2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061;
3. 中国地质调查局天津地质调查中心, 天津 300170
2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China;
3. Tianjin Center, China Geological Survey, Tianjiin 300170, China
华北克拉通是中国最古老的克拉通之一,存在~3.8Ga的TTG岩石及更古老的碎屑锆石(万渝生等, 2021a, b),是研究早前寒武纪地壳演化及地球动力学的天然实验室,吸引了众多国内外学者的研究(Kusky, 2011; Zhai and Santosh, 2011; Santosh et al., 2013; Zhao and Zhai, 2013; Wan et al., 2018)。孔兹岩带是华北克拉通重要的古元古代碰撞造山带(其他同期碰撞造山带包括胶-辽-吉带和华北中部造山带),存在高温-超高温麻粒岩和高压麻粒岩(Santosh et al., 2007; Guo et al., 2012; Yin et al., 2015),被认为是阴山陆块与鄂尔多斯陆块于~1.95Ga碰撞拼合形成(Zhao et al., 2005)。前人针对孔兹岩带古元古代晚期构造演化及碰撞拼合过程进行了大量的构造、岩相学、变质变形、地球化学及地质年代学研究(Zhao et al., 2005; Wan et al., 2006, 2009, 2018; Dong et al., 2007; Santosh et al., 2007, 2009; Peng et al., 2010; Zhai et al., 2010; Kusky, 2011; Guo et al., 2012; 徐仲元等, 2013; Liu et al., 2014; Yin et al., 2014, 2015; 蔡佳等, 2014; Peng, 2015; 王洛娟, 2016; Jiao et al., 2017; Wang et al., 2017; Li and Wei, 2018; 石强, 2020),这些研究极大地提升了学者对孔兹岩带形成及演化历史的理解。然而孔兹岩带碰撞拼合以前的构造演化研究则相对薄弱,尤其是古元古代中期(2.2~2.0Ga)构造背景目前仍存在争议:一种观点是孔兹岩带在古元古代中期经历了伸展裂解事件,形成了早期洋盆,随后发生了俯冲和碰撞造山作用,类似于胶-辽-吉带(翟明国和彭澎, 2007; Zhai and Santosh, 2011);另一种观点是孔兹岩带在古元古代中期处于持续俯冲增生过程,形成了一系列与俯冲相关的弧岩浆作用和增生构造(Santosh et al., 2013; Liu et al., 2014, 2017; Yang and Santosh, 2015)。近年来在华北中部造山带和胶-辽-吉带均报道了古元古代中期(2.2~2.0Ga)陆内裂谷相关的双峰式岩浆组合及A型花岗岩,指示两条古元古代碰撞造山带形成以前均经历过陆内伸展裂解阶段(Zhou et al., 2014; Peng, 2015; Du et al., 2016; Peng et al., 2017; 杨崇辉等, 2017; 杜利林等, 2018; Liu et al., 2021),而孔兹岩带同期岩浆岩出露较少,严重制约了对其构造演化的认识。
麻粒岩-紫苏花岗岩杂岩是前寒武纪高级变质地体中重要的岩石组合,对理解前寒武纪构造体制和地壳形成演化具有重要意义(Rajesh and Santosh, 2012; Frost and Frost, 2008)。孔兹岩带东部集宁-卓资-凉城一带麻粒岩系分布较广,Peng et al. (2010)报道了集宁-凉城地区~1.93Ga变质辉长苏长岩侵入体,并认为其与洋脊俯冲有关。近年来作者在卓资地区发现了更古老的麻粒岩-紫苏花岗岩杂岩,这些麻粒岩与紫苏花岗岩空间上常紧密伴生,麻粒岩多呈透镜体或规模不等的团块分布在紫苏花岗岩中,此外还存在内部没有麻粒岩包体、结构构造等相对均匀的紫苏花岗岩。本文选取卓资地区大什字村相对均匀的紫苏花岗岩作为研究对象,对其进行了详细的岩石地球化学和锆石U-Pb年代学研究,旨在限定它们的形成时代,探讨岩石成因及构造背景,为该区乃至孔兹岩带构造演化及孔兹岩系沉积环境提供制约。
1 区域地质背景华北克拉通由多个微陆块拼合而成,被三条主要的古元古代碰撞造山带分隔,即孔兹岩带、华北中部造山带和胶-辽-吉带(Zhao et al., 2005; Zhao and Zhai, 2013)。其中孔兹岩带被认为是北部的阴山陆块与南部的鄂尔多斯陆块于~1.95Ga碰撞形成的造山带,由此形成了西部陆块;胶-辽-吉带是北部龙岗地块与南部狼林地块于~1.90Ga碰撞形成的造山带,其结果是形成了东部陆块;西部陆块和东部陆块于~1.85Ga沿华北中部造山带碰撞拼合,形成了华北克拉通统一的基底(Zhao et al., 2005)(图 1a)。
|
图 1 华北克拉通构造划分图(a, 据Zhao et al., 2005修改)、孔兹岩带东部岩石构造单元划分图(b, 据Peng et al., 2012; Li et al., 2019修改)及研究区地质简图(c, 据曾庆荣等, 2013①修改; 年龄据石强, 2020) Fig. 1 Tectonic division of North China Craton (a, after Zhao et al., 2005), division of lithotectonic units in the eastern Khondalite Belt (b, after Peng et al., 2012; Li et al., 2019) and geological map of the study area (c, after Zeng et al., 2013; age data from Shi, 2020) |
① 曾庆荣, 银海, 陈海东, 王占福, 何国强, 张旭龙, 鲁宁, 曹霞. 2013. 内蒙古1∶25万呼和浩特市幅区调报告
孔兹岩带是华北克拉通西部陆块内的一条近东西向展布、长达1000km的陆-陆碰撞构造带,带内早寒武纪基底主要出露于西部的贺兰山-千里山地区、中部的大青山-乌拉山地区及东部的集宁-凉城-卓资地区,近年来在鄂尔多斯盆地下部获得的钻孔资料表明鄂尔多斯陆块中同样存在孔兹岩系变质沉积岩,其岩石组合及变质时代与孔兹岩带类似(Hu et al., 2013; Wan et al., 2013; Gou et al., 2016; He et al., 2016),这表明孔兹岩带分布范围可能更广。孔兹岩带主要由麻粒岩相变质沉积岩及与之密切相关的石榴花岗岩、TTG片麻岩、中基性麻粒岩及紫苏花岗岩组成。其中麻粒岩相变质沉积岩出露面积最大,主要由含石墨石榴夕线片麻岩、夕线石榴黑云二长片麻岩、夕线石榴长英质片麻岩、石榴石英岩、钙硅酸盐岩及大理岩组成,统称为孔兹岩系(Condie et al., 1992; 卢良兆等, 1996; Zhao et al., 1999; 徐仲元等, 2007),此外在土贵乌拉和大青山地区还报道了含假蓝宝石的超高温麻粒岩(Santosh et al., 2007; Guo et al., 2012)。目前对于孔兹岩系沉积环境主要存在稳定大陆边缘(Condie et al., 1992; 郭敬辉等, 1999; 万渝生等, 2000)和活动大陆边缘(Dan et al., 2012; Wan et al., 2009; 蔡佳等, 2016)两种观点。孔兹岩系碎屑锆石年龄主要集中在2.2~2.0Ga,并含有~2.5Ga甚至更老的碎屑锆石(Dan et al., 2012; Wan et al., 2006, 2009; Xia et al., 2006a, b; 石强, 2020),岩石记录了古元古代晚期1.95~1.83Ga变质-深熔作用(Dong et al., 2007; Wan et al., 2006, 2009; Santosh et al., 2007, 2009; Peng et al., 2010; Jiao et al., 2013a, 2017; 徐仲元等, 2013; Liu et al., 2014; 蔡佳等, 2014; Yin et al., 2015; Wang et al., 2017; 石强, 2020),因此孔兹岩系沉积时代可能在2.0~1.95Ga之间。其中,~1.95Ga变质岩石记录了近等温减压的顺时针P-T-t轨迹,指示了陆陆碰撞过程(金巍等, 1991; 卢良兆等, 1996; Zhao et al., 1999; Wan et al., 2006; Wang et al., 2011; Jiao et al., 2013b; Yin et al., 2015);1.93~1.90Ga变质深熔作用主要集中在集宁-凉城地区,包括土贵乌拉~1.92Ga超高温麻粒岩、凉城地区~1.93Ga变质辉长苏长岩(Santosh et al., 2007; Peng et al., 2010),以及孔兹岩系变质深熔形成的1.93~1.90Ga原地-半原地石榴花岗岩(Peng et al., 2010; Wang et al., 2018; 石强, 2020)。随着大量年代学数据的积累,越来越多的1.89~1.83Ga变质年龄被揭示出来,这期变质作用可能与碰撞后伸展抬升过程有关(董春艳等, 2012; Jiao et al., 2013a; Liu et al., 2013; Yin et al., 2014)。
研究区位于孔兹岩带东部集宁-卓资-凉城一带(图 1b),区内早前寒武纪高级变质岩石广泛出露,主要有古元古代孔兹岩系、中基性麻粒岩(变质辉长苏长岩)、紫苏花岗岩及变质深成侵入岩(图 1c)。孔兹岩系主要由泥质麻粒岩(夕线石榴长英质片麻岩夹少量夕线石榴黑云二长片麻岩、石榴石英岩)及厚层大理岩组成,泥质麻粒岩普遍经历1.93~1.89Ga变质深熔作用,局部形成原地-半原地石榴花岗岩(Wang et al., 2018; 石强, 2020),该期变质深熔作用可能与幔源基性岩浆侵位有关(Peng et al., 2010)。中基性麻粒岩在集宁-卓资-凉城地区均有分布,多呈零散的岩基、岩株、岩床形式产出,形态不规则,少数呈脉状侵入围岩孔兹岩系或呈捕虏体残留于深熔石榴花岗岩中,整体具有深成侵入体的产出特征,与碰撞后或洋脊俯冲相关的幔源岩浆底侵有关(赵国春, 2009; Peng et al., 2010; Guo et al., 2012)。其原岩侵位时代为ca.1.94~1.93Ga,变质时代为1.91~1.89Ga(Peng et al., 2010; Wang et al., 2018; 徐仲元等, 未发表资料)。此外还有一些麻粒岩与紫苏花岗岩构成小型侵入体,这类麻粒岩通常与紫苏花岗岩密切接触,或呈不规则团块分布在紫苏花岗岩中。变质深成侵入岩主要有古元古代角闪钾长片麻岩、石榴花岗岩、花岗闪长岩及紫苏花岗岩(图 1c),其形成时代均为古元古代(2.2~1.8Ga),前人研究表明这些古元古代变质深成岩可能形成于碰撞-碰撞后环境。其中花岗闪长岩与紫苏花岗岩属于Ⅰ型花岗岩;角闪钾长片麻岩被认为是孔兹岩系富铝质岩石深熔形成的深熔片麻岩;石榴花岗岩空间上与围岩孔兹岩系密切伴生,为孔兹岩系深熔作用产物,其深熔时代为1.93~1.90Ga(Wang et al., 2018; 石强, 2020)。区内岩石整体上具有NEE向片麻理,在中生代经历了逆冲推覆构造,造成泥质麻粒岩、厚层大理岩、中基性麻粒岩-紫苏花岗岩组合相互堆叠、交替产出,而侏罗系地层则以构造窗的形式产出(图 1c)。
