岩石学报  2021, Vol. 37 Issue (12): 3673-3686, doi: 10.18654/1000-0569/2021.12.06   PDF    
敦煌北部岩浆-变质杂岩构造环境初步探讨: 对中亚造山带南缘扩展方式的启示
石梦岩1, 程南南1, 侯泉林2, 吴春明2, 闫全人2, 张国成1, 张谦2, 王浩3     
1. 河南理工大学资源环境学院, 焦作 454003;
2. 中国科学院大学地球与行星科学学院, 北京 100049;
3. 中国科学院新疆生态与地理研究所, 乌鲁木齐 830011
摘要: 中亚造山带南缘如何向南扩展,对深入理解增生型造山作用和大陆地壳生长机制以及中亚构造域与特提斯构造域的衔接具有重要科学意义。作为中亚造山带南缘的关键构造单元,敦煌构造带大地构造属性长期备受关注且颇有争议。传统观点认为敦煌构造带是古亚洲洋南侧的前寒武纪稳定大陆地块,以刚性块体的形式参与了中亚造山带南缘的最终拼贴过程。然而,近年来研究认为敦煌构造带卷入了古亚洲洋南部的俯冲增生造山过程,属于中亚造山带南缘的增生系统。显然,这一争议限制了对中亚造山带南缘向南扩展方式及增生造山过程的理解。敦煌北部三危山地区出露一套古生代岩浆-变质杂岩,是解开这一争论的关键。本文综合前人研究基础及新的资料,归纳了这套岩浆-变质杂岩的野外岩石-构造组合、地球化学和年代学等方面特征:该岩浆-变质杂岩整体显示"二元结构"特征,即较老的增生杂岩为基底,弧岩浆岩侵入或不整合覆盖其上;其中岩浆岩属于中钾-高钾钙碱性系列中酸性岩浆岩,富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损高场强元素(HFSE),与典型的弧岩浆岩类似,并且微量元素组成特征反映中酸性岩浆的源区与俯冲沉积物部分熔融有关;岩浆作用大致归为510Ma、460~410Ma和370~360Ma三期。岩浆岩中结晶锆石不一致的εHft)值(既有正值,又有负值)以及继承锆石的存在表明,岩浆源区既有古老地壳物质的加入,也有新生地壳物质的形成。以上这些特征与发育在增生杂岩之上的增生弧十分类似,因此本文提出敦煌北部岩浆-变质杂岩的属性为古生代增生弧,并且该增生弧与其南部的红柳峡俯冲增生杂岩共同勾勒出敦煌构造带自北向南增生弧-增生杂岩的基本构造格架,即敦煌构造带的大地构造属性实为造山带而非稳定地块。结合区域地质背景及敦煌地区与北山地区古生代至早中生代构造-热事件的对应关系,认为敦煌造山带属于中亚造山带中段南缘的增生系统,中亚造山带中段以增生弧-增生杂岩的形式向南扩展至敦煌地区。
关键词: 敦煌造山带    岩浆-变质杂岩    增生弧    中亚造山带    
Preliminary discussion on tectonic setting of the magmatic-metamorphic complex in the northern Dunhuang region: Insight into southward extension style of the southern Central Asian Orogenic Belt
SHI MengYan1, CHENG NanNan1, HOU QuanLin2, WU ChunMing2, YAN QuanRen2, ZHANG GuoCheng1, ZHANG Qian2, WANG Hao3     
1. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China;
2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
Abstract: The southward extension style of the southern Central Asian Orogenic Belt (CAOB) is significant for understanding the process of accretionary orogeny and growth mechanism of continental crust, as well as the connection between the Central Asian tectonic domain and Tethys tectonic domain. As a key tectonic unit located in the southern CAOB, the tectonic attribution of Dunhuang tectonic belt has long been concerned and controversial. Traditionally, the Dunhuang tectonic belt is considered to be a Precambrian stable continental block on the southern side of the Paleo-Asian Ocean (PAO), which participated in the final collage process of the southern margin of the CAOB in the form of rigid plates. However, in recent years, studies have suggested that the Dunhuang tectonic belt is involved in the subduction-orogenic process in the southern PAO, and belongs to the accretionary system of the southern CAOB. This controversy has limited the understanding of the southward expansion mode and accretive orogenic process of the southern margin of the CAOB. The focus of the debate is whether the Dunhuang tectonic belt is a Precambrian block or a Phanerozoic orogenic belt. The Paleozoic magmatic-metamorphic complex in the Sanweishan area is the key to reveal the tectonic attribution of Dunhuang tectonic belt. Integrating the published and new data, this paper sums up the field rock-structure association, geochemistry, and geochronology of the magmatic-metamorphic complex. In the field, the magmatic-metamorphic complex show "dual structure", namely the older accretionary complex as the basement, and the arc magmatic rocks intrude or unconformity overlie on it. The magmatic rocks belong to medium potassium-high potassium calc-alkaline series, enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE), depleted in high field strength elements (HFSE), which resembles the arc magmatic rocks. And the trace elements compositions indicate that the magma sources are perhaps related to partial melting of subducted sediment. The magmatism can be roughly classified into three periods: 510Ma, 460~410Ma, and 370~360Ma. The discordant εHf(t) values (both positive and negative) of crystalline zircons in magmatic rocks and the existence of inherited zircons indicate that both the reworking of ancient crust and juvenile material were added to the magmatic sources. These characteristics are very similar to the accretionary arcs, so we propose that the magmatic-metamorphic complex in the northern Dunhuang region represent a Paleozoic accretionary arc. This accretionary arc and the southside Hongliuxia subduction-accretion complex collectively outline the basic tectonic framework of the Dunhuang orogenic belt. In combination with the relations of tectono-thermal events between Dunhuang and Beishan regions during Paleozoic to Early Mesozoic eras, it is considered that the Dunhuang orogenic belt belongs to the accretionary system of the southern margin of the middle section of CAOB. The middle section of CAOB extends southward to Dunhuang region in the form of accretionary arc-accretionary complex.
Key words: Dunhuang orogenic belt    Magmatic-metamorphic complex    Accretionary arc    Central Asian Orogenic Belt    

造山作用与大陆生长是地球科学领域前沿探索的永恒主题之一(Dewey and Windley, 1981; Şengör and Natal’in, 1996; Shervais, 2006; 肖文交等, 2017)。作为地球表面最大的显生宙增生型造山带,中亚造山带是研究大陆地壳生长和壳-幔相互作用的天然实验室,其形成演化与古亚洲洋的消减闭合关系密切(Şengör et al., 1993; Windley et al., 2007; Xiao et al., 2003, 2015)。中亚造山带南缘如何向南扩展,对深入理解增生型造山作用和大陆地壳生长机制以及中亚构造域与特提斯构造域的衔接具有重要科学意义,是目前地质学界的研究热点(Şengör, 1992; Xiao et al., 2015)。传统观点认为北山造山带是中亚造山带中段南缘(左国朝等, 2003; 李锦轶等, 2006; Xiao et al., 2010)。然而,作为北山造山带南侧的关键构造单元,敦煌构造带的大地构造属性长期备受关注且颇有争议,这一争论限制了对中亚造山带南缘增生造山方式和过程的理解。

由于缺乏精确年代学数据,敦煌构造带长期以来被视为前寒武纪稳定大陆地块,称为“敦煌地块”(黄汲清等, 1980; 李志琛, 1994; 梅华林等, 1997)。随着高精度定年技术的应用,在敦煌地区发现了太古宙和古元古代锆石U-Pb年龄信息。有学者认为敦煌地区2.8~2.7Ga、2.6~2.5Ga及1.91~1.80Ga的构造-热事件,分别与华北克拉通2.8~2.7Ga的陆壳增生、2.5Ga的陆壳增生、1.95~1.80Ga的古元古代造山过程等前寒武纪地质事件相对应,认为“敦煌地块”归属于华北克拉通(Zhang et al., 2012, 2013; 赵燕等, 2015a)。也有学者提出,敦煌地区高级变质岩的年代学特征,显示与塔里木克拉通基底相似的新太古代年龄(2.9~2.6Ga),但与华北克拉通不同的Hf同位素模式年龄谱图,将“敦煌地块”划归于塔里木克拉通(Lu et al., 2008; He et al., 2013; Long et al., 2014)。值得注意的是,无论认为“敦煌地块”归属于哪一克拉通,都将其视为稳定大陆地块参与了古亚洲洋的最终闭合,且中亚造山带南向扩展终止于“敦煌地块”北缘。

