岩石学报  2022, Vol. 38 Issue (2): 323-340, doi: 10.18654/1000-0569/2022.02.02   PDF    
川西甲基卡花岗伟晶岩的锂铍成矿作用过程——来自308号脉流体包裹体的约束
熊欣1, 丁欣2, 李建康1, 李鹏1, 邓静仪1,2, 张珈铭1,2     
1. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
2. 中国地质大学(北京), 北京 100083
摘要: 甲基卡位于松潘-甘孜造山带内,为特大型花岗伟晶岩型锂-铍矿床。前人以锂辉石中发育的富子晶包裹体为研究对象,着重剖析了甲基卡锂成矿的物理化学条件。然而,就伟晶岩熔(流)体的演化过程,特别是稀有金属成矿的富集机制和物理化学条件,仍缺乏有效制约。308号脉作为甲基卡出露最大的钠长石型锂-铍伟晶岩脉,具有良好的内部分带,较完整地记录了甲基卡伟晶岩结晶演化过程。本文以308号伟晶岩脉为研究对象,开展了系统的流体包裹体研究工作。308号脉较早阶段的结晶介质以外带绿柱石中富子晶流体包裹体为代表,为高温(492~592℃)、低盐度(0.8%~8.5% NaCleqv)、弱碱性(CO32-和HCO3-)、富挥发分(F、P、B、Li)的硅酸盐水体系,估算成矿压力平均值为400MPa。308脉较晚阶段的结晶介质以内带锂辉石中富子晶流体包裹体为代表,为高温(482~565℃)、低盐度(1.6%~8.5% NaCleqv)、弱碱性、富挥发分(P、Li)的硅酸盐水体系。晚期热液阶段以石英的富CO2流体包裹体为代表,为中高温(291~365℃)、中低盐度(3.9%~13.2% NaCleqv)、弱酸性、富氯的盐水体系。308号脉由铍矿化至锂矿化、最终至热液阶段,是伟晶岩熔(流)体持续分异演化的结果,晚期热液为伟晶岩熔(流)体自身分异形成的。相对封闭的成矿体系、多种挥发组分(F、Li、P、B)的大量聚集和弱碱性的pH环境,是308号脉锂-铍矿化富集与沉淀的主要控制因素。晚期贫F富Cl、弱酸性特征的热液流体有利于锂辉石的保存。
关键词: 甲基卡    钠长石伟晶岩    锂铍矿化    流体包裹体    挥发分    
Metallogenic process of the Jiajika Li-Be deposit in West Sichuan: Constraints from fluid inclusions of No.308 pegmatite
XIONG Xin1, DING Xin2, LI JianKang1, LI Peng1, DENG JingYi1,2, ZHANG JiaMing1,2     
1. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. China University of Geosciences, Beijing 100083, China
Abstract: Jiajika giant granitic pegmatite-type rare metal deposit is located in Songpan-Ganzê orogenic belt. Crystal-rich inclusions hosted in spodumene have been selected to analyze the lithium metallogenic process at this deposit in previous work. However, the systematic evolution of pegmatite melt (fluid), especially the enrichment mechanism and physicochemical conditions of rare metal forming process, is still unclear. No.308 Li-Be albite pegmatite dike, as the largest outcrop in Jiajika, records the whole evolution from pegmatitic to hydrothermal stage. In this paper, a systematic study of fluid inclusions in No.308 pegmatite were carried out. Crystal-rich inclusions in beryl, representing the Be mineralization stage, were characterized by high temperature (492~592℃), low salinity (0.8%~8.5% NaCleqv), weak alkali and volatile-rich (F, P, B and Li). Crystal-rich inclusions in spodumene, representing the Li mineralization stage, were characterized by high temperature (482~565℃), low salinity (0.8%~8.5% NaCleqv), weak alkali and volatile-rich (P and Li). The emplacement pressure of the No.308 pegmatite was estimated at 400MPa. CO2-bearing inclusions in quartz, representing the hydrothermal stage, were characterized by medium-low temperature (291~365℃), medium-low salinity (3.9%~13.2% NaCleqv), weak acid and Cl-dominant. The No.308 pegmatite dike in Jiajika has undergone excessive fluid evolution from beryllium mineralization at early pegmatitic stage, to lithium mineralization at late pegmatitic stage, and eventually stepped into hydrothermal stage. This study shows that the closed ore-forming system to accumulate high volatile components and weak alkali conditions are the main factors for the enrichment and precipitation of Li-Be in Jiajika. The weak acid hydrothermal fluid with F-poor and Cl-rich at late stage is beneficial to the preservation of spodumene.
Key words: Jiajika    Albite pegmatite    Li-Be mineralization    Fluid inclusion    Volatile composition    

锂、铍广泛应用于原子能、航空航天、电子、化工、医药等领域,是我国重要的战略性新兴资源。花岗伟晶岩型矿床作为稀有金属的重要来源之一,具有巨大的经济价值,近年来备受地质学家的关注(Gunn, 2014; 李建康等,2014USGS, 2018)。甲基卡锂矿位于四川西部(唐国凡和吴盛先,1984),是中国规模最大的花岗伟晶岩型锂矿床,具有伴生矿种多(Be、Nb、Ta、Rb、Cs、Sn)、埋藏浅、找矿潜力好的特色,是花岗伟晶岩型锂辉石矿床的典型代表(王登红和付小方,2013付小方等,2015王登红等,2016刘善宝等,2019杨岳清等,2020)。

① 唐国凡, 吴盛先. 1984. 四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告

花岗伟晶岩作为岩浆至热液阶段演化的产物,其成矿熔(流)体的演化过程一直是研究稀有金属成矿过程的热点。其中,富子晶包裹体、富CO2包裹体等流体包裹体是伟晶岩成矿熔(流)体研究的重点。这些包裹体广泛发育于花岗伟晶岩的锂辉石、绿柱石、石英和电气石等矿物内,如加拿大Tanco(London, 1984, 1986)、中国新疆可可托海(周起凤,2013)、川西甲基卡(Li and Chou, 2016, 2017)、德国Ehrenfriedersdorf(Thomas and Davidson, 2016)和加拿大魁北克Lacorne(Mulja and Williams-Jones, 2018)等稀有金属矿床。虽然富子晶包裹体的成因仍存在一定的争议,如,Anderson et al.(2001)Anderson(2013, 2019)认为富子晶流体包裹体是锂辉石和晚期流体反应的结果,但大部分学者认为其捕获于伟晶岩矿物结晶过程中(London, 1986; Li and Chou, 2015, 2017; 李胜虎等,2015Thomas and Davidson, 2016)。根据对富子晶包裹体的研究,Li and Chou(2015, 2017)提出高密度碳酸盐溶液可作为伟晶岩结晶介质,London(1984, 1986, 2008)建立伟晶岩熔体的结晶边界层模式,Thomas and Davidson(2016)认为液态不混溶作用是伟晶岩形成的必要过程。因此,以富子晶包裹体为代表的流体包裹体是研究伟晶岩稀有金属富集机制和成矿条件的重要对象。

308号脉是甲基卡矿床出露面积最大、分带性最好的伟晶岩脉,脉内不同结构带的绿柱石、锂辉石和石英赋存了大量的熔(流)体包裹体,完整地记录了甲基卡伟晶岩的成矿作用过程。前人对甲基卡锂辉石富子晶包裹体开展了系统的研究工作,厘定了锂的成矿温度(500~600℃)与压力(高于300MPa)(李建康等,2007李胜虎等,2015Li and Chou, 2016, 2017熊欣等,2019)。然而,完整的甲基卡伟晶岩熔(流)体演化过程,特别是Li、Be的富集机制和物理化学条件,包括温度、压力、流体性质和主要挥发分的种类与含量(如F、Cl和CO2)等,仍有必要进行进一步探讨。基于此,本文对甲基卡308号伟晶岩脉开展了系统的流体包裹体研究,着重剖析锂铍成矿过程及控制因素,以完善花岗伟晶岩型成矿模型,指导在区域花岗伟晶岩型稀有金属矿床的找矿勘探工作。

1 地质背景

甲基卡稀有金属矿田大地构造背景上位于青藏高原东南缘,于松潘-甘孜造山带中部的雅江被动陆缘中央褶皱-推覆带中段的雅江构造-岩浆穹状变质体群内(图 1a)。地理位置上,甲基卡位于四川省康定、雅江、道孚三县的交界处,东距成都(直距)270km,海拔约4300~4500m。出露地层为三叠纪西康群,由老到新可分为侏倭组和新都桥组,岩性主要由一系列灰黑色长英质砂岩、粉砂岩、砂质板岩、碳质板岩和千枚岩组成(唐国凡和吴盛先,1984)。区内地层受区域变质和接触变质作用,形成片岩、板岩和角岩化粉砂岩等。部分地段可见大量十字石、红柱石等热接触变质矿物,堇青石、石榴子石等次之。