2 地质特征与岩相学研究区紫苏花岗岩空间上呈NEE向带状展布,长约30km,宽约6km,出露面积约130km2,其长轴与区域构造线一致(图 1c)。岩石片麻理发育,变形弱处组构较均一,保留岩体岩貌特征。该地质体与围岩大理岩呈断层接触关系,并被古元古代晚期弱片麻状石榴花岗岩侵入,其与角闪钾长片麻岩无明显界限,呈渐变过渡关系。野外观测到紫苏花岗岩体有两种产出状态:一种紫苏花岗岩体内包体较多,常包裹麻粒岩等团块,且岩体内脉岩发育,顺片麻理陡倾产出;另一种紫苏花岗岩内部不含麻粒岩团块,远离脉岩,结构、构造等比较均匀,未见明显重熔条带。
本文选取大什字村无麻粒岩包体、岩性比较均一、结构构造等相对均匀的紫苏碱长花岗岩作为研究对象(以下称大什字紫苏碱长花岗岩),采样位置位于内蒙古卓资县大什字村村口(图 1c)(样品编号:DSZ18-6;坐标:40°54′03″N、112°19′01″E)。岩石风化面呈黄褐色,新鲜面呈浅褐灰色,粒状变晶结构,片麻状构造,岩石结构构造比较均匀,线理比较发育(图 2a, b)。岩石主要由石英(~30%)、条纹长石(~55%)、微斜长石(~5%)、紫苏辉石(~5%)、斜长石(~3%)及少量黑云母组成,副矿物为钛铁矿、磁铁矿、磷灰石和锆石(图 2c-h)。石英粒径0.2~2mm,弯曲镶嵌粒状变晶(图 2c-h);紫苏辉石粒径0.2~1.5mm,粒状变晶,形状不规则,强烈退变为黑云母、磁铁矿、蠕石英(图 2f);条纹长石粒径0.5~3mm,为弯曲镶嵌等轴粒状变晶,发育明显条纹结构(图 2c-h);斜长石粒径0.5~1mm,等轴粒状变晶,发育聚片双晶,出现在条纹长石和石英颗粒边部(图 2g);黑云母呈针簇状或片状分布于矿物裂隙或边部,为晚期矿物(图 2d);微斜长石具有格子双晶,其与条纹长石接触部位有石英出溶(图 2h)。
|
图 2 大什字紫苏碱长花岗岩野外照片(a、b)和显微镜下照片(c-h) Qtz-石英;Opx-斜方辉石;Pl-斜长石;Bt-黑云母;Myr-蠕石英;Prt-条纹长石;Mic-微斜长石;Mag-磁铁矿 Fig. 2 Field photos (a, b) and micrographs (c-h) of Dashizi charnockite Qtz-quartz; Opx-orthopyroxene; Pl-plagioclase; Bt-biotite; Myr-myrmekite; Prt-perthite; Mic-microcline; Mag-magnetite |
锆石挑样在河北省廊坊市区域地质调查所完成,锆石制靶及图像采集(包括透射光、反射光及阴极发光)在中国地质科学院地质研究所北京离子探针中心完成,具体的制靶流程见(宋彪等, 2002)。根据透射光、反射光及阴极发光(CL)图像选择合适的锆石测年区域进行高灵敏度二次离子探针SHRIMP Ⅱ定年,仪器一次流O2-强度为7.5nA,加速电压为10kV,离子束斑直径约为25~30μm,具体原理及实验流程参考(Williams, 1997; 宋彪等, 2002)。采用标准锆石TEM(年龄为417Ma,Black et al., 2003)及M257(U含量为840×10-6,Nasdala et al., 2008)分别用于校正206Pb/238U年龄及U、Th含量,标准锆石(TEM)与待测样之比为1∶3~1∶4,对每个测年数据点进行5组扫描,普通铅校正使用实测204Pb进行。采用ISOPLOT程序(Ludwig, 2003)进行数据处理,单个数据点的误差为1σ,加权平均年龄置信度为95%,因为年龄大于1000Ma,因此数据处理过程中采用207Pb/206Pb年龄。
3.2 全岩主、微量元素全岩主、微量元素分析在广州澳实分析检测有限公司完成。主量元素利用X-射线荧光光谱法(XRF)测定,同时选用等离子光谱与化学法测定以相互检测,元素的检测范围为0.01%~100%,样品分析精度及准确度优于5%。实验过程大致如下:首先称取0.7g左右样品,然后加入适量硼酸锂-硝酸锂熔融成玻璃片,最后在XRF上用外标法测定氧化物含量。微量元素分析采用电感耦合等离子体质谱仪(ICP-MS)完成,实验流程大致如下:首先将待测样品低温(65℃左右)干燥24h,而后粉碎,手工分选出300g左右均匀样品在振动研磨机上研磨至200目以备分析测试,样品分析精度及准确度优于10%。
4 分析结果 4.1 锆石U-Pb年代学选取大什字紫苏碱长花岗岩样品DSZ18-6用于SHRIMP锆石U-Pb测年分析,分析结果见表 1。该样品锆石形态呈半自形长柱状,长轴粒径在200~500μm之间,长短轴之比为1~3,CL图像显示锆石具有核-幔-边结构(图 3)。锆石核部经历了不同程度的重结晶,其中重结晶程度较弱的锆石域仍保留柱状晶型和模糊的岩浆分带(如数据点2.2C、5.2C、6.1C、8.1C),表明其原始岩浆成因(Kröner et al., 2017)。其余锆石核部则经历了强烈重结晶,致使原有的岩浆环带消失,内部结构杂乱不均匀(如数据点3.1C)。锆石核部数据点U含量和Th/U比值为分别为176×10-6~790×10-6和0.42~0.55,207Pb/206Pb年龄为2186±12Ma~1970±13Ma,沿谐和线分散分布(图 4a)。锆石幔部在CL图中呈深灰色,无明显岩浆环带,强烈蚕食核部锆石(如3.2M),表现出变质重结晶特征(万渝生等, 2011; Kröner et al., 2014, 2015)。锆石幔部数据点具有明显偏高的U含量(671×10-6~1280×10-6)和低Th/U比值(0.05~0.44,平均0.29),数据点沿谐和线分散分布,207Pb/206Pb年龄为2202±4.7Ma~1922±5.5Ma。锆石边部在CL图中呈灰白色或亮白色,内部结构均匀无分带特征,与变质增生锆石特征一致。锆石边部数据点具有低U含量(30×10-6~732×10-6)及高Th/U比值(0.27~0.85,平均0.64),前人研究表明较高的Th/U比值(通常大于0.1)是高级变质(特别是超高温变质)锆石中普遍存在的现象,一种可能是高级变质作用条件下独居石和帘石等富Th副矿物不稳定而发生分解造成变质锆石中Th含量偏高(Rubatto, 2017);另一可能是高级变质作用使流体从岩石体系向外带出,而U相对于Th更易进入流体相(Santosh et al., 2009; Wan et al., 2009; 万渝生等, 2011)。除数据点4.3R与8.2R不同程度偏离谐和线外,其余锆石边部数据点获得的207Pb/206Pb加权平均年龄为1893±14Ma(图 4b)。
|
|
表 1 大什字紫苏碱长花岗岩(样品DSZ18-6) SHRIMP锆石U-Pb分析结果 Table 1 SHRIMP U-Pb analytical results for zircons from Dashizi charnockite (Sample DSZ18-6) |
|
图 3 大什字紫苏碱长花岗岩锆石阴极发光(CL)图像 SHRIMP U-Pb测年位置(红色圆圈)、测点号(与表 1一致)及207Pb/206Pb年龄一并标注. C代表锆石核部;M代表锆石幔部;R代表锆石边部 Fig. 3 Zircon cathodoluminescence (CL) images of Dashizi charnockite The SHRIMP U-Pb dating position (red circle), analysis point number (consistent with table 1) and 207Pb/206Pb ages are marked together. C represents core; M represents mantle; and R represents rim |
|
图 4 大什字紫苏碱长花岗岩锆石U-Pb年龄谐和图 Fig. 4 Zircon U-Pb concordia diagrams for Dashizi charnockite |
本文对大什字紫苏碱长花岗岩样品开展了全岩主量元素及微量元素地球化学分析,分析结果见表 2。分析结果显示样品具有高SiO2(73.21%~74.5%)、K2O(5.68%~5.85%,Na2O/K2O=0.51~0.54)、K2O+Na2O(8.71%~9.02%)、Fe2O3T(2.54%~3.24%)及FeOT/MgO比值(16~78),低CaO(0.6%~0.97%)、MgO(0.06%~0.26%)和Mg#(5.12~16.75)。样品过碱指数((Na2O+K2O)/Al2O3)为0.69~0.7(<1),里特曼指数(σ)为2.45~2.67,在硅碱图中样品落入亚碱性区域(图 5a),在K-Na-Ca图解中表现出钙碱性分异趋势(图 5b)。考虑到样品具有高硅特征(SiO2>70%),采用SiO2-AR(碱度率)图解加以区分岩石系列,其在SiO2-AR图解中位于钙碱性与碱性过渡区域(图 5d)。样品铝饱和指数(ASI)为1.05~1.09,在A/NK-A/CNK图解中样品落入准铝质至弱过铝质区域(A/CNK=0.98~1.03,图 5c);在FeOT/(FeOT+MgO)-SiO2图解中,样品分布在铁质系列(图 5e);在(Na2O+K2O-CaO)-SiO2图解中样品位于碱钙性区域(图 5f)。综合来看,大什字紫苏碱长花岗岩具有铁质、钙碱性至碱钙性、准铝质至弱过铝质特征。
|
|
表 2 大什字紫苏碱长花岗岩主量元素(wt%)、稀土和微量元素(×10-6)分析结果 Table 2 Compositions of major element (wt%), rare earth and trace element (×10-6) for Dashizi charnockite |
|
图 5 大什字紫苏碱长花岗岩岩石系列判别图解 (a) TAS图解(Middlemost, 1994);(b) K-Na-Ca图解(Barker and Arth, 1976);(c) A/NK-A/CNK图解(Maniar and Piccoli, 1989);(d) SiO2-AR图解(Wright, 1969);(e) FeOT/(FeOT+MgO)-SiO2图解(Frost et al., 2001);(f) (Na2O+K2O-CaO)-SiO2图解(Frost et al., 2001) Fig. 5 The discrimination diagrams of rock series for Dashizi charnockite (a) TAS plot (Middlemost, 1994); (b) K-Na-Ca (Barker and Arth, 1976); (c) A/NK vs. A/CNK (Maniar and Piccoli, 1989); (d) SiO2 vs. AR (Wright, 1969); (e) FeOT/(FeOT+MgO) vs. SiO2 (Frost et al., 2001); (f) (Na2O+K2O-CaO) vs. SiO2 (Frost et al., 2001) |