然而,有研究表明敦煌地区前寒武纪岩石比例有限,该地区主要出露古生代高压变质岩和岩浆岩(孟繁聪等, 2011; Zhao et al., 2016)。其中,高压变质岩普遍记录了反映造山事件的“顺时针型”变质作用P-T-t演化轨迹(Zong et al., 2012; He et al., 2014; 彭涛等, 2014; Wang et al., 2016, 2017a, b, 2018a, b; 范文寿等, 2018; Zhang et al., 2020),而岩浆岩则普遍显示俯冲带弧岩浆地球化学特征(张志诚等, 2009; 李建锋等, 2010; 王楠等, 2016a, b; Zhao et al., 2017; Gan et al., 2020b, 2021; Shi et al., 2020; Wang et al., 2020a; Zhu et al., 2020)。此外,敦煌地区经历了晚古生代-早中生代构造变形作用(Feng et al., 2018),发育大量冲断层-褶皱和叠瓦状构造,具有造山楔的典型构造组合特征(石梦岩等, 2017)。同时,敦煌南部红柳峡杂岩中卷入了411Ma变质的榴辉岩和原岩时代晚于中泥盆世(389Ma)的海沟浊积岩,表明该地区在古生代可能经历了大洋岩石圈俯冲过程(Wang et al., 2017a; 石梦岩等, 2018)。以上这些古生代-中生代构造-热事件均可与北山造山带南部同时代的岩浆-变质-构造事件相对应。据此,有学者提出“敦煌地块”实际上是古生代俯冲-造山作用的产物,属于中亚造山带南缘的增生系统(Zhao et al., 2016; 石梦岩等, 2017; Wang et al., 2017a),并且根据增生杂岩(南侧)与岩浆弧(北侧)的空间配置关系,认为敦煌造山带的构造极性是自北向南扩展的(即古洋盆自南向北俯冲)(石梦岩等, 2018)。

可见,敦煌构造带大地构造属性仍不明确,是前寒武纪地块还是古生代造山带是近几年的争论焦点,这一争论导致了对中亚造山带南缘向南扩展方式的认识存在分歧(图 1)。本文综合前人研究成果和新获得的资料,探讨敦煌北部三危山地区岩浆-变质杂岩形成的构造背景,试图为解开敦煌构造带大地构造属性之争论提供新的依据。

图 1 中亚造山带中段南缘向南扩展方式的两种不同模式 (a)中亚造山带南向扩展终止于“敦煌地块”北缘的石板山陆缘弧(据Xiao et al., 2010; 贺振宇等, 2014; Tian and Xiao, 2020);(b)中亚造山带以增生弧-增生杂岩的方式向南扩展至敦煌地区(据Zhao et al., 2016; 石梦岩等, 2017; Wang et al., 2017a) Fig. 1 Two different models of southward extension styles of the southern margin of the middle section of CAOB (a) the southward extension of CAOB terminated at the Shibanshan continental margin arc located at the northern margin of the Dunhuang block (after Xiao et al., 2010; He et al., 2014; Tian and Xiao, 2020); (b) CAOB extends southward to Dunhuang region in the form of accretionary arc-accretionary complex (after Zhao et al., 2016; Shi et al., 2017; Wang et al., 2017a)
1 区域地质背景

敦煌地区处于衔接中亚构造域和特提斯构造域的关键构造位置(图 2a, b),北邻北山造山带,西以且末-星星峡断裂为界与塔里木克拉通相隔,南以阿尔金断裂为界与祁连造山带毗邻,东与阿拉善地块相邻。受印度-欧亚板块碰撞远程效应的影响(Cunningham et al., 2016),敦煌地区发育大量新生代EW向至ENE向断层,将该地区岩石露头切割为近ENE-WSW方向带状展布的分散块体,由北向南依次为三危山块体、东巴兔-蘑菇台块体、红柳峡块体,以及西南部的多坝沟-卡拉塔什塔格块体(图 2c)。

图 2 研究区地质简图 (a)中亚地区主要大地构造单元(据Şengör et al., 1993);(b)敦煌构造带构造位置及相邻构造单元(据Lu et al., 2008);(c)敦煌构造带地质简图(据中国地质调查局, 2004) Fig. 2 Geological map of study area (a) major tectonic units in Central Asia (after Şengör et al., 1993); (b) tectonic location and adjacent tectonic units of Dunhuang tectonic belt (after Lu et al., 2008); (c) geological map of Dunhuang tectonic belt

① 中国地质调查局. 2004. 1:2500000中华人民共和国地质图

敦煌地区主要出露一套由变质表壳岩、TTG片麻岩和花岗片麻岩组成的变质杂岩,称为“敦煌杂岩”(甘肃省地质矿产局, 1989; 许敬龙等, 1997; 陆松年, 2002)。其中,TTG片麻岩零星出露于东巴兔和红柳峡一带,被认为是晚太古代时期形成的古老大陆地壳岩石并参与了Columbia超大陆的汇聚(梅华林等, 1997; 赵燕等, 2013, 2015a; Zhang et al., 2013; Zong et al., 2013; Zhao et al., 2015)。花岗片麻岩成岩时代为主要为古元古代,主要分布于三危山地区,被认为与Columbia超大陆的裂解有关(He et al., 2013; Yu et al., 2014; 赵燕和孙勇, 2018; Gan et al., 2020a; et al., 2020)。变质表壳岩主要包括变质沉积岩、变质火山岩、大理岩和少量混合岩等,早期被笼统地划归为前震旦系(甘肃省地质矿产局, 1989)。近年来有学者认为这套变质表壳岩形成于~1.95Ga之后且经历1.83~1.80Ga的变质作用(Wang et al., 2013; Zhao et al., 2019),但也有研究表明,部分变质表壳岩的原岩可能形成于古生代(孟繁聪等, 2011; 刘洋, 2019; 石梦岩等, 2018; 朱涛等, 2018),目前这套变质表壳岩的构造属性和时代仍未确定。

变质表壳岩中裹杂着呈透镜体形式产出的、具有不同变质程度和时代的变质基性岩岩块,其中绝大多数角闪岩、(高压)麻粒岩和榴辉岩等岩块的峰期变质作用时代是早志留世至晚泥盆世(ca.440~365Ma)(孟繁聪等, 2011; Zong et al., 2012; He et al., 2014; Zhao et al., 2016; Wang et al., 2016, 2017a, b, c; 2018a, b),少数角闪岩和麻粒岩等岩块变质时代为古元古代,可能与古元古代造山作用(Columbia超大陆汇聚)有关(Zhang et al., 2012, 2013, 2019, 2021a, b; He et al., 2013; Zong et al., 2013; Wang et al., 2014)。最近,有报道称敦煌地区出露有新元古代(~830Ma)的辉石角闪岩,认为与Rodinia超大陆裂解有关(Wang et al., 2020b)。