图 1 川西甲基卡矿田地质简图(据Li and Chou, 2017修改) 1-二云母花岗岩;2-微斜长石型伟晶岩;3-微斜长石-钠长石型伟晶岩;4-钠长石型伟晶岩;5-钠长石-锂辉石型伟晶岩;6-钠长石-锂(白)云母型伟晶岩;7-伟晶岩脉编号;8-类型分带线;9-类型分带编号:Ⅰ-微斜长石带, Ⅱ-微斜长石-钠长石带, Ⅲ-钠长石带, Ⅳ-锂辉石带, Ⅴ-钠长石-锂(白)云母带;10-实测剖面位置 Fig. 1 Geological map of the Jiajika ore field in western Sichuan Province (modified after Li and Chou, 2017) 1-two-mica granite; 2-microcline type pegmatite; 3-microcline-albite type pegmatite; 4-albite type pegmatite; 5-albite-spodumene type pegmatite; 6-albite-muscovite (lepidolite) type pegmatite; 7-number of pegmatite dike; 8-zoning line of different types of pegmatite; 9-zoning number of different types of pegmatite: Ⅰ-microcline zone, Ⅱ-microcline-albite zone, Ⅲ-albite zone, Ⅳ-spodumene zone, Ⅴ-albite-lepidolite (muscovite) zone; 10-location of sampling section

甲基卡矿区中部偏南出露二云母花岗岩岩体,出露面积5.3km2,是矿区的唯一岩体(图 1b李建康等,2007)。二云母花岗岩体沿甲基卡短轴背斜侵入,侵位于三叠纪新都桥组和侏倭组地层中,通过LA-ICP-MS测试岩体锆石的U-Pb年龄为223±1Ma(郝雪峰等,2015),属于印支晚期。围绕花岗岩内、外接触带,甲基卡矿区派生出一系列不同矿化类型的花岗伟晶岩脉,伟晶岩脉共计498条,已发现含Li、Be、Nb、Ta伟晶岩矿脉近120条(唐国凡和吴盛先,1984;李建康等,2007)。新三号花岗伟晶岩型锂矿脉中铌钽矿物U-Pb年龄为214±2Ma(郝雪峰等,2015),略晚于二云母花岗岩的形成时代。前人基于甲基卡二云母花岗岩和伟晶岩紧密的时空关系、Hf-O同位素及其岩石地球化学显示的亲缘性,认为花岗伟晶岩为二云母花岗熔体分异演化的产物(李建康等,2007郝雪峰等,2015Li et al., 2019)。

花岗伟晶岩脉具有一定的分带性,根据矿物组合类型,自岩体接触带向外,可依次划分为:微斜长石型(Ⅰ型,占4.4%)→微斜长石-钠长石型(Ⅱ型,占24.5%)→钠长石型(Ⅲ型,占28.9%)→钠长石-锂辉石型(Ⅳ型,占21.1%)→钠长石-锂(白)云母型(Ⅴ型,白云母亚型占19.7%和锂云母亚型占1.4%)(图 1b)。在空间上,稀有成矿元素由中心向外,呈现出Be(Ⅰ型至Ⅱ型)→Be+Li(Ⅲ型)→Li(Ⅳ型)→Nb+Ta(Ⅴ型)的分带特征。

2 308号脉地质特征

308号伟晶岩脉距岩体约1km,是甲基卡矿区出露面积最大的钠长石型伟晶岩脉(Ⅲ型),长约1090m,宽约700m(李建康等,2007)。308号伟晶岩脉勘探程度低,现有资源储量尚不明确。矿床内出露的地层为三叠纪西康群新都桥组,主要由泥岩、粉砂岩及砂岩等经区域变质作用形成十字石片岩,其余被第四系所覆盖。围岩与308号脉界线截然,未见明显的冷凝边,常发育堇青石化。308号脉具有一定的分带性,本次研究实测剖面显示出,由外至内可划分为五个主要矿物结构带:微斜长石-白云母-石英带(Ⅰ带)、电气石-石英-微斜长石带(Ⅱ带)、微斜长石-钠长石带(Ⅲ带)、锂辉石-石英-钠长石带(Ⅳ带)和石英-锂辉石带(Ⅴ带)(图 2)。各结构带的矿物组合描述如表 1

图 2 甲基卡308号伟晶岩剖面图 Ⅰ-微斜长石-白云母-石英带;Ⅱ-电气石-石英-微斜长石带;Ⅲ-微斜长石-钠长石带;Ⅳ-锂辉石-石英-钠长石带;Ⅴ-石英-锂辉石带 Fig. 2 Section of the Jiajika No.308 pegmatite Ⅰ-microcline-muscovite-quartz zone; Ⅱ-tourmaline-quartz-microcline zone; Ⅲ-microcline-albite zone; Ⅳ-spodumene-quartz-albite zone; Ⅴ-quartz-spodumene zone

表 1 甲基卡308号伟晶岩脉各结构带矿物分布 Table 1 Distribution of minerals in each texture zones of Jiajika No.308 pegmatite

Ⅰ带约占整条脉的5%,主要由石英、白云母和微斜长石组成(图 3a),副矿物主要为磷灰石、绿柱石和锆石等。此带内,石英主要呈半自形或自形结构,粒径多在3~5mm之间,与白云母共生(粒径 < 1mm;图 3b)。Ⅱ带约占整条脉的30%,主要由微斜长石、石英、钠长石和黑电气石组成(图 3c),副矿物主要为磷灰石和绿柱石等。此带内,石英呈现出两种结构特征,一种为呈半自形或自形结构,粒径多在0.1~0.5cm之间,与微斜长石、白云母和电气石等造岩矿物共生(图 3d);另一部分石英呈现出高度锯齿状边界的特征,与浅绿色、细小鳞片状白云母集合体共生(图 3d),这指示了石英受到后期的溶蚀和再结晶的影响(Halfpenny et al., 2006)。Ⅲ带约占整条脉的30%,主要由钠长石、石英、微斜长石、绿柱石和白云母组成(图 3e),副矿物主要为铌铁矿族矿物和锰铝榴石。此带内,部分微斜长石发生钠长石化;石英主要以半自形的结构,与白云母、钠长石、绿柱石和电气石等造岩矿物共生,粒径多在0.5~2cm之间(图 3f)。Ⅳ带约占整条脉的25%,主要由钠长石、石英、锂辉石和微斜长石组成(图 4a)。在此带内,石英主要呈半自形填充在中粗粒锂辉石(粒径1~2m)之间的空隙(图 4b),锂辉石局部发生白云母化。Ⅴ带约占整条脉的10%,主要由石英、锂辉石和钠长石组成(图 4c)。此在带内,石英主要呈半自形填充在粗粒锂辉石(粒径2~5m)之间的空隙,锂辉石局部发生白云母化(图 4d)。Ⅰ~Ⅴ带内均未发现原生的透锂长石和锂云母。

图 3 甲基卡308号钠长石型伟晶岩脉外带(Ⅰ~Ⅲ带)代表性手标本及其镜下特征 (a、b)微斜长石-白云母-石英带(Ⅰ带),主要由细粒的微斜长石、半自形石英和白云母组成;(c、d)电气石-石英-微斜长石带(Ⅱ带),主要由石英、微斜长石、钠长石和黑电气石组成;(e、f)微斜长石-钠长石带(Ⅲ带),主要由微斜长石、钠长石、石英和绿柱石组成,部分石英呈现出锯齿状边界的特征,微斜长石局部发生钠长石化. 矿物缩写:Qtz-石英;Ms-白云母;Tur-电气石;Mic-微斜长石;Ab-钠长石;Brl-绿柱石;Spd-锂辉石 Fig. 3 Photographs of representatitve samples in outer zone from the Jiajika No.308 pegmatite (a, b) microcline-muscovite-quartz zone (zone Ⅰ), mainly composed of fine-grained microcline, subhedral quartz and muscovite; (c, d) tourmaline-quartz-microcline zone (zone Ⅱ) composed of quartz, albite, microcline and schorl; (e, f) microcline-albite zone (zone Ⅲ) composed of microcline, albite, quartz and beryl. Some quartz grains display serrated grain boundaries and microcline minerals were partial altered by albite. Abbreviation: Qtz-quartz; Ms-muscovite; Tur-tourmaline; Mic-microcline; Ab-albite; Brl-beryl; Spd-spodumene