样品稀土元素总量相对较低,∑REE为101.9×10-6~151.9×10-6,低于地壳平均值210.1×10-6(Rudnick and Gao, 2003)。样品轻稀土元素(LREE)富集, 重稀土元素(HREE)相对亏损,稀土元素配分曲线型式表现为相对平坦的右倾型,且显示弱的负铕异常(Eu/Eu*=0.63~0.88)(图 6a),轻重稀土元素分馏较弱((La/Yb)N=9.5~15),重稀土元素之间分馏较弱((Gd/Yb)N=1.84~2.58)。在原始地幔标准化微量元素蛛网图中,岩石富集K、Rb、Ba及高场强元素Zr、Hf,亏损放射性生热元素Th、U及Sr、Nb、Ta、P、Ti,与大陆地壳微量元素配分模式相似(图 6b)。样品具有低Sr(44×10-6~59×10-6)及高Y(8.6×10-6~18×10-6)、Rb(154×10-6~243×10-6)、Ba(547×10-6~728×10-6)、Zr(284×10-6~450×10-6)含量(表 2),此外它们具有低Sr/Y(2.8~6)及高Rb/Sr(2.6~5.5)比值。
|
图 6 大什字紫苏碱长花岗岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989; 大陆地壳据Rudnick and Gao, 2003) Fig. 6 Chondrite-normalized REE patterns (a) and primary mantle-normalized trace element spider patterns (b) for Dashizi charnockite (normalization values after Sun and McDonough, 1989; continental crust after Rudnick and Gao, 2003) |
高级变质岩中的锆石通常具有复杂的内部结构,表现为古老的岩浆锆石核部经历了不同程度变质重结晶叠加改造,并常具有更晚期变质增生边(Corfu, 2013; Glebovitskii et al., 2012; Rajesh and Santosh, 2012; Sato et al., 2012; Kröner et al., 2014, 2015; Gao et al., 2021)。大什字紫苏碱长花岗岩锆石内部结构复杂,具有(不完全重结晶)岩浆锆石核部、变质重结晶锆石幔部以及变质增生边(图 3),这与世界上典型紫苏花岗岩中锆石特征相似(Glebovitskii et al., 2012; Kröner et al., 2014, 2015; Gao et al., 2021)。尽管大什字紫苏碱长花岗岩锆石核部经历了不同程度重结晶,部分锆石域仍保留长柱状外形和模糊的岩浆环带,表明其原始岩浆成因。其中两个保留模糊岩浆环带且位于谐和线上的核部数据点(5.2C、8.1C)207Pb/206Pb年龄分别为2083±16Ma和2056±7.9Ma,考虑到重结晶叠加改造的影响,核部岩浆锆石真实年龄可能更老。其余核部数据点受重结晶影响不同程度偏离谐和线,数据可靠性低。锆石幔部在CL图中呈深灰色无分带特征,具有高的U含量,强烈蚕食核部结构,前人认为这种锆石域可能与富U流体相导致的变质重结晶或变质增生有关(Corfu, 2013; Hoskin and Schaltegger, 2003; Kröner et al., 2014, 2015, 2017)。幔部锆石数据点207Pb/206Pb表面年龄跨度较大,沿谐和线分散分布(图 4a),这些分散的年龄可能与变质重结晶过程中锆石同位素体系部分重置有关,代表混合年龄。其中最老的两个数据点(6.2M、4.2M)偏离谐和线,数据可靠性低,除此之外12.2M是位于谐和线上年龄最古老的幔部数据点(207Pb/206Pb为2149±6Ma),据此推断核部岩浆锆石时代应当早于2149±6Ma。锆石变质增生边获得的207Pb/206Pb加权平均年龄为1893±14Ma(图 4c),与孔兹岩带报道的~1.89Ga变质作用一致,代表更晚期的变质作用,这期变质作用可能与孔兹岩带区域性伸展抬升过程有关(Jiao et al., 2013a; Liu et al., 2013; Yin et al., 2014)。
紫苏花岗岩在很多情况下是高级变质过程中深熔作用形成的,因此需要确定核部岩浆锆石年龄代表大什字紫苏花岗岩形成时代,还是晚期变质深熔作用形成了紫苏花岗岩,诸多证据倾向于前者:(1)前人研究表明孔兹岩带东部集宁-卓资-凉城一带古元古代孔兹岩系大规模变质深熔作用发生在1.93~1.89Ga,伴随着1.93~1.90Ga原地、半原地深熔石榴花岗岩(Peng et al., 2010; Wang et al., 2018; 石强, 2020)。野外观察到石榴花岗岩侵入紫苏碱长花岗岩中,因此紫苏碱长花岗岩形成时代应当早于这期变质深熔作用;(2)研究区紫苏碱长花岗岩露头均匀,体量较大(出露面积约129.43km2),未见明显重熔条带和混合岩化特征,整体具有变质深成侵入岩特征,岩貌特征与深熔花岗岩及变质脱水带中的“初始紫苏花岗岩(Incipient charnockite)”不同(Rajesh and Santosh, 2012);(3)变质叠加在很多前寒武纪紫苏花岗岩中非常常见(Rajesh and Santosh, 2012; Kröner et al., 2014),大什字紫苏碱长花岗岩锆石特征与印度南部紫苏花岗质片麻岩类似(Kröner et al., 2014, 2015; Gao et al., 2021),均具有(部分重结晶)残留岩浆锆石核部与多期变质重结晶或变质增生边,这种情况下核部岩浆锆石年龄通常代表岩浆结晶时代,而锆石边部与后期构造热事件叠加改造有关;此外锆石幔部和边部无明显岩浆环带,不同于典型深熔锆石特征(Dong et al., 2017)。综合来看,大什字紫苏碱长花岗岩形成时代可能为古元古代中期(早于2149±6Ma,可能为~2.2Ga),并经历了古元古代晚期构造热事件及~1.89Ga变质作用叠加改造。
孔兹岩带东部集宁-卓资-凉城一带古元古代中期(2.3~2.0Ga)岩浆事件报道较少,前人仅在孔兹岩带与中部造山带交界地区(兴和地区、大同孤山地区)(图 1b)报道了~2.15Ga、~2.17Ga弧性质紫苏花岗岩和~2.2Ga、~2.13Ga变质基性岩(Santosh et al., 2013; Wang et al., 2015; Yang and Santosh, 2015),王洛娟(2016)提到了卓资地区存在~2.08Ga A型花岗岩,但未对其做详细报道。本文研究表明卓资地区可能存在更古老的(~2.2Ga)岩浆岩,这有效补充了区域上古元古代中期岩浆事件,同时该套岩浆岩可能为孔兹岩系中2.2~2.0Ga碎屑锆石提供了部分物源。
5.2 岩石成因紫苏花岗岩有火成和变质两种来源,火成紫苏花岗岩是紫苏辉石直接从岩浆中结晶,而变质紫苏花岗岩通常是围岩变质脱水形成的厘米级到米级的变质脱水带(Frost and Frost, 2008; Rajesh and Santosh, 2012)。大什字紫苏碱长花岗岩岩性相对均匀,岩体规模较大,与围岩接触界面截然,具有深成侵入岩体特征,为火成紫苏花岗岩。岩石具有低CaO、Sr含量以及低Sr/Y比值,同时显示负Eu异常和相对平坦的HREE配分曲线,指示斜长石是比石榴石更重要的残留相,岩石形成时的压力相对较低(Rollinson, 1993)。需要指出的是,负Eu异常不明显可能与岩石中含有较高含量的钾长石(微斜长石和条纹长石)有关,钾长石通常富含Eu和Ba元素,其存在往往造成岩石中Eu和Ba的含量偏高(Rollinson, 1993; Wu et al., 2002),一定程度上“缓冲”了斜长石分离结晶造成的负Eu异常。
紫苏花岗岩通常有以下几种成因类型:(1)幔源拉斑玄武质岩浆结晶分异伴随少量壳源物质加入,通常与裂谷相关,形成的岩浆具有铁质、碱钙性至碱性、准铝质特征;(2)深蚀的Cordilleran型深成岩体,通常形成于俯冲相关的弧环境,具有镁质、钙至钙碱性、准铝质特征;(3)Caledonian型深成岩体,通常与造山后加厚地壳拆沉相关,具有镁质、碱钙性至碱性特征;(4)麻粒岩相变质作用或热的铁质岩浆侵位相关的地壳熔融作用,这类熔体通常具有中等程度的FeO/(FeO+MgO)比值和过铝质特征(Frost and Frost, 2008)。大什字紫苏碱长花岗岩具有低CaO、TiO2、P2O5、Sr含量,同时显示负Eu异常特征,在微量元素蛛网图中强烈亏损Sr、P、Ti元素,指示岩浆演化过程中可能经历了富Ca斜长石、含钛矿物相及磷灰石的分离结晶作用。然而幔源岩浆结晶分异作用显然不能解释大什字紫苏碱长花岗岩成因,首先,幔源基性岩浆结晶分异形成的花岗岩通常伴随大规模的同期基性-超基性岩的出露(Turner et al., 1992; Frost et al., 2002; Huang et al., 2008),研究区未发现大规模同期基性岩;其次,幔源基性岩浆分异和同化混染作用通常会产生由基性向中性、酸性连续变化的一系列岩石(Sylvester, 1989; Turner et al., 1992; Peccerillo et al., 2003; Shellnutt et al., 2009),而研究区内缺乏同期中-基性岩浆岩;岩石具有高SiO2和低MgO、Cr含量,微量元素特征与大陆地壳相似而不同于幔源岩浆(图 6b),因此排除幔源岩浆结晶分异成因。研究区孔兹岩系变质沉积岩分布规模大,然而变质沉积岩深熔熔体通常表现为强过铝质特征,且常含有石榴石等富铝矿物,与大什字紫苏碱长花岗岩特征不符。另外,岩石具有铁质、钙碱性至碱钙性、准铝质至弱过铝质特征(图 5e, f),也不同于典型Cordilleran型和Caledonian型深成岩体。
Frost and Frost (2011)在总结前人实验成果的基础上提出铁质紫苏花岗岩有两种成因,一种是幔源玄武质岩浆结晶分异形成,上述讨论已经排除这种可能;另一种是英云闪长质、花岗闪长质地壳岩石在较低压力(~0.4GPa)下部分熔融产生的铁质花岗岩(Creaser et al., 1991; Patiño Douce, 1997),这一模型常用来解释高硅准铝质花岗岩成因,形成的熔体具有铁质、碱钙性至钙碱性、准铝质特征(Frost and Frost, 2011),这与大什字紫苏碱长花岗岩地球化学特征一致。紫苏花岗岩通常形成于高温、无水(或低水活度)环境(Santosh, 1986; Frost and Frost, 2008; Rajesh and Santosh, 2012),这与大什字紫苏碱长花岗岩高的全岩锆石饱和温度(835~887℃,平均值860℃)相符。然而,正常的地温梯度很难通过地壳熔融产生高温铁质花岗岩,因此来自地幔的外来热源是一个先决条件,伸展背景下幔源岩浆底侵造成地壳岩石部分熔融是高温铁质紫苏花岗岩最可能的成岩机制(Creaser et al., 1991)。
综合来看,伸展背景下岩石圈减薄、软流圈上涌伴随幔源岩浆底侵造成英云闪长质、花岗闪长质地壳岩石熔融,壳源熔体经过结晶分异作用形成大什字紫苏碱长花岗岩。如果这一解释成立,则孔兹岩带内可能存在更古老的TTG(英云闪长岩、奥长花岗岩、花岗闪长岩)类地壳物质,这为揭示孔兹岩带基底性质提供了新思路。