除这套变质杂岩,敦煌地区广泛发育古生代-早中生代中酸性侵入岩和火山碎屑岩。其中,早古生代至泥盆纪早期的岩浆岩主要为Ⅰ-型花岗岩类,被认为形成于俯冲带岩浆弧环境(张志诚等, 2009; 李建锋等, 2010; 赵燕等, 2015b; 王楠等, 2016a, b; Zhao et al., 2016, 2017; Wang et al., 2017c, 2020a; Gan et al., 2020b, 2021; Shi et al., 2020; Zhu et al., 2020);泥盆纪晚期至二叠纪早期的岩浆岩具有与埃达克岩类似的地球化学特征,被认为形成于碰撞造山阶段的地壳加厚构造背景(朱涛等, 2014; Bao et al., 2017; Zhao et al., 2017; 黄万堂等, 2018);二叠纪末期至早中生代岩浆岩则被认为主要形成于造山后伸展背景(王玉玺等, 2019; 路鹏飞等, 2019; Feng et al., 2020)。三危山地区还出露有早白垩世(136~100Ma)的辉绿岩墙,被认为与岩石圈减薄和软流圈上涌有关(冯志硕等, 2010),代表敦煌地区最晚一期岩浆作用。此外,“敦煌杂岩”经历了晚古生代-早中生代构造变形作用(Feng et al., 2018),发育大量冲断层-褶皱和叠瓦状逆冲构造(石梦岩等, 2017)。

2 敦煌北部岩浆-变质杂岩构造属性探讨 2.1 三危山地区岩浆-变质杂岩

敦煌北部三危山地区主要出露一套岩浆-变质杂岩,其中岩浆岩主要为钙碱性系列中酸性花岗闪长岩-花岗岩、安山质-英安质-流纹质火山碎屑岩及英安玢岩,形成于510Ma、460~410Ma和370~360Ma等多个期次(张志诚等, 2009; 王楠等, 2016a; 赵燕等, 2015b; Zhao et al., 2017; Gan et al., 2020b, 2021; Shi et al., 2020)。中酸性侵入岩的围岩是一套变质杂岩,由变质沉积岩、变质火山碎屑岩、角闪岩、大理岩和少量混合岩组成,早期观点将其划归为塔里木克拉通的前寒武纪变质基底(甘肃省地质矿产局, 1989)。于海峰等(1998)发现这套变质杂岩普遍含有石墨,认为其具有孔兹岩系特征,原岩可能形成于活动大陆边缘的滨海-浅海环境。孟繁聪等(2011)Zhao et al. (2019)对部分变质沉积岩进行了碎屑锆石定年,分别获得了1500~396Ma和2500~364Ma的年龄,提出部分敦煌群不是前寒武纪变质基底,而是塔里木盆地变质基底之上的新元古代沉积盖层(孟繁聪等, 2011)。此外,变质杂岩中包裹440Ma、410Ma和370Ma变质的角闪岩(孟繁聪等, 2011; Zhao et al., 2016)和390~370Ma变质的石榴单斜辉石岩(Li et al., 2021),记录了“顺时针型”变质作用P-T-t演化轨迹,可能形成于古生代俯冲造山过程(彭涛等, 2014; Li et al., 2021)。

三危山地区的中酸性侵入岩-火山碎屑岩类似于俯冲带典型的钙碱性系列弧岩浆组合(Ringwood, 1974)。同时三危山地区的古生代岩浆活动具有幕式发育的特点以及明显的空间不均一性,这与大洋板块俯冲引发的大型弧岩浆活动具有可对比性(如南美安第斯,de Silva and Gosnold, 2007)。全岩地球化学研究初步表明,三危山地区中酸性侵入岩-火山碎屑岩具有弧岩浆的地球化学特征(张志诚等, 2009; Zhao et al., 2017; Gan et al., 2020b, 2021; Shi et al., 2020)。弧岩浆岩是大洋板块俯冲带深部壳幔相互作用的产物,是俯冲带的重要标志(Lom et al., 2018)。因此,三危山地区岩浆-变质杂岩是解开敦煌地区大地构造属性的关键,但目前其形成的构造环境尚不明确。

2.2 岩浆-变质杂岩形成的构造环境初探

基于已有研究成果及新的资料,认为敦煌北部三危山地区的岩浆-变质杂岩的属性可能是古生代增生弧。

增生弧(accretionary arc)是大洋板片俯冲阶段,发育在增生杂岩之上的岩浆弧,由较老的增生杂岩基底,以及侵入增生杂岩的深成岩和/或不整合覆盖在增生杂岩之上的火山岩构成增生弧的主体(Şengör, 1992; 李继亮, 1992; 李继亮等, 1993),显示典型的“二元结构”(陈艺超等, 2021)。增生弧不是新发现的一种岩浆弧,而是过去没有把它们作为单独的类型给予独立的名称(李继亮等, 1999; 李继亮, 2004)。Parada (1990)讨论南美洲安第斯从早古生代持续增生到新生代的岩浆弧深成作用时,已经关注到这种增生弧岩浆作用。Şengör (1992)最初定义“突厥型造山带”时,认识到这类岩浆弧与陆缘弧和洋内岛弧存在重要区别,即它的基底是时代较老的增生杂岩,而非陆壳或洋壳,从而造成弧岩浆岩在成分及来源上的显著差异。李继亮等(1993)在研究赣南混杂带-岩浆弧时,将这类岩浆弧命名为增生弧。然而,由于“增生型造山带”概念在后期发展过程中逐渐脱离Şengör (1992)最初定义的“突厥型造山带”的含义,导致“增生弧”这一概念的应用与普及受到极大限制,很少有专门文献对其进行研究报道。陈艺超等(2021)系统总结了增生弧基本特征,为识别增生弧、深入理解增生弧岩浆作用及其对增生造山过程的贡献起到重要促进意义。

2.2.1 野外岩石-构造特征

野外产状方面,增生弧具有“二元结构”特征:较老的增生杂岩为基底,弧岩浆岩侵入或不整合覆盖其上(陈艺超等, 2021)。Chen et al. (2017a)对新疆西准噶尔地区北缘萨吾尔增生弧进行了详细解剖。该增生弧的基底是一套古生代增生杂岩,包括呈叠瓦状叠置的复理石连续单元,含枕状熔岩、硅质岩、灰岩岩块的OPS混杂岩单元,以及蛇绿混杂岩单元。而弧岩浆岩主要包括大型岩基(多为Ⅰ型花岗岩-花岗闪长岩,有少量闪长岩-堆晶闪长岩)、岩墙和不整合覆盖在早期增生杂岩之上的中基性火山熔岩。此外,大量不同岩性岩脉的发育及其相互穿切关系,表明增生弧岩浆作用的持续性。值得注意的是,增生弧岩浆作用强烈地改造了早期的增生杂岩,二者之间呈现典型的岩浆穿切-不整合接触关系,而非混杂带中的构造接触关系。

三危山地区的岩浆-变质杂岩野外产状类似于增生弧的典型岩石-构造组合特征。岩浆岩主要包括中酸性侵入岩-火山碎屑岩和英安玢岩岩墙。侵入岩的围岩是一套变质杂岩,由变质砂岩、云母石英片岩、绿片岩(变质火山碎屑岩)、黑云斜长片麻岩、角闪片麻岩和大理岩构成。野外露头中,变质火山碎屑岩强烈变形(图 3a),发育紧闭不对称褶皱。变质沉积岩中包裹角闪岩透镜体(图 3b, c),变质沉积岩绿片岩相变质且强烈面理化,面理围绕构造透镜体弯曲,角闪岩透镜体面理不发育,这种显著差异源于二者能干性的明显不同,也表明二者构造混杂过程中强烈的剪切变形。此外,还可见变质沉积岩中包裹大理岩构造透镜体。部分露头可见发育不完整鲍马序列的浊积岩(图 3d),可能指示了深水重力流沉积的存在。以上岩石-构造组合特征显示了“基质夹岩块”的组构,且基质中包含浊积岩和大量火山碎屑岩,与弧前增生杂岩十分类似。中酸性侵入岩与变质杂岩(增生杂岩)呈侵入接触关系,以岩株和岩脉的形式产出,切穿强烈变形的变质沉积岩(图 3e),花岗岩中发育顶垂体构造,顶垂体为变质沉积岩(图 3f)、角闪岩(原岩为MORB和IAB;Zhao et al., 2016)。火山碎屑岩不整合覆盖于变质杂岩(增生杂岩)之上(Shi et al., 2020)。此外,不同类型的岩脉或岩墙,如花岗质岩脉、英安玢岩岩脉广泛侵入于岩浆-变质杂岩中(赵燕等, 2015b; Zhao et al., 2017; Shi et al., 2020; Gan et al., 2021)。这些不同岩性的岩脉可能反映了区域岩浆活动的演化或岩浆源区的差异,是增生弧岩浆作用的典型特征。同时我们注意到,一些花岗质岩体/岩脉经历复杂构造变形(图 3g),或被剪切成断块(图 3h),反映岩浆侵入过程或就位之后,增生杂岩的持续发育-变形过程,这与赣南混杂带-增生弧联合体十分类似(李继亮等, 1993)。