图 4 甲基卡308号钠长石型伟晶岩脉内带(Ⅳ~Ⅴ带)代表性手标本及其镜下特征 (a、b)锂辉石-石英-钠长石带(Ⅳ带),主要由石英、钠长石和锂辉石组成,局部钠长石发生白云母化;(c、d)石英-锂辉石带(Ⅴ带),主要由他形石英、锂辉石和少量钠长石组成,局部锂辉石发生白云母化 Fig. 4 Photographs of representatitve samples in inner zone from the Jiajika No.308 pegmatite (a, b) spodumene-quartz-albite zone (zone Ⅳ) composed of quartz, albite, spodumene and microcline. Albite minerals were partial altered by muscovite. (c, d) the quartz-spodumene zone (zone Ⅴ) composed of quartz, spodumene and albite. Spodumene minerals were partial altered by muscovite
3 样品采集和分析方法

本次研究以甲基卡308号钠长石-锂辉石伟晶岩脉为研究对象,于各矿物结构带内系统取样(图 2),以开展系统的流体包裹体研究工作。实验前,首先对50个包裹体片开展了系统的岩相学观察,在剔除次生盐水包裹体发育的矿物样品后,选择了28个代表性样品进一步开展了显微测温、激光拉曼分析和群体包裹体分析。群体包裹体分析的单矿物样品通过切割去除表面杂质的方式以确保其纯度达到99%。

激光拉曼测试在堀场(中国)贸易有限公司北京分公司完成,仪器型号为Horiba JY LabRAM HR,激光波长633nm,激光功率17mW,分辨率 < 1.0cm-1。显微冷热台测温在中国地质科学院矿产资源研究所完成,仪器型号为Linkam THMSG 600,温度范围-196~+600℃,≤30℃时测试精度为±0.1℃,>30℃时测试精度为±1℃。在流体包裹体测试过程中,加热速率通常为0.2~10℃/min,但在冰点附近降低至0.1℃/min,在均一温度附近降低至0.2~0.5℃/min,以准确记录相变。CO2包裹体的盐度根据Collins(1979)提供的CO2笼合物熔化温度和盐度关系表获得,盐水包裹体的盐度根据包裹体冷冻回温后得到的最后一块冰融化的温度(冰点)再利用Bodnar(1983)的方程计算获得。

群体包裹体分析在中国地质科学院矿产资源研究所流体包裹体实验室完成,所用气相成分仪器型号为日本岛津GC2010气相色谱仪,配有澳大利亚SGE公司热爆裂炉,载气为He,载气和标准气体均来自国家标准物质研究中心,最低检出限为10-6。液相成分仪器型号为日本岛津HIC-SP Super离子色谱仪,液相标样来自国家标准物质研究中心,阳离子和阴离子最低检出限分别为10-6和10-9

气相成分分析前,先对样品进行300℃预爆裂至工作站初始峰值为零,进一步消除次生包裹体(200~300℃)和样品表面杂质对实验结果的干扰。根据流体包裹体显微测温结果,本次实验将所选单矿物样品的群体包裹体爆裂取样温度设定为600℃。气相色谱运行条件及详细分析流程见杨丹等(2007)。液相成分分析前,先通过对挑选纯度大于99%的单矿物样品进行表面净化,以消除群体包裹体内混杂的次生流体包裹体。石英样品的表面净化方法为加入适量王水(HCl-HNO3按3:1混合)放置于200℃的加热板上恒温3h,用超纯水清洗至超纯水电导值。对于锂辉石和绿柱石样品,前处理采用超纯水浸泡与超声波清洗的方法,操作数次直至超纯水电导值。离子色谱运行条件及详细分析流程见杨丹和徐文艺(2014)

4 分析结果 4.1 流体包裹体岩相学特征

本次研究对308号脉的对各结构带代表性矿物,即绿柱石(Ⅲ带)、锂辉石(Ⅳ、Ⅴ带)和石英(Ⅲ~Ⅴ带),开展了流体包裹体研究工作。按常温下包裹体中各相态成分、比例、组合关系及均一时相态,将所观察到的流体包裹体分为富子晶(L+V+S)、富二氧化碳(CO2(G)+CO2(L)+L)和气液(L+V)包裹体等三种类型。

绿柱石中主要发育富子晶包裹体(约占80%~95%),包裹体主要呈椭圆状成群分布,大小主要在20~60μm(图 5a)。富晶体包裹体主要由CO2气相、CO2液相和子晶组成,晶体一般自形程度较好,多呈圆形或椭圆形生长在包裹体边缘,占包裹体的体积比例约50%~62%。该类包裹体在室温下可见CO2气液两相,CO2相体积比例多为60%~80%之间。富子晶流体包裹体通常具有相似的晶体/流体比和CO2体积比,显示出原生的特征(图 5a, b)。除此之外,部分绿柱石内存在少量盐水包裹体,直径通常≤5μm,常沿着裂隙生长,呈现次生特征。

图 5 甲基卡308号伟晶岩脉各结构带绿柱石、锂辉石和石英的典型流体包裹体特征 (a) Ⅲ带内,绿柱石发育富子晶包裹体,具有相似的气液相比,呈现出原生的特征,局部区域包裹体放大见图(b);(c) Ⅳ带内,锂辉石发育原生短柱状富子晶包裹体,具有相似的气液相比;(d) Ⅳ带内,锂辉石发育原生长柱状富子晶包裹体,具有相似的气液相比;(e) Ⅴ带内,锂辉石发育含方解石的子晶包裹体;(f)早期石英发育富子晶包裹体,被受到后期次生流体包裹体叠加;(g)与锂辉石共生的石英内,发育原生的H2O-CO2-NaCl流体包裹体群,流体包裹体特征见图(h);(h) H2O-CO2-NaCl流体包裹体呈圆形或椭圆形规则地散布于石英颗粒内,呈现出原生的特点. 矿物缩写:Cal-方解石;Crt-方石英;Nah-碳酸氢钠;Zab-扎布耶石(Li2CO3);CI-富子晶包裹体 Fig. 5 Characteristics of fluid inclusions hosted in beryl, spodumene and quartz in different zones from the Jiajika No.308 pegmatite (a) in zone Ⅲ, primary crystal-rich inclusions in beryl with similar gas-liquid ratio. Areas indicated by letters are shown in Fig. 5b in more detail; (c) in zone Ⅳ, primary crystal-rich inclusions in short column were hosted in spodumene, showing similar gas-liquid ratio; (d) in zone Ⅳ, primary crystal-rich inclusions in long column were hosted in spodumene with similar gas-liquid ratio; (e) in zone Ⅴ, calcite as crystal of the primary fluid inclusions in spodumene; (f) crystal-rich inclusions were trapped in pegmatite quartz and overprinted by late fluid; (g) primary H2O-CO2-NaCl inclusions hosted in quartz coexisting with spodumene, which was magnified in Fig. 5h; (h) the primary H2O-CO2-NaCl inclusions in round or oval shape regularly distributed in quartz grains. Abbreviation: Cal-calcite; Crt-cristobalite; Nah-nahcolite; Zab-zabuyelite; CI-crystal-rich inclusion

锂辉石中主要发育富子晶包裹体(约占70%~85%),包裹体主要沿锂辉石{110}生长面产出,最大可达100μm(图 5c, d)。富晶体包裹体主要由CO2气相、CO2液相和子晶组成,晶体矿物一般自形程度较好,呈圆形、椭圆形或立方体生长在包裹体中,子晶体积比在Ⅳ和Ⅴ带内分别约在45%~55%(图 5c, d)和15%~25%(图 5e)。虽然并非所有包裹体都显示出相同的晶体/流体比和CO2体积比,但是同一个包裹体组(FIA)中,富子晶流体包裹体通常具有相似的晶体/流体比和CO2体积比,显示出原生的特征(图 5c-e)。大多数包裹体在室温(20℃)下呈CO2单一相,降温后出现CO2气相,随后温度升高最终均一至液相,CO2相体积占流体相比例多为60%~80%之间。除此之外,少量锂辉石内可见气液包裹体,大小主要为5~15μm,此类包裹体往往切穿早期富子晶包裹体,并切穿矿物颗粒边界,呈现出次生的特征。