5.3 构造背景大什字紫苏碱长花岗岩富集轻稀土元素和大离子亲石元素(除Sr),亏损多数高场强元素(如Nb、Ta、Ti等),与弧型花岗岩特征相似(Pearce et al., 1984)。样品具有低Sr/Y和(La/Yb)N比值,其在Sr/Y-Y与(La/Yb)N-YbN图解中基本落入岛弧岩石区域(图 7a, b),在Pearce et al. (1984)构造环境判别图解中位于火山弧花岗岩区域(图 7c, d),指示俯冲相关的岩浆弧环境。岩石具有高SiO2、K2O、(Na2O+K2O)、Ga、Zr含量及FeOT/(FeOT+MgO)比值,低Al2O3、CaO、MgO、Cr、Sr含量,浅色矿物以碱性长石和石英为主,斜长石含量很少,这些指标与A型花岗岩相似,尤其是高的全岩锆石饱和温度(835~887℃,平均值860℃)有别于典型Ⅰ型花岗岩(Collins et al., 1982; Whalen et al., 1987; Eby, 1990, 1992; Creaser et al., 1991; King et al., 1997),指示大什字紫苏碱长花岗岩可能形成于伸展相关的构造背景。另外,岩石具有低Sr含量及Sr/Y比值,同时显示负Eu异常和相对平坦的HREE配分曲线,指示岩石形成时的压力相对较低(Rollinson, 1993),进一步支持其可能形成于伸展相关的构造环境。大什字紫苏碱长花岗岩为铁质紫苏花岗岩(图 5e),前人研究表明铁质紫苏花岗岩通常形成于裂谷相关的伸展背景及高温无水环境(Frost and Frost, 2008; Rajesh, 2007),因此伸展背景下岩石圈减薄、软流圈上涌伴随幔源岩浆底侵可能为其提供了高温条件。孔兹岩带东部古元古代中期(2.2~2.0Ga)岩浆事件报道较少,包括兴和地区~2.15Ga紫苏花岗岩,大同孤山地区~2.17Ga紫苏二长片麻岩,以及2.2~2.12Ga变质基性岩,这些古元古代中期岩浆作用被认为形成于俯冲相关的岩浆弧环境(Santosh et al., 2013; Wang et al., 2015; Yang and Santosh, 2015)。考虑到区域上存在古元古代中期弧岩浆作用,大什字紫苏碱长花岗岩很可能形成于弧后伸展背景,并可能为后期孔兹岩系原岩沉积提供了条件。
|
图 7 大什字紫苏碱长花岗岩构造环境判别图解 (a) Sr/Y-Y图解(Defant and Drummond, 1990);(b) (La/Yb)N-YbN图解(Martin, 1986);(c) Rb-(Y+Nb)图解(Pearce et al., 1984);(d) Nb-Y图解(Pearce et al., 1984) Fig. 7 Discrimination diagrams of tectonic setting for Dashizi charnockite (a) Sr/Y vs. Y plot (Defant and Drummond, 1990); (b) (La/Yb)N vs. YbN plot Martin, 1986); (c) Rb vs. (Y+Nb) plot (Pearce et al., 1984); (d) Nb vs. Y plot (Pearce et al., 1984) |
孔兹岩带作为华北克拉通古元古代重要的构造活动带,其碰撞拼合以前的构造演化研究相对薄弱,尤其是古元古代中期构造背景依然存在争议,争论的焦点是孔兹岩带自新太古代晚期到古元古代一直处于持续的俯冲-增生过程(Santosh et al., 2013; Yang and Santosh, 2015; Liu et al., 2017),还是于2.3~2.0Ga先后经历了裂谷-俯冲-增生-碰撞过程(翟明国和彭澎, 2007; Zhai and Santosh, 2011),换言之,孔兹岩带在古元古代中期是否经历了陆内伸展裂解过程。华北克拉通内其他两条古元古代碰撞造山带(胶-辽-吉带及中部造山带)普遍存在古元古代中期(2.3~2.0Ga)陆内裂解事件,以双峰式岩浆组合及A型花岗岩出露为主要特征,代表初始克拉通化后的陆内裂谷事件(Zhai and Santosh, 2011; Zhou et al., 2014; Peng, 2015; Du et al., 2016; Peng et al., 2017; 杨崇辉等, 2017; 杜利林等, 2018; Liu et al., 2018, 2021)。然而,孔兹岩带并未发现同期陆内裂解相关的直接岩石记录,缺乏同期双峰式岩浆活动及A型花岗岩。本次工作报道了卓资地区~2.2Ga高温铁质紫苏花岗质岩浆,地球化学研究表明该套岩浆岩很可能形成于俯冲相关的弧后伸展背景,暗示孔兹岩带东部在古元古代中期可能处于弧后伸展背景,而孔兹岩带是否存在同期陆内裂谷事件仍需进一步研究证实。
6 结论(1) 大什字紫苏碱长花岗岩形成于古元古代中期(~2.2Ga),并经历了古元古代晚期构造热事件及~1.89Ga变质作用叠加改造。
(2) 大什字紫苏碱长花岗岩是在弧后伸展背景下岩石圈减薄、幔源岩浆底侵导致英云闪长质、花岗闪长质地壳岩石部分熔融的产物,岩浆可能经历了斜长石、磷灰石及含钛矿物相的分离结晶作用。
(3) 孔兹岩带东部在古元古代中期(~2.2Ga)可能处于俯冲相关的弧后伸展背景,孔兹岩带是否存在古元古代中期陆内裂解事件有待进一步研究。
致谢 真诚感谢两位审稿专家和主编提出的建设性意见,使得文章结构和内容进一步完善。感谢中国地质科学院地质研究所北京离子探针中心实验室工作人员在锆石SHRIMP测年过程中提供的帮助。
Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600 DOI:10.1130/0091-7613(1976)4<596:GOTLAA>2.0.CO;2
|
Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170 DOI:10.1016/S0009-2541(03)00165-7
|
Cai J, Liu FL, Liu PH and Shi JR. 2014. Metamorphic P-T conditions and U-Pb dating of the sillimanite-cordierite-garnet paragneisses in Sanchakou, Jining area, Inner Mongolia. Acta Petrologica Sinica, 30(2): 472-490 (in Chinese with English abstract)
|
Cai J, Liu FL, Liu PH, Wang F and Shi JR. 2016. Geochemistry and its tectonic implications of the Wulashan Daqingshan metapelites in Inner Mongolia. Acta Petrologica Sinica, 32(7): 1980-1996 (in Chinese with English abstract)
|
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
|
Condie KC, Boryta MD, Liu JZ and Qian XL. 1992. The origin of khondalites: Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China craton. Precambrian Research, 59(3-4): 207-223 DOI:10.1016/0301-9268(92)90057-U
|
Corfu F. 2013. A century of U-Pb geochronology: The long quest towards concordance. Geological Society of America Bulletin, 125(1-2): 33-47 DOI:10.1130/B30698.1
|
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19(2): 163-166 DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
|
Dan W, Li XH, Guo JH, Liu Y and Wang XC. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?. Precambrian Research, 222-225: 143-158
|
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
|
Dong CY, Liu DY, Li JJ, Wang YS, Zhou HY, Li CD, Yang YH and Xie LW. 2007. Palaeoproterozoic Khondalite Belt in the western North China Craton: New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area. Chinese Science Bulletin, 52(21): 2984-2994 DOI:10.1007/s11434-007-0404-9
|
Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2013. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125 DOI:10.1007/s11430-012-4459-3
|
Dong CY, Xie HQ, Kröner A, Wang SJ, Liu SJ, Xie SW, Song ZY, Ma MZ, Liu DY and Wan YS. 2017. The complexities of zircon crystallization and overprinting during metamorphism and anatexis: An example from the Late Archean TTG terrane of western Shandong Province, China. Precambrian Research, 300: 181-200 DOI:10.1016/j.precamres.2017.07.034
|
Du LL, Yang CH, Wyman DA, Nutman AP, Lu ZL, Song HX, Xie HQ, Wan YS, Zhao L, Geng YS and Ren LD. 2016. 2090~2070Ma A-type granitoids in Zanhuang Complex: Further evidence on a Paleoproterozoic rift-related tectonic regime in the Trans-North China Orogen. Lithos, 254-255: 18-35 DOI:10.1016/j.lithos.2016.03.007