图 3 岩浆-变质杂岩野外产状 (a)变形强烈的变质火山碎屑岩(绿片岩相变质);(b、c)变质沉积岩中包裹角闪岩透镜体;(d)发育不完整鲍马序列的浊积岩;(e)花岗岩切穿变形强烈的变质沉积岩;(f)花岗岩中变质沉积岩顶垂体;(g)侵入变质沉积岩中的花岗岩脉发生褶皱;(h)侵入变质沉积岩中的花岗岩脉被剪切断裂 Fig. 3 Field geological occurrences of the magmatic-metamorphic complex (a) strongly deformed metamorphic pyroclastic rocks (greenschist facies); (b, c) metamorphic sedimentary rocks enclosing amphibolite lens; (d) turbidites with incomplete Baoma sequence; (e) granites crosscutting through strongly deformed metasedimentary rocks; (f) metamorphic sedimentary rock roof-pendant in granite; (g) the granitic dikes intruded metamorphic sedimentary rocks are folded; (h) the granitic dikes intruded metamorphic sedimentary rocks are shear fractured
2.2.2 岩石地球化学特征

受限于增生弧概念的普及,增生弧岩浆岩的地球化学特征目前鲜有专门讨论,但发育在增生杂岩中的弧岩浆作用,近年来受到了地质学家的广泛关注。例如,日本岛弧西南部南开(Nankai)增生楔中的花岗岩类侵入体及相关火山岩(Taira, 2001; Shinjoe, 1997),中国阿尔泰造山带奥陶纪哈巴河增生杂岩(Habahe Group)中的花岗质岩浆岩(Jiang et al., 2016),中亚造山带伊和-蒙古弧坎塔希尔(Khantaishir)岩浆杂岩(Janoušek et al., 2018),新疆西准噶尔北缘塔尔巴哈台增生杂岩之上的萨吾尔增生弧(Saur arc)(Chen et al., 2017a, b)和乌拉斯台增生杂岩之上的成吉思增生弧(Chingiz arc)(Chen et al., 2020)等。

这些增生弧岩浆岩的岩性组合既有钙碱性Ⅰ型花岗岩-花岗闪长岩,也有钙碱性基性火山熔岩和侵入体,与正常岛弧岩浆具有类似的主微量元素特征,亏损高场强元素(HFSE)而富集大离子亲石元素(LILE)和轻稀土元素(LREE)。其同位素组成具有独特之处。例如,日本岛弧不同地区的弧岩浆岩同位素组成差异很大(Nohda and Wasserburg, 1981),总体显示随时间推移趋于亏损的特征(Terakado et al., 1997; Hanyu et al., 2006)。这可能指示随着海沟后撤,新生弧岩浆侵位于先期增生杂岩之上,而不是初始的陆壳之上,造成陆壳来源的古老同位素贡献被隔绝,源自亏损地幔的贡献显著增加,从而导致弧岩浆的同位素特征越来越亏损(Şengör et al., 1993; Şengör and Natal’in, 1996)。在西准噶尔北缘萨吾尔增生弧中,花岗岩-花岗闪长岩具有高的εNd(t)值和高的初始87Sr/86Sr比值,而基性熔岩具有亏损地幔特征的高的εNd(t)值和低的初始87Sr/86Sr比值(Chen et al., 2017a)。作者解释为二者来源于不同的岩浆源区,花岗岩-花岗闪长岩源自增生杂岩重熔和混染,代表富Sr而亏损Nd的洋内弧增生楔部分熔融,而基性熔岩则源自俯冲大洋岩石圈圈闭形成的地幔楔重熔。花岗岩Sr-Nd同位素解耦脱离亏损地幔线,以及同时代基性、酸性岩浆同位素特征出现差异,也是增生弧的重要特征(Chen et al., 2017a)。

三危山地区中酸性岩浆岩,在地球化学上属于中钾-高钾钙碱性系列(图 4a),富集LILE和LREE,亏损HFSE,与典型的弧岩浆岩类似。在Rb-Y+Nb构造环境判别图中(图 4b),侵入岩都落在弧花岗岩(volcanic arc granite:VAG)区域,表明它们可能是弧岩浆作用的产物。在Th/Ce-Sr/Th图解中(图 4c),中酸性岩浆岩落在俯冲沉积物(GLOSS)附近,显示“熔体演化趋势(melt array)”,说明俯冲沉积物部分熔融产生的熔体可能是中酸性岩浆的主要来源。Nb/U比值和Ce/Pb比值也显示俯冲沉积物和弧火山碎屑物质的部分熔融对岩浆的贡献(图 4d)。这些地球化学上的关联性表明,三危山地区中酸性岩浆岩的形成与增生杂岩自身的部分熔融有关。目前,三危山地区古生代岩浆岩同位素地球化学资料有限,进一步的研究将为探索岩浆岩成因提供重要依据。

图 4 三危山地区岩浆岩地球化学特征 (a)三危山地区古生代岩浆岩主量元素组成(底图据Peccerillo and Taylor, 1976);(b)三危山地区古生代岩浆岩构造环境判别图(底图据Pearce et al., 1984);(c)Th/Ce-Sr/Th图解(底图据Leng et al., 2014);(d)Nb/U-Ce/Pb图解(底图据Kelin and Karsten, 1995). 数据来自张志诚等(2009)王楠等(2016a)Zhao et al. (2017)Gan et al.(2020b, 2021);Shi et al. (2020) Fig. 4 Geochemistry of the magmatic rocks in the Sanweishan area (a) major element compositions of the Paleozoic magmatic rocks in Sanweishan area (after Peccerillo and Taylor, 1976); (b) tectonic setting discrimination diagrams for the magmatic rocks in Sanweishan area (after Pearce et al., 1984); (c) Th/Ce vs. Sr/Th diagram (after Leng et al., 2014); (d) Nb/U vs. Ce/Pb diagram (after Kelin and Karsten, 1995). Data from Zhang et al. (2009); Wang et al. (2016a); Zhao et al. (2017); Gan et al.(2020b, 2021); Shi et al. (2020)
2.2.3 年代学特征

增生弧在年代学上的一个重要特征是弧岩浆作用的持续性,这也是“增生”一词的一层含义。例如,Parada (1990)在讨论南美洲安第斯的深成作用时,描绘出从早古生代持续增生到新生代的弧岩浆作用;日本岛弧岩浆作用也具有很长的时间跨度,从二叠纪持续到现代(Taira, 2001)。此外,由于增生弧岩浆的形成与增生杂岩有着密切的关系(受到增生杂岩的混染或者直接由增生杂岩部分熔融而形成),增生杂岩中的年龄信息在增生弧岩浆岩中通常会有体现。比如,弧岩浆岩捕获增生杂岩中的锆石(可能包含与岩浆岩结晶年龄相差很远的古老锆石),或者继承增生杂岩中同位素组成信息,如岩浆结晶锆石继承了非常富集的Hf同位素组成,通常反映岩浆源区有古老地壳物质的重融(吴福元等, 2007)。

