Chinese with English abstract)
|
Zhao HG, Liang JW, Wang J, Su R, Jin YX, Tian X and Luo H. 2019. Geochronology and geochemical characteristics of the Suanjingzi adakitic granites in the Beishan Mountains, Gansu Province, China, and their tectonic significance. Acta Geologica Sinica, 93(2): 329-352 (in Chinese with English abstract)
|
Zhao ZH, Guo ZJ and Wang Y. 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23(8): 1847-1860 (in Chinese with English abstract)
|
Zhou JY, Cui BF, Xiao HL and Chen SZ. 2000. The rift evolution and Au ore-forming regular in east part of Beishan, Ganshu and Xingjiang. Volcanology & Mineral resources, 21(1): 7-17 (in Chinese with English abstract)
|
Zhu J. 2013. Tectono-magmatic formation and gold-polymetallic mineralization in South Beishan area, NW China. Ph. D. Dissertation. Wuhan: China University of Geosciences (Wuhan) (in Chinese with English summary)
|
Zhu J, Lv XB and Peng SG. 2016. U-Pb zircon geochronology, geochemistry and tectonic implications of the Early Devonian granitoids in the Liuyuan area, Beishan, NW China. Geosciences Journal, 20(5): 609-625 DOI:10.1007/s12303-016-0004-2
|
Zuo GC, Liu YK and Liu CY. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract)
|
冯继承, 张文, 吴泰然, 郑荣国, 罗红玲, 贺元凯. 2012. 甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义. 北京大学学报(自然科学版), 48(1): 61-70. |
贺振宇, 宗克清, 姜洪颖, 向华, 张泽明. 2014. 北山造山带南部早古生代构造演化: 来自花岗岩的约束. 岩石学报, 30(8): 2324-2338. |
洪大卫, 王式洸, 谢锡林, 张季生. 2000. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456. DOI:10.3321/j.issn:1005-2321.2000.02.012 |
胡朋. 2007. 北山南带构造岩浆演化与金的成矿作用. 博士学位论文. 北京: 中国地质科学院
|
姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究. 岩石学报, 29(11): 3949-3967. |
江思宏, 聂凤军. 2006. 北山地区花岗岩类成因的Nd同位素制约. 地质学报, 80(6): 826-842. DOI:10.3321/j.issn:0001-5717.2006.06.005 |
李舢, 王涛, 童英, 洪大卫, 欧阳志侠. 2009. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义. 岩石矿物学杂志, 28(5): 407-422. DOI:10.3969/j.issn.1000-6524.2009.05.001 |
李舢, 王涛, 童英, 王彦斌, 洪大卫, 欧阳志侠. 2011. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义. 岩石学报, 27(10): 3055-3070. |
李增达. 2018. 甘肃花牛山铅锌银多金属矿田岩浆成矿作用与找矿. 博士学位论文. 北京: 中国地质大学(北京)
|
刘雪亚, 王荃. 1995. 中国西部北山造山带的大地构造及其演化. 见: 中国地质科学院地质研究所文集(28). 北京: 地质出版社, 42-53
|
毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 张继恩, 敖松坚, 李继亮. 2010. 北山柳园地区中志留世埃达克质花岗岩类及其地质意义. 岩石学报, 26(2): 584-596. |
梅华林, 李惠民, 陆松年, 于海峰, 左义成, 李铨. 1999. 甘肃柳园地区花岗质岩石时代及成因. 岩石矿物学杂志, 18(1): 14-17. |
孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 杜轶伦, 公凡影. 2020. 甘肃柳园地区晚三叠世辉绿岩脉年代学和地球化学研究及其对北山造山带早中生代构造演化的指示. 岩石学报, 36(6): 1755-1768. |
王春女, 杜泽忠, 于晓飞, 李永胜, 吕鑫, 孙海瑞, 杜轶伦. 2019. 甘肃省花牛山幅1∶50000矿产地质图数据库. 中国地质, 46(增1): 55-65. |
王怀涛. 2019. 中亚造山带南段北山构造-岩浆作用及其地质意义的研究. 博士学位论文. 兰州: 兰州大学
|
王疆涛, 董云鹏, 曾忠诚, 杨钊, 孙圣思, 张菲菲, 周波, 孙娇鹏. 2016. 北山造山带南部黄草滩岩体年代学、地球化学及地质意义. 现代地质, 30(5): 937-949. DOI:10.3969/j.issn.1000-8527.2016.05.001 |
王鑫玉, 袁超, 龙晓平, 张运迎, 林正帆. 2018. 北山造山带尖山和石板井花岗岩年代学、地球化学研究及其地质意义. 地球化学, 47(1): 63-78. |
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001 |
肖文交, 舒良树, 高俊, 熊小林, 王京彬, 郭召杰, 李锦轶, 孙敏. 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. DOI:10.3969/j.issn.1000-8845.2008.01.002 |
谢燮, 杨建国, 王小红, 王磊, 江磊, 姜安定. 2015. 甘肃北山红柳沟铜镍矿化基性-超基性岩体SHRIMP锆石U-Pb年龄及其地质意义. 中国地质, 42(2): 396-405. DOI:10.3969/j.issn.1000-3657.2015.02.003 |
杨合群, 李英, 杨建国, 李文明, 杨林海, 赵国斌, 叶得金, 赵彦青, 赵建国, 沈存利, 王新亮.苏新旭. 2006. 北山造山带的基本成矿特征. 西北地质, 39(2): 78-95. DOI:10.3969/j.issn.1009-6248.2006.02.005 |
杨建国, 王磊, 谢燮, 王小红, 齐琦, 姜安定, 张洲远. 2016. 甘肃北山怪石山铜镍矿化基性-超基性杂岩体锆石SHRIMP U-Pb同位素定年及其意义. 大地构造与成矿学, 40(1): 98-108. |
张文, 冯继承, 郑荣国, 吴泰然, 罗红玲, 贺元凯, 荆旭. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA-ICP MS定年及其构造意义. 岩石学报, 27(6): 1649-1661. |
张元元, 郭召杰. 2008. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义. 岩石学报, 24(4): 803-809. |
赵宏刚, 梁积伟, 王驹, 苏锐, 金远新, 田霄, 罗辉. 2019. 甘肃北山算井子埃达克质花岗岩年代学、地球化学特征及其构造意义. 地质学报, 93(2): 329-352. DOI:10.3969/j.issn.0001-5717.2019.02.005 |
赵泽辉, 郭召杰, 王毅. 2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义. 岩石学报, 23(8): 1847-1860. DOI:10.3969/j.issn.1000-0569.2007.08.007 |
周济元, 崔炳芳, 肖惠良, 陈世忠. 2000. 甘新北山东段裂谷演化及金矿成矿规律. 火山地质与矿产, 21(1): 7-17. DOI:10.3969/j.issn.1671-4814.2000.01.002 |
朱江. 2013. 北山造山带南带构造-岩浆建造与金多金属成矿. 博士学位论文. 武汉: 中国地质大学(武汉)
|
左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质学报, 12(1): 1-15. |