|
Du LL, Yang CH, Song HX, Zhao L, Lu ZL, Li L, Wang T and Ren LD. 2018. Petrogenesis and tectonic setting of 2.2~2.1Ga granites in Wutai area, North China Craton. Acta Petrologica Sinica, 34(4): 1154-1174 (in Chinese with English abstract)
|
Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134 DOI:10.1016/0024-4937(90)90043-Z
|
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
|
Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048 DOI:10.1093/petrology/42.11.2033
|
Frost BR and Frost CD. 2008. On charnockites. Gondwana Research, 13(1): 30-44 DOI:10.1016/j.gr.2007.07.006
|
Frost CD, Frost BR, Bell JM and Chamberlain KR. 2002. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman batholith, Laramie Mountains, Wyoming, USA. Precambrian Research, 119(1-4): 45-71 DOI:10.1016/S0301-9268(02)00117-1
|
Frost CD and Frost BR. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39-53 DOI:10.1093/petrology/egq070
|
Gao P, Santosh M, Yang CX, Kwon S and Ramkumar M. 2021. High Ba-Sr adakitic charnockite suite from the Nagercoil Block, southern India: Vestiges of Paleoproterozoic arc and implications for Columbia to Gondwana. Geoscience Frontiers, 12(3): 101126 DOI:10.1016/j.gsf.2020.12.007
|
Glebovitskii VA, Sedova IS, Berezhnaya NG, Larionov AN, Rizvanova NG and Samorukova LM. 2012. U-Pb age of autochthonous Paleoproterozoic charnockite in the Aldan Shield. Doklady Earth Sciences, 443(2): 451-457 DOI:10.1134/S1028334X12040198
|
Gou LL, Zhang CL, Brown M, Piccoli PM, Lin HB and Wei XS. 2016. P-T-t evolution of pelitic gneiss from the basement underlying the northwestern Ordos Basin, North China Craton, and the tectonic implications. Precambrian Research, 276: 67-84 DOI:10.1016/j.precamres.2016.01.030
|
Guo JH, Shi X, Bian AG, Xu RH, Zhai MG and Li YG. 1999. Pb isotopic composition of feldspar and U-Pb age of zircon from Early Proterozoic granite in Sanggan area, North China craton: Metamorphism, crustal melting and tectono-thermal event. Acta Petrologica Sinica, 15(2): 199-207 (in Chinese with English abstract)
|
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142 DOI:10.1016/j.precamres.2011.07.020
|
He XF, Santosh M, Bockmann K, Kelsey DE, Hand M, Hu JM and Wan YS. 2016. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton. Lithos, 262: 44-57 DOI:10.1016/j.lithos.2016.06.022
|
Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62 DOI:10.2113/0530027
|
Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2013. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127 DOI:10.1007/s11434-012-5274-0
|
Huang XL, Xu YG, Li XH, Li WX, Lan JB, Zhang HH, Liu YS, Wang YB, Li HY, Luo ZY and Yang QJ. 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China. Precambrian research, 165(3-4): 190-204 DOI:10.1016/j.precamres.2008.06.010
|
Jiao SJ, Guo JH, Harley SL and Peng P. 2013a. Geochronology and trace element geochemistry of zircon, monazite and garnet from the garnetite and/or associated other high-grade rocks: Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt, North China Craton. Precambrian Research, 237: 78-100 DOI:10.1016/j.precamres.2013.09.008
|
Jiao SJ, Guo JH, Harley SL and Windley BF. 2013b. New constraints from garnetite on the P-T path of the Khondalite belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758 DOI:10.1093/petrology/egt029
|
Jiao SJ, Fitzsimons ICW and Guo JH. 2017. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Research, 303: 208-227 DOI:10.1016/j.precamres.2017.03.024
|
Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamophic dynamics. Acta Petrologica Sinica, 7(4): 27-35 (in Chinese with English abstract)
|
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
|
Kröner A, Wan YS, Liu XM and Liu DY. 2014. Dating of zircon from high-grade rocks: Which is the most reliable method?. Geoscience Frontiers, 5(4): 515-523 DOI:10.1016/j.gsf.2014.03.012
|
Kröner A, Santosh M, Hegner E, Shaji E, Geng H, Wong J, Xie H, Wan Y, Shang CK, Liu D, Sun M and Nanda-Kumar V. 2015. Palaeoproterozoic ancestry of Pan-African high-grade granitoids in southernmost India: Implications for Gondwana reconstructions. Gondwana Research, 27(1): 1-37 DOI:10.1016/j.gr.2014.07.001
|
Kröner A, Alexeiev DV, Kovach VP, Rojas-Agramonte Y, Tretyakov AA, Mikolaichuk AV, Xie H and Sobel ER. 2017. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3~1.8Ga Kuilyu Complex, East Kyrgyzstan: The oldest continental basement fragment in the Tianshan orogenic belt. Journal of Asian Earth Sciences, 135: 122-135 DOI:10.1016/j.jseaes.2016.12.022
|
Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1): 26-35 DOI:10.1016/j.gr.2011.01.004
|
Li XW and Wei CJ. 2018. Ultrahigh-temperature metamorphism in the Tuguiwula area, Khondalite Belt, North China Craton. Journal of Metamorphic Geology, 36(4): 489-509 DOI:10.1111/jmg.12301
|