Ⅰ~Ⅱ带内的石英中,除了少量未受后期改造外,多数富子晶包裹体受到后期流体的叠加与改造(图 5f)。因此,选择Ⅰ~Ⅱ带石英内富子晶包裹体存在诸多障碍,本次并未做测试。相比之下,在Ⅲ~Ⅴ带内,石英内可见富CO2流体包裹体成群分布(约占80%~95%),主要呈圆形或椭圆形,呈现出原生的特点,大小一般在20~50μm(图 5g, h)。富CO2包裹体室温(20℃)下呈气态CO2、液态CO2和盐水三相,CO2相体积百分数多在60%~80%之间(图 5h)。除此之外,少量石英内可见气液包裹体,大小主要为5~15μm,此类包裹体主要以不规则形态沿着裂隙分布,呈现出次生的特征。

4.2 激光拉曼分析

本次研究选择308号脉绿柱石、锂辉石、石英内原生特征的流体包裹体进行激光拉曼分析(图 6)。结合激光拉曼鉴定和岩相学观察的结果,表 2列出了绿柱石、锂辉石和石英中,流体包裹体内流体相和固体相所占体积百分比。

图 6 甲基卡308号伟晶岩脉绿柱石(a、b)、锂辉石(c)和石英(d)代表性流体包裹体拉曼分析 (a)绿柱石富子晶包裹体内发育CO2、石英;(b)绿柱石富子晶包裹体内发育碳酸氢钠、方石英和CO2;(c)锂辉石富子晶包裹体内发育CO2、方解石、锂辉石和扎布耶石;(d)石英富CO2包裹体 Fig. 6 Laser Raman spectra of fluid inclusions hosted in beryl (a, b), spodumene (c) and quartz (d) from the Jiajika No.308 pegmatite (a) CO2 and quartz are hosted in fluid inclusions of beryl; (b) nahcolite, cristobalite and CO2 are hosted in fluid inclusions of beryl; (c) CO2, calcite, spodumene and zabuyelite are hosted in fluid inclusions of spodumene; (d) CO2 is hosted in fluid inclusions of quartz

表 2 甲基卡308号脉富子晶包裹体流体相和固体相所占体积百分比(vol%) Table 2 Liquid-solid volume ratio (vol%) of crystal-rich inclusions from No.308 pegmatite, Jiajika

拉曼光谱分析表明,Ⅲ带内绿柱石富子晶包裹体的流体主要为H2O-CO2-NaCl体系,流体相约占38%~50%;固相总体占50%~62%,主要为方石英(2%~5%;拉曼位移为418cm-1,1075cm-1)、石英(25%~35%;拉曼位移为465cm-1)(图 6a, b)、碳酸氢钠(5%;拉曼位移为1049cm-1)、方解石(0%~5%;拉曼位移为1085cm-1)。除此之外,绿柱石富子晶包裹体内还存在一定的硅酸盐矿物(10%~17%),根据前人扫描电镜分析结果,可以判断为富铝硅酸盐(熊欣等,2019)。

在锂辉石富子晶流体包裹体中,流体属于H2O-CO2-NaCl体系。在Ⅳ和Ⅴ带,富子晶包裹体的各相比例有所不同。Ⅳ带锂辉石中,富子晶包裹体流体相约占45%~55%;子晶占45%~55%,主要为方石英(5%~10%)、方解石(0%~5%)、扎布耶石(12%~20%;拉曼位移97cm-1,1091cm-1)和锂辉石(10%~15%;拉曼位移为707cm-1)(图 6c)。除此之外,Ⅳ带锂辉石的富子晶包裹体内还存在一定的富铝硅酸盐(约10%;Li and Chou, 2016; 熊欣等,2019; Ding et al., 2020)。在Ⅴ带锂辉石中,富子晶包裹体流体相约占75%~85%;子晶占15%~25%,主要为方石英(5%~10%)、方解石(5%)、扎布耶石(5%~10%)。Ⅲ~Ⅴ带石英富二氧化碳包裹体均属于H2O-CO2-NaCl体系(图 6d)。

4.3 均一温度与盐度

在Ⅲ带的绿柱石中,富子晶包裹体CO2初熔温度范围为-56.0~-58.1℃,CO2笼合物熔化温度在5.3~9.6℃之间,CO2部分均一到液相温度范围为18.9~30.1℃,流体相均一温度范围约在304~412℃内。继续加热,方石英和碳酸氢钠在400~450℃溶解,接着方解石(450~550℃)溶解,由于大部分硅酸盐子矿物达到600℃仍旧不溶解(Linkam热台上限),本次仅获得39个完全均一温度,范围在492~592℃左右,峰值为540℃(表 3图 7a)。通过计算,得出包裹体盐度变化范围为0.8%~8.5% NaCleqv(表 3图 7b),峰值为4% NaCleqv,CO2的密度接近0.80g/cm3(Sterner and Bodnar, 1991)。在Ⅳ和Ⅴ带的锂辉石中,富子晶包裹体CO2初熔温度范围为-57.0~-60.0℃,CO2笼合物熔化温度在5.3~9.2℃之间,CO2部分均一到液相温度范围为16.5~29.0℃,气液相部分均一温度范围为312~412℃。溶解子晶时,首先溶解的是方石英和石英(380~450℃),接着溶解的是碳酸锂和方解石均一至液相(460~530℃),大部分硅酸盐和锂辉石子晶加热至600℃不溶解(仪器上限),矿物先后溶解顺序与前人报道范围结果一致(Li and Chou, 2017; Mulja and William-Jones, 2018)。由于仪器上限为600℃,本次Ⅳ带和Ⅴ带锂辉石分别仅获得22和26个流体包裹体完全均一温度,范围分别在494~565℃和482~533℃左右,峰值分别为520℃和490℃(表 3图 7c)。通过计算,得出包裹体的盐度变化范围在1.8%~8.5% NaCleqv和1.7%~7.9% NaCleqv之间,峰值为6% NaCleqv(表 3图 7d),CO2的密度接近0.80g/cm3(Sterner and Bodnar, 1991)。

表 3 甲基卡308号伟晶岩脉内流体包裹体显微测温结果 Table 3 Microthermometric data of fluid inclusions from No. 308 pegmatite, Jiajika

图 7 甲基卡308号伟晶岩Ⅲ~Ⅴ带流体包裹体均一温度和盐度直方图 (a、b) Ⅲ带内绿柱石的富子晶流体包裹体和石英的H2O-CO2-NaCl流体包裹体;(c、d) Ⅳ带内锂辉石的富子晶流体包裹体和石英的H2O-CO2-NaCl流体包裹体;(e、f) Ⅴ带内锂辉石的富子晶流体包裹体和石英的H2O-CO2-NaCl流体包裹体 Fig. 7 Histogram of homogenization temperature and salinity of fluid inclusions in pegmatite No.308, Jiajika (a, b) crystal-rich inclusions of beryl and H2O-CO2-NaCl inclusions of quartz in zone Ⅲ; (c, d) crystal-rich fluid inclusions of spodumene and H2O-CO2-NaCl inclusions of quartz in zone Ⅳ; (e, f) crystal-rich fluid inclusions of spodumene and H2O-CO2-NaCl inclusions of quartz in zone Ⅴ

在Ⅲ~Ⅴ带石英中,各带的测温数据未见明显变化,H2O-CO2-NaCl流体包裹体CO2初熔温度为-57.0~-61.0℃,CO2笼合物熔化温度在2.0~8.0℃之间,CO2部分均一到液相温度范围为15.2~29.5℃。本次测试获得152个完全均一温度,均一至液相温度为291~365℃,峰值为320℃(表 3图 7e),盐度范围为3.9%~13.2% NaCleqv,峰值为8% NaCleqv(表 3图 7f)。

4.4 群体包裹体成分

在单个包裹体测温和激光拉曼测试的基础上,本次选择28件样品开展群体包裹体分析。图 8显示了绿柱石、锂辉石、石英的群体包裹体测试结果,具体数据见表 4表 5。由于使用Na2CO3溶液作为阴离子分析的流动相,离子CO32-和HCO3-未分析。由于离子色谱分析样与上述气相色谱分析样均为同一样的缩分样,气相色谱分析可以获得单位质量样品中所爆裂包裹体的水量(×10-6),从而可以换算出单位体积包裹体溶液中的离子浓度(×10-6)。实验结果表明,群体包裹体的气液相比与岩相学估测的范围相近(CO2>H2O,表 4),表明了该数据可以指示成岩成矿流体的总体演化趋势。群体包裹体所测离子总浓度为2.9%~7.7%,主要集中在6.0%(表 5),这与单个包裹体盐度峰值6.0% NaCleqv保持一致,也表明了该数据可以代表原生流体成分的演化趋势(Vasyukova and William-Jones, 2018, 2019)。