前人研究揭示三危山地区出露的中酸性侵入岩、火山碎屑岩及英安玢岩,大致归为510Ma、460~410Ma和370~360Ma三期岩浆作用的产物(张志诚等, 2009; 赵燕等, 2015b; 王楠等, 2016a; Zhao et al., 2017; Gan et al., 2020b, 2021; Shi et al., 2020)。此外,对中酸性侵入岩的围岩(变质沉积岩)进行了碎屑锆石定年,结果显示很宽的年龄组成(2500~364Ma)(孟繁聪等, 2011; Zhao et al., 2017),其中晚古生代锆石具有岩浆锆石的特征,表明部分变质沉积岩原岩时代在晚古生代之后。侵入岩和火山碎屑岩中捕获有前寒武纪锆石(王楠等, 2016a; Zhao et al., 2017; Gan et al., 2020b, 2021; Shi et al., 2020),可能是弧岩浆穿过增生杂岩时捕获锆石,或者是增生杂岩部分熔融过程未被重置的继承锆石。同时,中酸性侵入岩中的古生代锆石的εHf(t)值既有正值,也有负值(王楠等, 2016a; Zhao et al., 2017; Gan et al., 2020b, 2021),说明中酸性侵入岩的岩浆源区既有古老地壳物质的加入,也有新生地壳物质的形成,显示增生弧岩浆岩的重要特征。

增生弧在年代学上的另一个特征是弧岩浆作用的发生伴随着同时期的新增生杂岩的形成,因为增生弧是由于海沟不断后撤,导致增生杂岩不断加宽,岩浆弧直接生长在老的增生杂岩之上而形成的,也就是说增生弧岩浆岩必然形成于大洋岩石圈俯冲期间。在敦煌造山带这一关系即表现为弧岩浆作用与俯冲变质作用时代上的对应。在三危山地区的变质杂岩中发现有440Ma、410Ma和370Ma变质的角闪岩(孟繁聪等, 2011; Zhao et al., 2016)和390~370Ma退变质的石榴单斜辉石岩(Li et al., 2021),而在其南侧的红柳峡增生杂岩中(Shi et al., 2021),广泛发育430~360Ma变质的的高压麻粒岩和角闪岩等俯冲相关的变质岩,特别是411Ma变质的榴辉岩(Wang et al., 2017a)。它们普遍记录了“顺时针型”变质作用P-T-t演化轨迹,反映了该地区古生代期间经历大洋岩石圈俯冲过程。

三危山地区岩浆-变质杂岩在野外产状、岩性组合、地球化学、年代学等方面都非常类似于增生弧。虽然其岩石组合与陆缘弧有相似之处,但整体上与陆缘弧仍存在巨大差异。首先,增生弧与陆缘弧的最重要区别在于岩浆弧的基底——是增生杂岩还是大陆地壳,目前尚无证据表明三危山地区有古老大陆基底的存在。尽管有学者报道了在党河水库和火焰山附近,出露有古元古代花岗片麻岩和角闪岩(He et al., 2013; Yu et al., 2014; 赵燕和孙勇, 2018),但它们并不代表古老大陆基底。这些古元古代岩石规模有限,且边界发生糜棱岩化(He et al., 2013),与变质沉积岩呈构造接触关系,更可能属于构造就位于弧前增生杂岩中的“外来岩块”。此外,增生弧岩浆岩的岩石地球化学方面,较陆缘弧岩浆岩会出现年轻化的Nd、Hf同位素组成,若发育同时代花岗岩和基性岩,则显示不同的Sr同位素组成(酸性岩源自增生楔重熔,具有富集的Sr同位素比值;基性岩源自新生增生弧下方地幔楔部分熔融,具有亏损的Sr同位素比值)。并且,增生弧花岗岩普遍具有Sr-Nd同位素解耦现象,表现为Nd同位素亏损,Sr同位素富集,这可能与增生弧花岗岩的岩浆主要来自增生杂岩中俯冲沉积物的部分熔融有关。因此,认为敦煌北部三危山地区的岩浆-变质杂岩的属性很可能是增生弧。

3 中亚造山带南缘向南扩展方式思考 3.1 敦煌造山带基本构造格架

敦煌构造带作为北山造山带南侧的关键构造单元,其大地构造属性长期备受关注且颇有争议,目前有前寒武纪“敦煌地块”(黄汲清等, 1980; 李志琛, 1994; 梅华林等, 1997)、古生代造山带(Zhao et al., 2016; 石梦岩等, 2017; Wang et al., 2017a)、“复合造山带”(赵燕和孙勇, 2018)等多种观点。近年来,越来越多的证据表明,敦煌地区出露的一系列岩浆-变质杂岩可能是古生代期间俯冲-增生造山过程的产物,代表中亚造山带南缘的增生系统。

本文对敦煌北部三危山地区岩浆-变质杂岩构造环境的初步探讨,认为其属性为古生代期间长期活动(510~360Ma)的增生弧。最近关于敦煌南部红柳峡杂岩中变质基性岩原岩属性的研究表明,该杂岩中变质基性岩的原岩主要来自于俯冲大洋板片,红柳峡杂岩是古生代期间形成的俯冲增生杂岩,形成时间至少在440~310Ma之间(Shi et al., 2021)。并且,红柳峡俯冲增生杂岩中残存的海沟浊积岩记录了来自三危山地区弧花岗岩的物源信息(石梦岩等, 2018)。由此,基于造山带大地构造相剖面模式(李继亮, 1992, 2009),敦煌北侧增生弧(三危山岩浆-变质杂岩)和南侧俯冲-增生杂岩(红柳峡杂岩)的时空配置关系,勾勒出敦煌造山带基本构造格架。

3.2 中亚造山带向南扩展方式

作为焊接北侧西伯利亚-东欧克拉通与南侧塔里木-华北克拉通的巨型增生型造山带,中亚造山带南缘如何向南扩展或延伸至何处,一直是地质学界的研究热点。传统观点认为古亚洲洋最终自西向东沿南天山-北山-索伦一线闭合,而塔里木克拉通、敦煌-阿拉善地块和华北克拉通,分别作为古亚洲洋南侧的大陆参与洋盆的最终闭合(左国朝等, 2003; 李锦轶等, 2006; Xiao et al., 2010)。在中亚造山带中段南缘,北山南部的石板山弧被认为是发育在“敦煌地块”(黄汲清等, 1980; 李志琛, 1994; 梅华林等, 1997)或“敦煌微陆块”(姜洪颖等, 2013; 贺振宇等, 2014, 2015; He et al., 2018)北缘的古生代大陆边缘弧(Xiao et al., 2010; Tian and Xiao, 2020),代表中亚造山带南向扩展的最终边界。

近年来的研究表明,古生代期间敦煌地区经历晚奥陶世-晚泥盆世高压变质作用,发育一系列高压变质岩(包括榴辉岩、高压麻粒岩和角闪岩等)。同时还发育大量古生代-早中生代(510Ma、460~410Ma、370~340Ma和249~201Ma)钙碱性系列中酸性岩浆岩。此外,敦煌地区经历了晚古生代-早中生代构造变形作用(Feng et al., 2018),发育大量冲断层-褶皱和叠瓦状构造(石梦岩等, 2017)。而北山南部也发育同时代的岩浆-变质-构造事件,例如发育古堡泉地区465Ma变质的榴辉岩(Liu et al., 2011; Qu et al., 2011)、古生代(460~260Ma)至早中生代(250~200Ma)岩浆岩(赵泽辉等, 2007; 李舢等, 2009, 2011; 毛启贵等, 2010; Mao et al., 2012; Li et al., 2013; 贺振宇等, 2014),以及323~210Ma期间的韧性剪切变形作用(宋东方等, 2018)。这些地质事实说明,敦煌地区可能与北山地区共同经历了古生代-早中生代的构造事件,在构造演化上存在重要联系。

区域上,敦煌地区北邻北山南部的石板山弧(Xiao et al., 2010)。石板山弧南部主要由古生代侵入岩-火山岩-火山碎屑岩(左国朝等, 2003; 冯继承等, 2012; Guo et al., 2014; 许伟等, 2018, 2019)和“北山杂岩”组成。其中,“北山杂岩”包括花岗片麻岩、变质火山岩、片岩、片麻岩、大理岩和少量混合岩组成(Zuo et al., 1991; Xiao et al., 2010; 姜洪颖等, 2013; 贺振宇等, 2014, 2015),其岩性组合及年龄与敦煌北部三危山地区的变质杂岩可对比(孟繁聪等, 2011; Zhao et al., 2019)。前已述及,三危山地区变质杂岩可能是形成于弧前的增生杂岩,如果如此,那么自石板山地区南部至三危山地区的变质杂岩可能构成了一个由北向南扩展的增生楔。由此,敦煌造山带北侧的三危山增生弧和南侧的红柳峡俯冲增生杂岩可能是古亚洲洋南缘俯冲-增生造山过程的产物。中亚造山带中段以增生杂岩-增生弧的形式向南扩展至敦煌地区,敦煌造山带属于中亚造山带中段南缘的增生系统。