Li XW, White RW and Wei CJ. 2019. Can we extract ultrahigh-temperature conditions from Fe-rich metapelites? An example from the Khondalite Belt, North China Craton. Lithos, 328-329: 228-243 DOI:10.1016/j.lithos.2019.01.032
|
Liu J, Zhang J, Liu ZH, Yin CQ, Zhao C, Li Z, Yang ZJ and Dou SY. 2018. Geochemical and geochronological study on the Paleoproterozoic rock assemblage of the Xiuyan region: New constraints on an integrated rift-and-collision tectonic process involving the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 310: 179-197 DOI:10.1016/j.precamres.2018.03.005
|
Liu J, Zhang J, Liu ZH, Yin CQ, Xu ZY, Cheng CQ, Zhao C and Wang X. 2021. Late Paleoproterozoic crustal thickening of the Jiao-Liao-Ji belt, North China Craton: Insights from ca. 1.95~1.88Ga syn-collisional adakitic granites. Precambrian Research, 355: 106120 DOI:10.1016/j.precamres.2021.106120
|
Liu JH, Liu FL, Ding ZJ, Liu PH, Chen JQ, Liu CH, Wang F, Yang H, Cai J and Shi JR. 2017. Late Neoarchean-Paleoproterozoic arc-continent accretion along the Khondalite Belt, Western Block, North China Craton: Insights from granitoid rocks of the Daqingshan-Wulashan area. Precambrian Research, 303: 494-519 DOI:10.1016/j.precamres.2017.06.006
|
Liu PH, Liu FL, Liu CH, Liu JH, Wang F, Xiao LL, Cai J and Shi JR. 2014. Multiple mafic magmatic and high-grade metamorphic events revealed by zircons from meta-mafic rocks in the Daqingshan-Wulashan Complex of the Khondalite Belt, North China Craton. Precambrian Research, 246: 334-357 DOI:10.1016/j.precamres.2014.02.015
|
Liu SJ, Dong CY, Xu ZY, Santosh M, Ma MZ, Xie HQ, Liu DY and Wan YS. 2013. Palaeoproterozoic episodic magmatism and high-grade metamorphism in the North China Craton: Evidence from SHRIMP zircon dating of magmatic suites in the Daqingshan area. Geological Journal, 48(5): 429-455 DOI:10.1002/gj.2453
|
Lu LZ, Xu XC and Liu FL. 1996. The Early Precambrian Khondalite Series in the North China. Changchun: Changchun Publishing House, 16-118 (in Chinese)
|
Ludwig KR. 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 4: 70
|
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
|
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756 DOI:10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
|
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
|
Nasdala L, Hofmeister W, Norberg N, Martinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/j.1751-908X.2008.00914.x
|
Patiño Douce AE. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743-746 DOI:10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
|
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
|
Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M and Wu TW. 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian rift. Journal of Petrology, 44(11): 2003-2032 DOI:10.1093/petrology/egg068
|
Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659 DOI:10.1016/j.precamres.2010.08.015
|
Peng P, Guo JH, Windley BF, Liu F, Chu Z and Zhai MG. 2012. Petrogenesis of Late Paleoproterozoic Liangcheng charnockites and S-type granites in the central-northern margin of the North China Craton: Implications for ridge subduction. Precambrian Research, 222-223: 107-123 DOI:10.1016/j.precamres.2011.06.002
|
Peng P. 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications. Science China (Earth Sciences), 58(5): 649-675 DOI:10.1007/s11430-014-5026-x
|
Peng P, Yang SY, Su XD, Wang XP, Zhang J and Wang C. 2017. Petrogenesis of the 2090Ma Zanhuang ring and sill complexes in North China: A bimodal magmatism related to intra-continental process. Precambrian Research, 303: 153-170 DOI:10.1016/j.precamres.2017.03.015
|
Rajesh HM. 2007. The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: A case study from southern India. Contributions to Mineralogy and Petrology, 154(5): 591-606 DOI:10.1007/s00410-007-0211-y
|
Rajesh HM and Santosh M. 2012. Charnockites and charnockites. Geoscience Frontiers, 3(6): 737-744 DOI:10.1016/j.gsf.2012.07.001
|
Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Singapore: Longman Scientific and Technical, 1-343
|
Rubatto D. 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry, 83(1): 261-295 DOI:10.2138/rmg.2017.83.9
|
Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64
|
Santosh M. 1986. Carbonic metamorphism of charnockites in the southwestern Indian Shield: A fluid inclusion study. Lithos, 19(1): 1-10 DOI:10.1016/0024-4937(86)90011-3
|
Santosh M, Wilde SA and Li JH. 2007. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196 DOI:10.1016/j.precamres.2007.06.006
|
Santosh M, Wan YS, Liu DY, Dong CY and Li JH. 2009. Anatomy of zircons from an Ultrahot Orogen: The amalgamation of the North China Craton within the Supercontinent Columbia. The Journal of Geology, 117(4): 429-443 DOI:10.1086/598949
|
Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study. Precambrian Research, 227: 29-54 DOI:10.1016/j.precamres.2011.11.004