图 8 甲基卡308号钠长石型绿柱石、锂辉石和石英流体包裹体Na(a)、K(b)、F(c)、Cl(d)、SO42-(e)和CO2/H2O(f)成分变化图 Fig. 8 Composition variation diagrams of fluid inclusions hosted in beryl, spodumene and quartz in No.308 pegmatite, Jiajika

表 4 甲基卡矿区伟晶岩脉中流体包裹体成分气相色谱分析结果(mol/mol) Table 4 GC bulk analyses of fluid inclusions from the Jiajika deposit (mol/mol)

表 5 甲基卡矿区流体包裹体体液相成分离子色谱分析结果(×10-6) Table 5 IC bulk analyses of fluid inclusions from Jiajika deposit (×10-6)

在Ⅲ带绿柱石中,流体包裹体流体相成分主要由H2O(18.0~25.0mol/mol)和CO2(56.0~65.0mol/mol)组成,CO2/H2O比值为2.2~3.2。阳离子主要为Na+(8684×10-6~16261×10-6)、K+(6015×10-6~9605×10-6)和Ca2+(5095×10-6~25794×10-6)组成,Na/K和Na/Ca比值分别为1.5~4.3和0.6~5.6。阴离子主要为F-(9412×10-6~26811×10-6)、Cl-(1738×10-6~6830 ×10-6)和SO42-(2033×10-6~4921×10-6),F-/Cl-和Cl-/SO42-的比值分别为2.7~27.0和1.1~4.7。

在Ⅳ和Ⅴ带锂辉石中,富子晶流体包裹体流体相成分主要由H2O(26.0~51.8mol/mol)、CO2(47.3~66.4mol/mol)组成,CO2/H2O比值为0.9~2.1。阳离子主要为Na+(10036×10-6~19854×10-6)、K+(2132×10-6~3674×10-6)和Ca2+(6552×10-6~17043×10-6)组成,Na/K和Na/Ca比值分别为5.0~12.2和1.5~4.0。阴离子主要为F-(4367×10-6~8549 ×10-6)、Cl-(2507×10-6~8438×10-6)和SO42-(2541×10-6~6420×10-6),F-/Cl-和Cl/SO42-的比值分别为1.6~5.6和1.4~4.8。

在Ⅲ~Ⅴ带石英中,各带数据未见明显变化,包裹体气相成分主要由H2O(15.0~40.0mol/mol)和CO2(40.0~69.0mol/mol)组成,CO2/H2O比值为1.1~3.8;阳离子主要为Na+(5410×10-6~11679×10-6)和K+(3741×10-6~10901×10-6)组成,Na/K比值为1.3~4.3。阴离子主要为Cl-(3046×10-6~17101×10-6)和SO42-(3477×10-6~8818×10-6)组成,仅存在少量F-(183×10-6~4042×10-6),F-/Cl-和Cl/SO42-的比值分别为0.1~0.9和1.9~7.0。

5 讨论 5.1 308号脉伟晶岩成矿流体的演化阶段

如前文所述,308号脉中绿柱石和锂辉石内均发育富子晶包裹体。在同一包裹体组合内,这些富子晶包裹体的固/流体体积比相近、子晶矿物组成一致(表 2),完全均一温度主要集中在500~600℃之间(表 3),呈现出原生流体包裹体的特征(Roedder,1984)。而且,固体相扎布耶石、方石英等晶体颗粒外形规则、自形,且在伟晶岩脉中未与寄主矿物共生,锂绿泥石具有明显的拉曼信号(Ding et al., 2020)。Anderson(2019)曾通过锂辉石与晚期富CO2流体反应的机理解释碳酸盐子矿物的形成,但该反应无法解释绿柱石中富子晶包裹体的形成机制。而且,甲基卡二云母花岗岩的熔体包裹体含有石墨(Li and Chou, 2015; 熊欣等,2019),308号脉富子晶包裹体均发育碳酸盐子晶(如NaHCO3、CaCO3和Li2CO3等)的特征,体现了花岗岩浆与伟晶岩熔(流)体的继承关系。综上,此类包裹体的子晶为流体捕获后结晶的产物,而非形成于晚期低温反应中(Li and Chou, 2016, 2017Ding et al., 2020)。此外,308号脉绿柱石和锂辉石与世界典型伟晶岩早期结晶阶段的矿物相比,具有组成和均一温度相似的富子晶包裹体(London, 1986, 2008Mulja and Williams-Jones, 2018Fei et al., 2021)。以上特征充分说明,富子晶包裹体代表了伟晶岩阶段的原始组分,是伟晶岩结晶阶段的产物(Fuertes-Fuente et al., 2000; Sirbescu and Nabelek, 2003; Li and Chou, 2016, 2017; Mulja and Williams-Jones, 2018)。

绿柱石和锂辉石分别形成于308号伟晶岩脉的外带(Ⅰ~Ⅲ带)和内带(Ⅳ~Ⅴ带),即锂元素沉淀晚于铍。甲基卡308号脉从外带到内带,富晶体包裹体(Ⅲ带绿柱石→Ⅳ带锂辉石→Ⅴ带锂辉石),呈现出完全均一温度逐渐降低(峰值分别为540℃、520℃和490℃)的特征,即伟晶岩结晶温度逐渐降低(富子晶包裹体属于高密度包裹体,其均一温度可近似于捕获温度)。而且,富子晶包裹体呈现出固相占比(分别为50%~62%、45%~55%和15%~25%),特别是硅酸盐含量降低(分别为10%~17%、10%和0%),而流体比例相对增加的特征。这些特征表明,由外到内伟晶岩的结晶温度减低,结晶介质中的硅酸盐含量降低,即外带绿柱石和内带锂辉石分别形成于伟晶岩的早期和晚期结晶阶段。

Ⅲ~Ⅴ带内,与绿柱石、锂辉石共生的石英内均发育H2O-CO2-NaCl包裹体,指示出伟晶岩结晶介质由富子晶包裹体代表的高密度硅酸盐水溶液或富水熔体,逐渐演化为高温流体。而且,H2O-CO2-NaCl包裹体的均一温度与绿柱石、锂辉石富子晶包裹体的流体相均一温度均在300~400℃之间,流体组成基本相近,主要为CO2和H2O。根据前人的解释,推测富CO2包裹体为伟晶岩熔/流体中CO2达到饱和后分异的产物(Thomas et al., 2000, 2005, 2006; Mulja and William-Jones, 2018),代表锂辉石结晶后的残余流体(李建康等,2007李胜虎等,2015Li and Chou, 2017)。这与308号脉的矿物学特征一致,即从伟晶岩结晶阶段至晚期高温热液阶段,云母和电气石等矿物的化学成分逐渐演化、不存在明显突变特征的现象(王臻等,2021)。

综合上述分析,甲基卡308号伟晶岩成矿流体从早期到晚期,富子晶包裹体至最终到石英内的富CO2流体包裹体发生了完整而连续的伟晶岩演化过程。结合伟晶岩岩相学特征,伟晶岩矿物的形成可以大致划分三个阶段:(1)伟晶岩早期结晶阶段,主要形成伟晶岩外部带的造岩矿物如微斜长石、绿柱石等;(2)伟晶岩晚期结晶阶段,主要形成伟晶岩内部带的造矿物如锂辉石和钠长石等;(3)晚期热液阶段,主要为热液石英、次生钠长石和次生白云母为主。

5.2 308号脉形成的温压条件

根据包裹体测温结果,Ⅲ带绿柱石、Ⅳ带锂辉石和Ⅴ带锂辉石由于包裹体类型相同,均对应于流体相盐度集中在6% NaCleqv左右,流体相中CO2的充填度约为60vol%~80vol%,CO2的密度约为0.8g/cm3的H2O-CO2-NaCl体系等容线。结合LiAlSiO4-SiO2-H2O相图(London, 1984),Ⅲ带绿柱石、Ⅳ带锂辉石和Ⅴ带锂辉石的均一温度(近似于捕获温度,分别为492~592℃、494~565℃和482~533℃)可以限定富子晶包裹体捕获的最低压力范围为310~510MPa,压力均值为400MPa(图 9)。