4 结语

基于前人对敦煌构造带内岩浆-变质杂岩的研究成果以及新的资料,本文将敦煌北部三危山地区出露的岩浆-变质杂岩的属性厘定为古生代增生弧。这一结论指示此前认为的“敦煌地块”实际上是古亚洲洋南缘增生造山作用的产物,中亚造山带中段可能向南扩展至敦煌地区,甚至与特提斯构造域存在重要联系。敦煌构造带经历了长期复杂的演化历史,其大地构造属性长期存疑,本文的初步探讨试图为解开这一疑团提供新的思路。随着研究工作的不断深入,对敦煌构造带的大地构造归属及演化定能取得更加清晰的认识。

致谢      两位审稿专家对本文进行审阅并提出宝贵意见,在此表示感谢!

谨以此文深切缅怀李继亮先生,感念先生对地质事业的卓越贡献。

参考文献
Bao WH, Long XP, Yuan C, Sun M, Zhao GC, Wang YJ, Guan YL and Zhang YY. 2017. Paleozoic adakitic rocks in the northern Altyn Tagh, Northwest China: Evidence for progressive crustal thickening beneath the Dunhuang Block. Lithos, 272-273: 1-15 DOI:10.1016/j.lithos.2016.12.006
Bureau of Geology and Mineral Resources of Gansu Province. 1989. Regional Geology of Gansu Province. Beijing: Geological Publishing House, 1-629 (in Chinese)
Chen YC, Xiao WJ, Windley BF, Zhang JE, Sang M, Li R, Song SH and Zhou KF. 2017a. Late Devonian-Early Permian subduction-accretion of the Zharma-Saur oceanic arc, West Junggar (NW China): Insights from field geology, geochemistry and geochronology. Journal of Asian Earth Sciences, 145: 424-445 DOI:10.1016/j.jseaes.2017.06.010
Chen YC, Xiao WJ, Windley BF, Zhang JE, Zhou KF and Sang M. 2017b. Structures and detrital zircon ages of the Devonian-Permian Tarbagatay accretionary complex in west Junggar, China: Imbricated ocean plate stratigraphy and implications for amalgamation of the CAOB. International Geology Review, 59(9): 1097-1115 DOI:10.1080/00206814.2016.1185652
Chen YC, Zhang JE, Xiao WJ, Zhou RJ, Song SH, Zhang ZY, Ao SJ, Sang M, Zhang QWL, Li R, Li ZMG, Liu Y, Zhang HCG, Liu JH and Wu CM. 2020. Late Silurian to Early Devonian development of the Chingiz accretion arc, West Junggar: Insights into accretion arc evolution in the Central Asia Orogenic Belt. International Geology Review, doi: 10.1080/00206814.2020.1824128
Chen YC, Zhang JE, Hou QL, Yan QR and Xiao WJ. 2021. The basic characteristics of accretion arcs and its geological implications. Chinese Journal of Geology, 56(2): 615-634 (in Chinese with English abstract)
Cunningham D, Zhang J and Li YF. 2016. Late Cenozoic transpressional mountain building directly north of the Altyn Tagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China. Tectonophysics, 687: 111-128 DOI:10.1016/j.tecto.2016.09.010
de Silva SL and Gosnold WD. 2007. Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research, 167(1-4): 320-335 DOI:10.1016/j.jvolgeores.2007.07.015
Dewey JF and Windley BF. 1981. Growth and differentiation of the continental crust. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 301(1461): 189-206
Feng JC, Zhang W, Wu TR, Zheng RG, Luo HL and He YK. 2012. Geochronology and geochemistry of granite pluton in the north of Qiaowan, Beishan Mountain, Gansu Province, China, and its geological significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 61-70 (in Chinese with English abstract)
Feng LM, Lin SF, Davis DW, van Staal CR, Song CZ, Li LM, Li JH and Ren SL. 2018. Dunhuang Tectonic Belt in northwestern China as a part of the Central Asian Orogenic Belt: Structural and U-Pb geochronological evidence. Tectonophysics, 747-748: 281-297 DOI:10.1016/j.tecto.2018.09.008
Feng LM, Lin SF, Li LM, Davis DW, Song CZ, Li JH, Ren SL, Han X, Ge YP and Lu KJ. 2020. Constraints on the tectonic evolution of the southern Central Asian Orogenic Belt from Early Permian-Middle Triassic granitoids from the central Dunhuang orogenic belt, NW China. Journal of Asian Earth Sciences, 194: 104283 DOI:10.1016/j.jseaes.2020.104283
Feng ZS, Zhang ZC, Li JF and Guo ZJ. 2010. Geochemistry and geological significance of the Cretaceous OIB-type mafic dykes in Sanweishan, Dunhuang, Gansu Province. Acta Petrologica Sinica, 26(2): 607-616 (in Chinese with English abstract)
Gan BP, Diwu CR, Yan JH, Wang TY and Li JY. 2020a. Formation and stabilization of the Dunhuang Block, NW China: Constraints from the Late Paleoproterozoic A-type granites of the Dunhuang Complex. Precambrian Research, 346: 105791 DOI:10.1016/j.precamres.2020.105791
Gan BP, Li ZX, Song ZC and Li JY. 2020b. Middle Cambrian granites in the Dunhuang Block (NW China) mark the early subduction of the southernmost Paleo-Asian Ocean. Lithos, 372-373: 105654 DOI:10.1016/j.lithos.2020.105654
Gan BP, Diwu CR, Wu L and Wang TY. 2021. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Late Paleozoic Dongshuigou composite pluton in the Dunhuang Block, southernmost Central Asian Orogen: Petrogenesis and implications for crustal growth. Lithos, 384-385: 105970 DOI:10.1016/j.lithos.2021.105970
Guo QQ, Xiao WJ, Hou QL, Windley BF, Han CM, Tian ZH and Song DF. 2014. Construction of Late Devonian Dundunshan arc in the Beishan orogen and its implication for tectonics of southern Central Asian Orogenic Belt. Lithos, 184-187: 361-378 DOI:10.1016/j.lithos.2013.11.007
Hanyu T, Tatsumi Y, Nakai S, Chang Q, Miyazaki T, Sato K, Tani K, Shibata T and Yoshida T. 2006. Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25Myr: Constraints from geochemistry. Geochemistry, Geophysics, Geosystems, 7(8): Q08002
He ZY, Zhang ZM, Zong KQ and Dong X. 2013. Paleoproterozoic crustal evolution of the Tarim Craton: Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences, 78: 54-70 DOI:10.1016/j.jseaes.2013.07.022
He ZY, Zhang ZM, Zong KQ, Xiang H and Klemd R. 2014. Metamorphic P-T-t evolution of mafic HP granulites in the northeastern segment of the Tarim Craton (Dunhuang block): Evidence for Early Paleozoic continental subduction. Lithos, 196-197: 1-13 DOI:10.1016/j.lithos.2014.02.020
He ZY, Zong KQ, Jiang HY, Xiang H and Zhang ZM. 2014. Early Paleozoic tectonic evolution of the southern Beishan orogenic collage: Insights from the granitoids. Acta Petrologica Sinica, 30(8): 2324-2338 (in Chinese with English abstract)
He ZY, Sun LX, Mao LJ, Zong KQ and Zhang ZM. 2015. Zircon U-Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth. Chinese Science Bulletin, 60(4): 389-399 (in Chinese) DOI:10.1360/N972014-00898
He ZY, Klemd R, Yan LL and Zhang ZM. 2018. The origin and crustal evolution of microcontinents in the Beishan Orogen of the southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14 DOI:10.1016/j.earscirev.2018.05.012
Huang JQ, Ren JS, Jiang CF, Zhang ZS and Qin DE. 1980. Geotectonic Evolution of China. Beijing: Science Press (in Chinese)
Huang WT, Wang YX, Li TG, Yang J, Zhang X, Wang HT, Wang XW and Zhu YX. 2018. Geochronology and geochemistry of Adakite in Xiaohongshan, southwestern margin of the Dunhuang Block and their geodynamic implications. Acta Geologica Sinica, 92(12): 2437-2452 (in Chinese with English abstract)