|
Sato K, Santosh M, Chetty TRK and Hirata T. 2012. U-Pb zircon geochronology of granites and charnockite from southern India: Implications for magmatic pulses associated with plate tectonic cycles within a Precambrian suture zone. Geological Journal, 47(2-3): 237-252 DOI:10.1002/gj.1300
|
Shellnutt JG, Zhou MF and Zellmer GF. 2009. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China. Chemical Geology, 259(3-4): 204-217 DOI:10.1016/j.chemgeo.2008.10.044
|
Shi Q. 2020. Metamorphic anatexis and tectonic significance of early Precambrian garnet granite in the northern margin of North China Craton. Ph. D. Dissertation. Changchun: Jilin University, 1-224 (in Chinese with English abstract)
|
Song B, Zhang YH, Wan YS and Jian P. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48(Suppl.): 26-30 (in Chinese with English abstract)
|
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Sylvester PJ. 1989. Post-collisional alkaline granites. The Journal of Geology, 97(3): 261-280 DOI:10.1086/629302
|
Turner SP, Foden JD and Morrison RS. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179 DOI:10.1016/0024-4937(92)90029-X
|
Wan YS, Geng YS, Shen QH and Zhang RX. 2000. Khondalite series: Geochronology and geochemistry of the Jiehekou Group in Lüliang area, Shanxi Province. Acta Petrologica Sinica, 16(1): 49-58 (in Chinese with English abstract)
|
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271 DOI:10.1016/j.precamres.2006.06.006
|
Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Liu ZH, Yang ZS and Zhou HY. 2009. The Precambrian Khondalite belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publication, 323: 73-97 DOI:10.1144/SP323.4
|
Wan YS, Liu DY, Dong CY, Liu SJ, Wang SJ and Yang EX. 2011. The impact of high-grade metamorphism on the U-Th-Pb system of zircons: A case study of zircon dating of meta-diorite in Qixia area, eastern Shandong. Earth Science Frontiers, 18(2): 17-25 (in Chinese with English abstract)
|
Wan YS, Xie HQ, Yang H, Wang ZJ, Liu DY, Kröner A, Wilde SA, Geng YS, Sun LY, Ma MZ, Liu SJ, Dong CY and Du LL. 2013. Is the Ordos block Archean or Paleoproterozoic in age? Implications for the Precambrian evolution of the North China craton. American Journal of Science, 313(7): 683-711 DOI:10.2475/07.2013.03
|
Wan YS, Peng P, Liu SJ, Kröner A, Guo JH, Dong CY and Liu DY. 2018. Late Paleoproterozoic tectono-thermal event in the northwestern North China Craton: Evidence from U-Pb dating and O-Hf isotopic compositions of zircons from metasedimentary rocks north of Hohhot City, Inner Mongolia, northern China. Journal of Asian Earth Sciences, 167: 152-164 DOI:10.1016/j.jseaes.2017.09.012
|
Wan YS, Xie HQ, Wang HC, Li PC, Chu H, Xiao ZB, Dong CY, Liu SJ, Li Y, Hao GM and Liu DY. 2021a. Discovery of ~3.8Ga TTG rocks in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(5): 1321-1333 (in Chinese with English abstract)
|
Wan YS, Xie HQ, Wang HC, Liu SJ, Chu H, Xiao ZB, Li Y, Hao GM, Li PC, Dong CY and Liu DY. 2021b. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton. Acta Geologica Sinica, 95(2): 277-291 (in Chinese with English abstract)
|
Wang F, Li XP, Chu H and Zhao GC. 2011. Petrology and metamorphism of khondalites from the Jining complex, North China craton. International Geology Review, 53(2): 212-229 DOI:10.1080/00206810903028144
|
Wang LJ, Guo JH, Peng P, Liu F and Windley BF. 2015. Lithological units at the boundary zone between the Jining and Huai’an Complexes (central-northern margin of the North China Craton): A Paleoproterozoic tectonic mélange?. Lithos, 227: 205-224 DOI:10.1016/j.lithos.2015.04.006
|
Wang LJ. 2016. Petrogenesis of Paleoproterozoic S-type granites in the Liangcheng area of the Khondalite Belt, North China Craton. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-199 (in Chinese)
|
Wang LJ, Guo JH, Yin CQ and Peng P. 2017. Petrogenesis of ca. 1.95Ga meta-leucogranites from the Jining Complex in the Khondalite Belt, North China Craton: Water-fluxed melting of metasedimentary rocks. Precambrian Research, 303: 355-371 DOI:10.1016/j.precamres.2017.04.036
|
Wang LJ, Guo JH, Yin CQ, Peng P, Zhang J, Spencer CJ and Qian JH. 2018. High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma. Lithos, 320-321: 435-453 DOI:10.1016/j.lithos.2018.09.035
|
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 DOI:10.1016/0012-821X(83)90211-X
|
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
|
Williams IS. 1997. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC Ⅲ and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Review Economic Geology, 7: 1-35
|
Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384 DOI:10.1017/S0016756800058222
|
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 DOI:10.1016/S0009-2541(02)00018-9
|