图 9 甲基卡308号伟晶岩脉形成的物理化学条件(底图据London et al., 1986; Li and Chou, 2016) 图中灰色区域分别代表了Ⅲ带绿柱石富子晶包裹体、Ⅳ带锂辉石富子晶包裹体、Ⅴ带锂辉石富子晶包裹体以及Ⅲ~Ⅴ带石英H2O-CO2-NaCl流体包裹体的捕获条件.虚线是盐度为6% NaCleqv、CO2填充度为60vol%~80vol%、密度为0.80g/cm3的H2O-NaCl-CO2等容线. Pet-透锂长石;Ecr-锂霞石 Fig. 9 Physiochemical conditions of formation of No.308 pegmatite, Jiajika (modified after London et al., 1986; Li and Chou, 2016) The gray area in the figure represents the capture conditions of different fluids, including crystal-rich in beryl of zone Ⅲ, crystal-rich in spodumene of zone Ⅳ, crystal-rich in spodumene of zone Ⅴ and CO2-NaCl-H2O fluid inclusions in quartz of zone Ⅲ~Ⅴ respectively. The dotted line is the CO2-NaCl-H2O isochore with salinity of 6% NaCleqv, CO2 filling degree of 60vol%~80vol%, and density of 0.80g/cm3. Pet-petalite; Ecr-eucryptite

根据显微测温结果,石英CO2流体包裹体对应于密度为0.8g/cm3、CO2的充填度约为60vol%~80vol%、盐度为6% NaCleqv的H2O-CO2-NaCl等容线(Brown and Lamb, 1989)。由于石英富CO2流体为绿柱石和锂辉石富子晶熔(流)体连续演化的产物,可以限定石英富CO2流体包裹体的捕获温度为绿柱石和锂辉石富子晶包裹体的子晶开始溶解的温度,即350~450℃,将此等容线与“锂辉石+石英/透锂长石+石英”边界(London, 1984, 1986)相交,可以得到石英H2O-CO2-NaCl流体捕获压力的下限为220~380MPa(图 9)。

甲基卡308号绿柱石+锂辉石过渡型伟晶岩脉与134号锂辉石型伟晶岩脉的压力估算结果相当,均为400MPa(Li and Chou, 2016)。根据LiAlSiO4-SiO2-H2O相图,甲基卡锂辉石型矿床形成压力高于加拿大Tanco透锂长石型矿床(100~200MPa; London, 1984),对应形成深度大于13km,指示甲基卡形成于相对封闭体系(Jahns and Burnham, 1969)。同时,甲基卡成矿熔(流)体呈现出连续分异演化的特征,其晚期流体多为伟晶岩熔体自身演化形成,无明显的外界熔体或流体注入,进一步指示了甲基卡伟晶岩脉形成于封闭体系。这一观点得到了甲基卡C-H-O同位素和矿物学证据的支持,即甲基卡C-H-O同位素范围集中为岩浆来源、无后期大气降水的加入(李建康等,2007),308号伟晶岩脉内原生白云母和电气石化学成分演化规律、无明显的外界物质交换(王臻等,2021)。

5.3 成矿流体演化对锂铍成矿的制约

甲基卡绿柱石、锂辉石和石英内捕获原生流体包裹体占比高达80%以上,结合逐步爆裂的预处理方法,可基本消除次生流体包裹体的干扰,获得近似于原生包裹体的成分(Vasyukova and William-Jones, 2018, 2019Zheng and Liu, 2019; Chi et al., 2021; Zheng et al., 2021)。本次实验所获的气液相比与岩相学估测的范围相近(CO2>H2O),所测离子总浓度(2.9%~7.7%)与单个包裹体盐度峰值(6.0% NaCleqv)保持一致,表明了该数据可以代表原生流体成分的演化趋势(Vasyukova and William-Jones, 2018, 2019)。

由于花岗伟晶岩型锂铍矿化与微斜长石-钠长石的结晶演化关系密切,熔(流)体包裹体碱金属含量(K和Na)可作为判断成矿熔(流)体结晶分异与演化程度的重要指标(Yardley and Bodnar, 2014; Hulsbosch and Muchez, 2020)。由伟晶岩结晶的早期至晚期阶段,甲基卡308号伟晶岩脉成矿熔(流)体呈现出Na/K比值升高的特征(分别为1.5~4.3和5.0~12.2;图 8a),指示由伟晶岩早期微斜长石结晶为主的演化至晚期钠长石结晶为主的结晶分异趋势。相比之下,由伟晶岩晚期至热液阶段,流体包裹体成分呈现出Na含量降低而K含量相对升高的特征(Na/K比值分别为5.0~12.2和1.3~4.3;图 8a),指示了热液阶段钠长石和锂辉石发生白云母化的蚀变交代过程。

挥发分组分(如F、P、B等)往往与锂铍等稀有元素形成络合物,影响伟晶岩熔(流)体内锂铍的溶解度,从而控制成矿元素的迁移和富集(Candela and Holland, 1984; 刘英俊,1984Keppler and Wyllie, 1991; Linnen, 1998; 牟保垒,1999Thomas et al., 2006; London, 2015)。由伟晶岩早期至热液阶段,308号脉伟晶岩熔(流)体包裹体成分呈现出F-含量急剧降低(分别为9412×10-6~26811×10-6、4367×10-6~8549×10-6和183×10-6~4042×10-6图 8c)和F/Cl比值降低的特征(分别为2.7~27.0、1.6~5.6和0.1~0.9;图 8d),指示成矿熔(流)体由伟晶岩早期阶段的富氟、贫氯特征转变为热液阶段的富氯、贫氟的流体性质。氟含量的降低、氯含量的增加主要是受流体与矿物间元素分馏控制的结果,即F在绿柱石和锂辉石结晶阶段被消耗,而Cl-和SO42-被保留进入热液流体(图 8c-e; Keppler and Wyllie, 1991; Webster et al., 1997; Linnen et al., 1998; Hulsbosch and Muchez, 2020)。308号脉内早期存在大量氟磷灰石等富氟矿物,晚期未发现低温含氟矿物如黄玉、萤石和原生锂云母等(王臻等,2021),进一步证明了成矿熔(流)体早期富氟、晚期贫氟的演化趋势。

308号脉早期熔(流)体富集挥发组分(如F、P、B等),可以与锂铍等稀有元素形成络合物发生共同迁移,如LiF、LiBeF3、K(BeF4)、Na(BeF4)、K2(BeCO3)2等(Candela and Holland, 1984; 刘英俊,1984Keppler and Wyllie, 1991; Linnen, 1998牟保垒,1999),于同一成矿体系内发生锂铍矿化。然而,Li和Be的地球化学行为存在一定的差异性,即绿柱石的溶解度受到温度的主要控制,在伟晶岩早期阶段侵入围岩发生快速冷却时富集(London, 2014, 2015);而锂的硅酸盐(锂辉石)在早期高温、Li过饱和的伟晶岩熔体内滞后至伟晶岩晚期结晶阶段沉淀(Linnen et al., 2012; Maneta and Baker, 2014; Maneta et al., 2015)。因此,在甲基卡矿床内,Be和Li先后矿化于伟晶岩的早期结构带(Ⅰ~Ⅲ带)和晚期结构带(Ⅳ~Ⅴ带)。

锂辉石与白云母的结晶存在竞争关系,在碱性环境内往往晶出锂辉石(pH>6),而酸性环境则形成白云母(Montoya and Hemley, 1975; London and Burt, 1982Charoy et al., 2001刘永超,2021),因此,pH值为锂的沉淀与富集的重要控制因素之一。甲基卡绿柱石和锂辉石流体包裹体内富含HCO3-和碳酸盐子矿物(碳酸氢钠、扎布耶石、方解石),指示了伟晶岩锂铍成矿处于弱碱性的熔(流)体环境。相比之下,热液流体包裹体内CO2/H2O比值显著升高,CO2相可占包裹体体积高达80%,指示了晚期热液阶段流体转变为弱酸性环境。弱酸性、相对贫F富Cl的流体环境,导致Li仅发生微溶不易蚀变形成锂云母等矿物,即有利于锂辉石的保存(Iveson et al., 2019),这解释了308号脉锂辉石蚀变部分的体积仅占2%~10%的矿物学特征(王臻等,2021)。

6 结论

(1) 甲基卡308号伟晶岩脉内绿柱石、锂辉石和石英内熔(流)体包裹体记录了伟晶岩的结晶分异与演化过程,伟晶岩的形成经历了较早结晶阶段、较晚结晶阶段和热液等三个阶段。