Janoušek V, Jiang YD, Buriánek D, Schulmann K, Hanžl P, Soejono I, Kröner A, Altanbaatar B, Erban V, Lexa O, Ganchuluun T and Košler J. 2018. Cambrian-Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south-central Mongolia). Gondwana Research, 54: 122-149 DOI:10.1016/j.gr.2017.10.003
Jiang HY, He ZY, Zong KQ, Zhang ZM and Zhao ZD. 2013. Zircon U-Pb dating and Hf isotopic studies on the Beishan complex in the southern Beishan orogenic belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract)
Jiang YD, Schulmann K, Sun M, Štípská P, Guy A, Janoušek V, Lexa O and Yuan C. 2016. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt. Tectonics, 35(12): 3095-3118 DOI:10.1002/2016TC004271
Klein EM and Karsten JL. 1995. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature, 374: 52-57 DOI:10.1038/374052a0
Leng CB, Huang QY, Zhang XC, Wang SX, Zhong H, Hu RZ, Bi XW, Zhu JJ and Wang XS. 2014. Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun arc, SW China: Constraints from the geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Lithos, 190-191: 363-382 DOI:10.1016/j.lithos.2013.12.018
Li JF, Zhang ZC and Han BF. 2010. Geochronology and geochemistry of Early Paleozoic granitic plutons from Subei and Shibaocheng areas, the western segment of Central Qilian and their geological implications. Acta Petrologica Sinica, 26(8): 2431-2444 (in Chinese with English abstract)
Li JL. 1992. Tectonic facies in collisional orogenic belts. In: Li QB, Dai JX, Liu RQ, Li JL (eds.). Symposium of the Researches on Modern Geology (Volume 1), Nanjing: Nanjing University Press, 9-21 (in Chinese with English abstract)
Li JL, Hao J, Chai YC, Yang MF and He HQ. 1993. Consortium of mélange and accretionary arc in southern Jiangxi: Suture zone of the Turkey-type collisional orogenic belt. In: Li JL (ed.). Lithospheric Structure and Geological Evolution of the Southeast China Continent. Beijing: Metallurgical Industry Press, 2-11 (in Chinese)
Li JL, Sun S, Hao J, Chen HH, Hou QL and Xiao WJ. 1999. On the classification of collision Orogenic belts. Scientia Geologica Sinica, 34(2): 129-138 (in Chinese with English abstract)
Li JL. 2004. Basic characteristics of accretion-type orogens. Geological Bulletin of China, 23(9-10): 947-952 (in Chinese with English abstract)
Li JL. 2009. Global tectonic Facies: A preclusive opinion. Geological Bulletin of China, 28(10): 1375-1381 (in Chinese with English abstract)
Li JY, Wang KZ, Li YP, Sun GH, Chu CH, Li LQ and Zhu ZX. 2006. Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains. Geological Bulletin of China, 25(8): 895-909 (in Chinese with English abstract)
Li S, Wang T, Tong Y, Hong DW and Ouyang ZX. 2009. Identification of the Early Devonian Shuangfengshan A-type granites in Liuyuan area of Beishan and its implications to tectonic evolution. Acta Petrologica et Mineralogica, 28(5): 407-422 (in Chinese with English abstract)
Li S, Wang T, Tong Y, Wang YB, Hong DW and Ouyang ZX. 2011. Zircon U-Pb age, origin and its tectonic significances of Huitongshan Devonian K-feldspar granites from Beishan orogen, NW China. Acta Petrologica Sinica, 27(10): 3055-3070 (in Chinese with English abstract)
Li S, Wang T, Wilde SA and Tong Y. 2013. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Science Reviews, 126: 206-234 DOI:10.1016/j.earscirev.2013.06.001
Li Z, Wang H, Zhang Q, Shi MY, Lu JS, Liu JH and Wu CM. 2021. Ultra-high pressure metamorphism and geochronology of garnet clinopyroxenite in the Paleozoic Dunhuang Orogenic Belt, northwestern China. Minerals, 11(2): 117 DOI:10.3390/min11020117
Li ZC. 1994. New speculation of the age of the metamorphic rock series of the Dunhuang Massif. Regional Geology of China, (2): 131-134 (in Chinese with English abstract)
Liu XC, Chen BL, Jahn BM, Wu GG and Liu YS. 2011. Early Paleozoic (ca. 465Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(4): 715-731
Liu Y. 2019. The protolith deposition ages, source provenance and tectonic significance of metasedimentary rocks from the Dunhuang Block. Master Degree Thesis. Xi'an: Northwest University, 1-96 (in Chinese with English summary)
Lom N, Şengör AMC and Natal'in BA. 2018. A uniformitarian approach to reconstructing orogenic belts. In: Ingersoll RV, Lawton TF and Graham SA (eds.). Tectonics, Sedimentary Basins, and Provenance: A Celebration of the Career of William R. Dickinson. America: Geological Society of America
Long XP, Yuan C, Sun M, Kröner A and Zhao GC. 2014. New geochemical and combined zircon U-Pb and Lu-Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China. Lithos, 200-201: 418-431 DOI:10.1016/j.lithos.2014.05.008
Lu PF, Wang YX, Zhang Y, Ma GJ, You ZH and Zhang BB. 2019. Diagenetic age of late Triassic granite in the southern margin of Dunhuang block and geological significance. Gansu Geology, 28(3-4): 18-25 (in Chinese with English abstract)
Lu SN. 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Beijing: Geological Publishing House (in Chinese)
Lu SN, Li HK, Zhang CL and Niu GH. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments. Precambrian Research, 160(1-2): 94-107 DOI:10.1016/j.precamres.2007.04.025
Lü P, Yu SY, Peng YB, Zhang J, Xie WM, Jiang XZ, Gao XY, Ji WT, Li SZ and Liu YJ. 2020. Paleoproterozoic multiple magmatic-metamorphic events in the Dunhuang Block, eastern Tarim Craton: Implications for assembly of the Columbia supercontinent. Precambrian Research, 351: 105949 DOI:10.1016/j.precamres.2020.105949
Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Zhang JE, Ao SJ and Li JL. 2010. Discovery of Middle Silurian adakite granite and its tectonic significance in Liuyuan area, Beishan Moutains, NW China. Acta Petrologica Sinica, 26(2): 584-596 (in Chinese with English abstract)
Mao QG, Xiao WJ, Windley BF, Han CM, Qu JF, Ao SJ, Zhang JE and Guo QQ. 2012. The Liuyuan complex in the Beishan, NW China: A Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids. Geological Magazine, 149(3): 483-506 DOI:10.1017/S0016756811000811
Mei HL, Yu HF, Li Q and Zuo GC. 1997. Preliminary litho-tectonic framework of Early Precambrian rocks in Dunhuang-Beishan area, Gansu, West China. Progress in Precambrian Research, 20(4): 47-54 (in Chinese with English abstract)
Meng FC, Zhang JX, Xiang ZQ, Yu SY and Li JP. 2011. Evolution and formation of the Dunhuang Group in NE Tarim basin, NW China: Evidence from detrital-zircon geochronology and Hf isotope. Acta Petrologica Sinica, 27(1): 59-76 (in Chinese with English abstract)
Nohda S and Wasserburg GJ. 1981. Nd and Sr isotopic study of volcanic rocks from Japan. Earth and Planetary Science Letters, 52(2): 264-276 DOI:10.1016/0012-821X(81)90181-3