Xia XP, Sun M, Zhao GC and Luo Y. 2006a. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research, 144(3-4): 199-212 DOI:10.1016/j.precamres.2005.11.004
|
Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JH and Luo Y. 2006b. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593 DOI:10.1016/j.epsl.2005.11.024
|
Xu ZY, Liu ZH, Yang ZS, Wu XW and Chen XF. 2007. Structure of metamorphic strata of the khondalite series in the Daqingshan-Wulashan area, central Inner Mongolia, China, and their geodynamic implications. Geological Bulletin of China, 26(5): 526-536 (in Chinese with English abstract)
|
Xu ZY, Fan ZW, Liu ZH, Li SC, Wang WQ, Zhang C, Ma Y and Wang YN. 2013. Formation age of the marble in the Khondalite series in Jining, Inner Mongolia: Evidence of the LA-ICP-MS zircon U-Pb dating of felsic gneiss. Journal of Jilin University (Earth Science Edition), 43(3): 809-819 (in Chinese with English abstract)
|
Yang CH, Du LL, Geng YS, Ren LD, Lu ZL and Song HX. 2017. Paleoproterozoic metamafic dyke swarms in the eastern Hebei massif, the eastern North China Craton: ~2.1Ga extension and ~1.8Ga metamorphism. Acta Petrologica Sinica, 33(9): 2827-2849 (in Chinese with English abstract)
|
Yang QY and Santosh M. 2015. Paleoproterozoic arc magmatism in the North China Craton: No Siderian global plate tectonic shutdown. Gondwana Research, 28(1): 82-105 DOI:10.1016/j.gr.2014.08.005
|
Yin CQ, Zhao GC, Wei CJ, Sun M, Guo JH and Zhou XW. 2014. Metamorphism and partial melting of high-pressure pelitic granulites from the Qianlishan Complex: Constraints on the tectonic evolution of the Khondalite Belt in the North China Craton. Precambrian Research, 242: 172-186 DOI:10.1016/j.precamres.2013.12.025
|
Yin CQ, Zhao GC and Sun M. 2015. High-pressure pelitic granulites from the Helanshan Complex in the Khondalite Belt, North China craton: Metamorphic P-T path and tectonic implications. American Journal of Science, 315(9): 846-879 DOI:10.2475/09.2015.03
|
Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)
|
Zhai MG, Li TS, Peng P, Hu B, Liu F and Zhang YB. 2010. Precambrian key tectonic events and evolution of the North China craton. Geological Society, London, Special Publications, 338(1): 235-262 DOI:10.1144/SP338.12
|
Zhai MG and Santosh M. 2011. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25 DOI:10.1016/j.gr.2011.02.005
|
Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310(1-4): 37-53 DOI:10.1016/S0040-1951(99)00152-3
|
Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202 DOI:10.1016/j.precamres.2004.10.002
|
Zhao GC. 2009. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion. Acta Petrologica Sinica, 25(8): 1772-1792 (in Chinese with English abstract)
|
Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Research, 23(4): 1207-1240 DOI:10.1016/j.gr.2012.08.016
|
Zhou YY, Zhai MG, Zhao TP, Lan ZW and Sun QY. 2014. Geochronological and geochemical constraints on the petrogenesis of the Early Paleoproterozoic potassic granite in the Lushan area, southern margin of the North China Craton. Journal of Asian Earth Sciences, 94: 190-204 DOI:10.1016/j.jseaes.2014.03.003
|
蔡佳, 刘福来, 刘平华, 施建荣. 2014. 内蒙古集宁三岔口夕线堇青石榴二长片麻岩变质作用及年代学研究. 岩石学报, 30(2): 472-490. |
蔡佳, 刘福来, 刘平华, 王舫, 施建荣. 2016. 内蒙古乌拉山-大青山地区变泥质岩的地球化学特征及构造意义. 岩石学报, 32(7): 1980-1996. |
董春艳, 万渝生, 徐仲元, 刘敦一, 杨振升, 马铭株, 颉颃强. 2012. 华北克拉通大青山地区古元古代晚期孔兹岩系: 锆石SHRIMP U-Pb定年. 中国科学(地球科学), 44(12): 1851-1862. |
杜利林, 杨崇辉, 宋会侠, 赵磊, 路增龙, 李伦, 王涛, 任留东. 2018. 华北克拉通五台地区2.2~2.1Ga花岗岩的成因与构造背景. 岩石学报, 34(4): 1154-1174. |
郭敬辉, 石昕, 卞爱国, 许荣华, 翟明国, 李永刚. 1999. 桑干地区早元古代花岗岩长石Pb同位素组成和锆石U-Pb年龄: 变质与地壳熔融作用及构造-热事件演化. 岩石学报, 15(2): 199-207. |
金巍, 李树勋, 刘喜山. 1991. 内蒙大青山地区早前寒武纪高级变质岩系特征和变质动力学. 岩石学报, 7(4): 27-35. |
卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社, 16-118.
|
石强. 2020. 华北克拉通北缘早前寒武纪石榴花岗岩变质深熔成因及其构造意义. 博士学位论文. 长春: 吉林大学, 1-224
|
宋彪, 张玉海, 万渝生, 简平. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增): 26-30. |
万渝生, 耿元生, 沈其韩, 张如心. 2000. 孔兹岩系——山西吕梁地区界河口群的年代学和地球化学. 岩石学报, 16(1): 49-58. |
万渝生, 刘敦一, 董春艳, 刘守偈, 王世进, 杨恩秀. 2011. 高级变质作用对锆石U-Pb同位素体系的影响: 胶东栖霞地区变质闪长岩锆石定年. 地学前缘, 18(2): 17-25. |
万渝生, 颉颃强, 王惠初, 李鹏川, 初航, 肖志斌, 董春艳, 刘守偈, 李源, 郝光明, 刘敦一. 2021a. 冀东地区~3.8Ga TTG岩石发现. 地质学报, 95(5): 1321-1333. |
万渝生, 颉颃强, 王惠初, 刘守偈, 初航, 肖志斌, 李源, 郝光明, 李鹏川, 董春艳, 刘敦一. 2021b. 冀东地区始太古代早期-冥古宙锆石发现. 地质学报, 95(2): 277-291. |
王洛娟. 2016. 华北克拉通孔兹岩带凉城地区古元古代S型花岗岩成因研究. 博士学位论文. 北京: 中国科学院大学, 1-199
|
徐仲元, 刘正宏, 杨振升, 吴新伟, 陈晓峰. 2007. 内蒙古中部大青山-乌拉山地区孔兹岩系的变质地层结构及动力学意义. 地质通报, 26(5): 526-536. DOI:10.3969/j.issn.1671-2552.2007.05.004 |
徐仲元, 范志伟, 刘正宏, 李世超, 王挽琼, 张超, 马越, 王英男. 2013. 内蒙集宁地区孔兹岩系中大理岩的形成时代——长英质片麻岩中LA-ICP-MS锆石U-Pb测年的证据. 吉林大学学报(地球科学版), 43(3): 809-819. |
杨崇辉, 杜利林, 耿元生, 任留东, 路增龙, 宋会侠. 2017. 冀东古元古代基性岩墙群的年龄及地球化学: ~2.1Ga伸展及~1.8Ga变质. 岩石学报, 33(9): 2827-2849. |
翟明国, 彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682. DOI:10.3969/j.issn.1000-0569.2007.11.001 |
赵国春. 2009. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论. 岩石学报, 25(8): 1772-1792. |
2022, Vol. 38