(2) 甲基卡成矿熔、流体由伟晶岩结晶早阶段的高温(492~592℃)、低盐度(0.8%~8.5% NaCleqv)、弱碱性、富氟、硅酸盐体系,向伟晶岩结晶晚阶段的高温(482~565℃)、低盐度(1.6%~8.5%NaCleqv)、弱碱性硅酸盐水体系演化,直至演化至热液阶段的中低温(291~365℃)、中低盐度(3.9%~13.2%NaCleqv)、弱酸性、富氯H2O-CO2-NaCl盐水体系。

(3) 相对封闭的成岩成矿体系(如,形成深度超过13km)、富挥发组分(如Li、F、B、P)和弱碱性环境等条件,有利于铍锂元素在稳定的高温、高压范围内迁移与结晶。晚阶段贫氟、富氯、弱酸性的低温热液环境有利于锂辉石的保存。

致谢      感谢中国地质科学院矿产资源研究所陈伟十工程师、翁梅茂硕士和陈一秀硕士在冷热台显微测温和群体包裹体实验过程给予的帮助;感谢在包裹体成分数据分析与处理的过程中,杨丹研究员提出的宝贵意见;同时,感谢审稿人的认真审阅,提出了宝贵的修改意见。

参考文献
Anderson AJ, Clark AH and Gray S. 2001. The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: Implications for the internal evolution of rare-element granitic pegmatites. The Canadian Mineralogist, 39(6): 1513-1527 DOI:10.2113/gscanmin.39.6.1513
Anderson AJ. 2013. Are silicate-rich inclusions in spodumene crystallized aliquots of boundary layer melt?. Geofluids, 13(4): 460-466 DOI:10.1111/gfl.12041
Anderson AJ. 2019. Microthermometric behavior of crystal-rich inclusions in spodumene under confining pressure. The Canadian Mineralogist, 57(6): 853-865 DOI:10.3749/canmin.1900013
Bodnar RJ. 1983. A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-T-X properties of inclusion fluids. Economic Geology, 78(3): 535-542 DOI:10.2113/gsecongeo.78.3.535
Brown PE and Lamb WM. 1989. P-V-T properties of fluids in the system H2O ±CO2 ±NaCl: New graphical presentations and implications for fluid inclusion studies. Geochimica et Cosmochimica Acta, 53(6): 1209-1221 DOI:10.1016/0016-7037(89)90057-4
Candela PA and Holland HD. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48(2): 373-380 DOI:10.1016/0016-7037(84)90257-6
Charoy B, Noronha F and Lima A. 2001. Spodumene-petalite-eucryptite: Mutual relationships and pattern of alteration in Li-rich aplite-pegmatite dykes from northern Portugal. The Canadian Mineralogist, 39(3): 729-746 DOI:10.2113/gscanmin.39.3.729
Chi GX, Diamond LW, Lu HZ, Lai JQ and Chu HX. 2021. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals, 11(1): 7
Collins PLF. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Economic Geology, 74(6): 1435-1444 DOI:10.2113/gsecongeo.74.6.1435
Ding X, Li JK, Chou IM, Chen ZY and Li SH. 2020. Raman spectroscopic identification of cookeite in the crystal-rich inclusions in spodumene from the Jiajika lithium pegmatite deposit, China, and its geological implications. European Journal of Mineralogy, 32(1): 67-75 DOI:10.5194/ejm-32-67-2020
Fei GC, Menuge JF, Chen CS, Yang YL, Deng Y, Li YG and Zheng L. 2021. Evolution of pegmatite ore-forming fluid: The Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt, southwestern Sichuan Province, China. Ore Geology Reviews, 139: 104441 DOI:10.1016/j.oregeorev.2021.104441
Fu XF, Yuan LP, Wang DH, Hou LW, Pan M, Hao XF, Liang B and Tang Y. 2015. Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits, 34(6): 1172-1186 (in Chinese with English abstract)
Fuertes-Fuente M, Martin-Izard A, Boiron MC and Vinuela JM. 2000. P-T path and fluid evolution in the Franqueira granitic pegmatite, Central Galicia, Northwestern Spain. The Canadian Mineralogist, 38(5): 1163-1175 DOI:10.2113/gscanmin.38.5.1163
Gunn G. 2014. Critical Metals Handbook. Hoboken: American Geophysical Union, 454
Halfpenny A, Prior D J and Wheeler J. 2006. Analysis of dynamic recrystallization and nucleation in a quartzite mylonite. Tectonophysics, 427(1-4): 3-14 DOI:10.1016/j.tecto.2006.05.016
Hao XF, Fu XF, Liang B, Yuan LP, Pan M and Tang Y. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits, 34(6): 1199-1208 (in Chinese with English abstract)
Hulsbosch N and Muchez P. 2020. Tracing fluid saturation during pegmatite differentiation by studying the fluid inclusion evolution and multiphase cassiterite mineralisation of the Gatumba pegmatite dyke system (NW Rwanda). Lithos, 354-355: 105285 DOI:10.1016/j.lithos.2019.105285
Iveson AA, Webster JD, Rowe MC and Neill OK. 2019. Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18-41 DOI:10.1016/j.chemgeo.2019.03.029
Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis: l, A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864 DOI:10.2113/gsecongeo.64.8.843
Keppler H and Wyllie PJ. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109(2): 139-150 DOI:10.1007/BF00306474
Li JK, Wang DH, Zhang DH and Fu XF. 2007. Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China. Beijing: Atomic Energy Press, 1-182 (in Chinese)
Li JK, Liu XF and Wang DH. 2014. The metallogenetic regularity of lithium deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract)
Li JK and Chou IM. 2015. Hydrogen in silicate melt inclusions in quartz from granite detected with Raman spectroscopy. Journal of Raman Spectroscopy, 46(10): 983-986 DOI:10.1002/jrs.4644
Li JK and Chou IM. 2016. An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China. Journal of Geochemical Exploration, 171: 29-36 DOI:10.1016/j.gexplo.2015.10.012
Li JK and Chou IM. 2017. Homogenization experiments of crystal-rich inclusions in spodumene from Jiajika lithium deposit, China, under elevated external pressures in a hydrothermal diamond-anvil cell. Geofluids, 2017: 9252913
Li P, Li JK, Chou IM, Wang DH and Xiong X. 2019. Mineralization epochs of granitic rare-metal pegmatite deposits in the Songpan-Ganzê orogenic belt and their implications for orogeny. Minerals, 9(5): 280 DOI:10.3390/min9050280
Li SH, Li JK and Zhang DH. 2015. Application of hydrothermal diamond-anvil cell in fluid inclusions: An example from the Jiajika pegmatite deposit in western Sichuan, China. Acta Geologica Sinica, 89(4): 747-754 (in Chinese with English abstract)
Liang B, Fu XF, Tang Y, Pan M, Yuan LP and Hao XF. 2016. Granite geochemical characteristics in Jiajika rare metal deposit, western Sichuan. Journal of Guilin University of Technology, 36(1): 42-49 (in Chinese with English abstract)
Linnen RL. 1998. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: Constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93(7): 1013-1025 DOI:10.2113/gsecongeo.93.7.1013
Linnen RL, Van Lichtervelde M and Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275-280 DOI:10.2113/gselements.8.4.275
Liu SB, Yang YQ, Wang DH, Dai HZ, Ma SC, Liu LJ and Wang CH. 2019. Discovery and significance of granite type lithium industrial orebody in Jiajika orefield, Sichuan Province. Acta Geologica Sinica, 93(6): 1309-1320 (in Chinese with English abstract)
Liu YC. 2021. The role of carbonate/CO2 in rare metal mineralization in peraluminous granitic systems. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-110 (in Chinese with English abstract)
Liu YJ. 1984. Element Geochemistry. Beijing: Science Press, 1-200 (in Chinese)
London D and Burt DM. 1982. Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the white Picacho district, Arizona. American Mineralogist, 67(1-2): 97-113 DOI:10.1103/PhysRevB.41.8860
London D. 1984. Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: A petrogenetic grid for lithiumx-rich pegmatites. American Mineralogist, 69(11-12): 995-1004
London D. 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71(3-4): 376-395
London D. 2008. Pegmatites. Canadian Mineralogist, Special Publication 10, Québec: Mineralogical Association of Canada
London D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184-187: 74-104 DOI:10.1016/j.lithos.2013.10.025
London D. 2015. Reading pegmatites: Part 1, What beryl says. Rocks & Minerals, 90(2): 138-153
Maneta V and Baker DR. 2014. Exploring the effect of lithium on pegmatitic textures: An experimental study. American Mineralogist, 99(7): 1383-1403 DOI:10.2138/am.2014.4556
Maneta V, Baker DR and Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170(1): 4 DOI:10.1007/s00410-015-1158-z
Montoya JW and Hemley JJ. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70(3): 577-583 DOI:10.2113/gsecongeo.70.3.577
Mou BL. 1999. Element Geochemistry. Beijing: Peking University Press, 1-200 (in Chinese)
Mulja T and Williams-Jones AE. 2018. The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada. Chemical Geology, 493: 281-297 DOI:10.1016/j.chemgeo.2018.06.004
Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy, 12: 1-644 DOI:10.2465/minerj.12.1
Sirbescu MLC and Nabelek PI. 2003. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota: Evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 67(13): 2443-2465 DOI:10.1016/S0016-7037(02)01408-4
Sterner SM and Bodnar RJ. 1991. Synthetic fluid inclusions. X: Experimental determination of P-V-T-X properties in the CO2-H2O system to 6kb and 700℃. American Journal of Science, 291(1): 1-54 DOI:10.2475/ajs.291.1.1
Thomas R, Webster JD and Heinrich W. 2000. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401 DOI:10.1007/s004100000120
Thomas R, Förster HJ, Rickers K and Webster JD. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, 148(5): 582-601 DOI:10.1007/s00410-004-0624-9
Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster HJ, Heinrich W and Davidson P. 2006. The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals. Lithos, 91(1-4): 137-149 DOI:10.1016/j.lithos.2006.03.013
Thomas R and Davidson P. 2016. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state: Consequences for the formation of pegmatites and ore deposits. Ore Geology Reviews, 72: 1088-1101 DOI:10.1016/j.oregeorev.2015.10.004
USGS-United States Geological Survey. 2018. Mineral commodity summaries. U.S. Geological Survey, 200
Vasyukova OV and Williams-Jones AE. 2018. Direct measurement of metal concentrations in fluid inclusions, a tale of hydrothermal alteration and REE ore formation from Strange Lake, Canada. Chemical Geology, 483: 385-396 DOI:10.1016/j.chemgeo.2018.03.003
Vasyukova OV and Williams-Jones AE. 2019. Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: Evidence from Strange Lake. Chemical Geology, 505: 86-89 DOI:10.1016/j.chemgeo.2018.12.023
Wang DH and Fu XF. 2013. Breakthrough of lithium prospecting on the periphery of Jiajika, Sichuan. Rock and Mineral Analysis, 32(6): 987 (in Chinese)
Wang DH, Wang RJ, Fu XF, Sun Y, Wang CH, Hao XF, Liu LJ, Pan M, Hou JL, Dai JJ, Tian SH and Yu Y. 2016. A discussion on the major problems related to geological investigation and assessment for energy metal resources base: A case study of the Jiajika large lithium mineral resource base. Acta Geoscientica Sinica, 37(4): 471-480 (in Chinese with English abstract)
Wang Z, Chen ZY, Li JK and Chen YC. 2021. Mineralogical characteristics and their constraints on the magmatic-hydrothermal evolution for the Jiajika No.308 pegmatite, western Sichuan, China. Acta Geologica Sinica (in Chinese with English abstract)
Webster JD, Thomas R, Rhede D, Förster HJ and Seltmann R. 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochimica et Cosmochimica Acta, 61(13): 2589-2604 DOI:10.1016/S0016-7037(97)00123-3
Xiong X, Li JK, Wang DH, Liu LJ and Dai HZ. 2019. A study of solid minerals in melt inclusions and fluid inclusions from the Jiajika pegmatite-type lithium deposit. Acta Petrologica et Mineralogica, 38(2): 241-253 (in Chinese with English abstract)
Yang D, Xu WY, Cui YH, Chen WS and Lian Y. 2007. Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography. Rock and Mineral Analysis, 26(6): 451-454 (in Chinese with English abstract)
Yang D and Xu WY. 2014. Ion chromatogram method for the determination of liquid composition of fluid inclusions in several common minerals by using a trace amount of sample. Acta Petrologica et Mineralogica, 33(3): 591-596 (in Chinese with English abstract)
Yang YQ, Wang DH, Liu SB, Liu LJ, Wang CH and Guo WM. 2020. The co-occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province. Acta Geologica Sinica, 94(1): 287-302 (in Chinese with English abstract)
Yardley BWD and Bodnar RJ. 2014. Fluids in the continental crust. Geochemical Perspectives, 3(1): 1-127 DOI:10.7185/geochempersp.3.1
Zheng X and Liu Y. 2019. Mechanisms of element precipitation in carbonatite-related rare-earth element deposits: Evidence from fluid inclusions in the Maoniuping deposit, Sichuan province, southwestern China. Ore Geology Reviews, 107: 218-238 DOI:10.1016/j.oregeorev.2019.02.021
Zheng X, Liu Y and Zhang LS. 2021. The role of sulfate-, alkali-, and halogen-rich fluids in mobilization and mineralization of rare earth elements: Insights from bulk fluid compositions in the Mianning-Dechang carbonatite-related REE belt, southwestern China. Lithos, 386-387: 106008 DOI:10.1016/j.lithos.2021.106008
Zhou QF. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-177 (in Chinese)
付小方, 袁蔺平, 王登红, 侯立玮, 潘蒙, 郝雪峰, 梁斌, 唐屹. 2015. 四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型. 矿床地质, 34(6): 1172-1186.
郝雪峰, 付小方, 梁斌, 袁蔺平, 潘蒙, 唐屹. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义. 矿床地质, 34(6): 1199-1208.
李建康, 王登红, 张德会, 付小方. 2007. 川西伟晶岩型矿床的形成机制及大陆动力学背景. 北京: 原子能出版社, 1-182.
李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283.
李胜虎, 李建康, 张德会. 2015. 热液金刚石压腔在流体包裹体研究中的应用——以川西甲基卡伟晶岩型矿床为例. 地质学报, 89(4): 747-754. DOI:10.3969/j.issn.0001-5717.2015.04.007
刘善宝, 杨岳清, 王登红, 代鸿章, 马圣钞, 刘丽君, 王成辉. 2019. 四川甲基卡矿田花岗岩型锂工业矿体的发现及意义. 地质学报, 93(6): 1309-1320. DOI:10.3969/j.issn.0001-5717.2019.06.011
刘永超. 2021. 过铝质花岗岩类矿床中碳酸盐/CO2对稀有金属成矿的作用. 博士学位论文. 北京: 中国地质科学院研究生院, 1-110
刘英俊. 1984. 元素地球化学. 北京: 科学出版社, 1-200.
牟保磊. 1999. 元素地球化学. 北京: 北京大学出版社, 1-200.
王登红, 付小方. 2013. 四川甲基卡外围锂矿找矿取得突破. 岩矿测试, 32(6): 987. DOI:10.3969/j.issn.0254-5357.2013.06.023
王登红, 王瑞江, 付小方, 孙艳, 王成辉, 郝雪峰, 刘丽君, 潘蒙, 侯江龙, 代晶晶, 田世洪, 于扬. 2016. 对能源金属矿产资源基地调查评价基本问题的探讨——以四川甲基卡大型锂矿基地为例. 地球学报, 37(4): 471-480. DOI:10.3975/cagsb.2016.04.09
王臻, 陈振宇, 李建康, 陈毓川. 2021. 川西甲基卡308号脉的矿物学特征及其岩浆-热液演化示踪. 地质学报.
熊欣, 李建康, 王登红, 刘丽君, 代洪章. 2019. 川西甲基卡花岗伟晶岩型锂矿床中熔体、流体包裹体固相物质研究. 岩石矿物学杂志, 38(2): 241-253. DOI:10.3969/j.issn.1000-6524.2019.02.008
杨丹, 徐文艺, 崔艳合, 陈伟十, 连玉. 2007. 二维气相色谱法测定流体包裹体中气相成分. 岩矿测试, 26(6): 451-454. DOI:10.3969/j.issn.0254-5357.2007.06.005
杨丹, 徐文艺. 2014. 多种矿物流体包裹体中液相阴阳离子的同时测定. 岩石矿物学杂志, 33(3): 591-596. DOI:10.3969/j.issn.1000-6524.2014.03.017
杨岳清, 王登红, 刘善宝, 刘丽君, 王成辉, 郭唯明. 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义. 地质学报, 94(1): 287-302.
周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用. 博士学位论文. 北京: 中国科学院大学, 1-177