Parada MA. 1990. Granitoid plutonism in central Chile and its geodynamic implications; A review. In: Kay SM and Rapela CW (eds.). Plutonism from Antarctica to Alaska. America: Geological Society of America, 241: 51-66
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Peng T, Wang H, Chen HX, Meng J, Lu JS, Wang GD and Wu CM. 2014. Preliminary report on the metamorphic evolution of the Guanyingou amphibolites, Dunhuang Metamorphic Complex, NW China. Acta Petrologica Sinica, 30(2): 503-511 (in Chinese with English abstract)
Pham VT, Wang H, Zhang Q, Liu JH, Shi MY, Li Z and Wu CM. 2018. Metamorphic evolution and geochronology of the Changshanzi area, Dunhuang Orogenic Belt, Northwest China. Acta Petrologica Sinica, 34(9): 2773-2792 (in Chinese with English abstract)
Qu JF, Xiao WJ, Windley BF, Han CM, Mao QG, Ao SJ and Zhang JE. 2011. Ordovician eclogites from the Chinese Beishan: Implications for the tectonic evolution of the southern Altaids. Journal of Metamorphic Geology, 29(8): 803-820 DOI:10.1111/j.1525-1314.2011.00942.x
Ringwood AE. 1974. The petrological evolution of island arc systems: Twenty-seventh William Smith Lecture. Journal of the Geological Society, 130(3): 183-204 DOI:10.1144/gsjgs.130.3.0183
Şengör AMC. 1992. The Palaeo-Tethyan suture: A line of demarcation between two fundamentally different architectural styles in the structure of Asia. Island Arc, 1(1): 78-91 DOI:10.1111/j.1440-1738.1992.tb00060.x
Şengör AMC, Natal'in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364(6435): 299-307 DOI:10.1038/364299a0
Şengör AMC and Natal'in BA. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences, 24: 263-337 DOI:10.1146/annurev.earth.24.1.263
Shervais JW. 2006. The significance of subduction-related accretionary complexes in early Earth processes. In: Reimold WU and Gibson RL (eds.). Processes on the Early Earth. America: Geological Society of America, 405: 173-192
Shi MY, Hou QL, Wu CM, Wang H and Chen HX. 2017. An analysis of the characteristics of the rock-structure association of the Dunhuang orogenic belt and their implications for tectonic setting. Geological Bulletin of China, 36(2-3): 238-250 (in Chinese with English abstract)
Shi MY, Hou QL, Wu CM, Wang H, Cheng NN, Zhang Q and Pham VT. 2018. Sedimentology, geochemistry, geochronology, and tectonic implication of the matrix in Hongliuxia mélange, southern Dunhuang Orogenic Belt. Acta Petrologica Sinica, 34(7): 2099-2118 (in Chinese with English abstract)
Shi MY, Hou QL, Wu CM, Yan QR, Wang HYC, Cheng NN, Zhang QWL and Li ZMG. 2020. Paleozoic Sanweishan arc in the northern Dunhuang region, NW China: The Dunhuang block is a Phanerozoic orogen, not a Precambrian block. Journal of Asian Earth Sciences, 194: 103954 DOI:10.1016/j.jseaes.2019.103954
Shi MY, Hou QL, Wu CM, Yan QR, Cheng NN, Zhang QWL and Wang HYC. 2021. Origins of the meta-mafic rocks in the southern Dunhuang block (NW China): Implication for tectonic framework of the southernmost Central Asian Orogenic Belt. Geological Journal, 56: 3959-3973 DOI:10.1002/gj.4144
Shinjoe H. 1997. Origin of the granodiorite in the forearc region of Southwest Japan: Melting of the Shimanto accretionary prism. Chemical Geology, 134(4): 237-255 DOI:10.1016/S0009-2541(96)00062-9
Song DF, Xiao WJ, Han CM, Tian ZH and Li YC. 2018. Accretionary processes of the central segment of Beishan: Constraints from structural deformation and 40Ar-39Ar geochronology. Acta Petrologica Sinica, 34(7): 2087-2098 (in Chinese with English abstract)
Taira A. 2001. Tectonic evolution of the Japanese island arc system. Annual Review of Earth and Planetary Sciences, 29: 109-134 DOI:10.1146/annurev.earth.29.1.109
Terakado Y, Fujitani T and Walker RJ. 1997. Nd and Sr isotopic constraints on the origin of igneous rocks resulting from the opening of the Japan Sea, southwestern Japan. Contributions to Mineralogy and Petrology, 129(1): 75-86 DOI:10.1007/s004100050324
Tian ZH and Xiao WJ. 2020. An Andean-type arc transferred into a Japanese-type arc at final closure stage of the Palaeo-Asian Ocean in the southernmost of Altaïds. Geological Journal, 55(3): 2023-2043 DOI:10.1002/gj.3700
Wang HYC, Chen HX, Lu JS, Wang GD, Peng T, Zhang HCG, Yan QR, Hou QL, Zhang Q and Wu CM. 2016. Metamorphic evolution and SIMS U-Pb geochronology of the Qingshigou area, Dunhuang block, NW China: Tectonic implications of the southernmost Central Asian Orogenic Belt. Lithosphere, 8(5): 463-479 DOI:10.1130/L528.1
Wang HYC, Chen HX, Zhang QWL, Shi MY, Yan QR, Hou QL, Zhang Q, Kusky T and Wu CM. 2017a. Tectonic mélange records the Silurian-Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt. Geology, 45(5): 427-430 DOI:10.1130/G38834.1
Wang HYC, Wang J, Wang GD, Lu JS, Chen HX, Peng T, Zhang HCG, Zhang QWL, Xiao WJ, Hou QL, Yan QR, Zhang Q and Wu CM. 2017b. Metamorphic evolution and geochronology of the Dunhuang orogenic belt in the Hongliuxia area, northwestern China. Journal of Asian Earth Sciences, 135: 51-69 DOI:10.1016/j.jseaes.2016.12.014
Wang HYC, Zhang QWL, Chen HX, Liu JH, Zhang HCG, Pham VT, Peng T and Wu CM. 2018a. Paleozoic subduction of the southern Dunhuang Orogenic Belt, Northwest China: Metamorphism and geochronology of the Shuixiakou area. Geodinamica Acta, 30(1): 63-83 DOI:10.1080/09853111.2018.1427407
Wang HYC, Zhang QWL, Lu JS, Chen HX, Liu JH, Zhang HCG, Pham VT, Peng T and Wu CM. 2018b. Metamorphic evolution and geochronology of the tectonic mélange of the Dongbatu and Mogutai blocks, middle Dunhuang orogenic belt, northwestern China. Geosphere, 14(2): 883-906 DOI:10.1130/GES01514.1
Wang N, Wu CL, Ma CQ, Lei M, Guo WF, Zhang X and Chen HJ. 2016a. Geochemistry, zircon U-Pb geochronology and Hf isotopic characteristics for granites in Sanweishan area, Dunhuang Block. Acta Geologica Sinica, 90(10): 2681-2705 (in Chinese with English abstract)
Wang N, Wu CL, Ma CQ, Lei M, Guo WF, Zhang X and Chen HJ. 2016b. Geochemistry, zircon U-Pb geochronology and Hf isotopic characteristics for granites in southern Dunhuang block. Acta Petrologica Sinica, 32(12): 3753-3780 (in Chinese with English abstract)
Wang N, Wu CL, Lei M and Chen HJ. 2020a. Geochronology and Petrogenesis of the Late Paleozoic Yulinhe Granodiorite in the Dunhuang Block, Western China. Acta Geologica Sinica, 94(2): 575-576 DOI:10.1111/1755-6724.14509
Wang TY, Diwu CR, Zhao J and Gan BP. 2020b. Discovery of Neoproterozoic Rocks in the Dunhuang Block: Clues to Correlation with Rodinia. Acta Geologica Sinica, 94(4): 1310-1311
Wang YX, Dong YQ, Yu C, Zhang DQ, Wang JR, Zhang X and Zhu YX. 2019. Zircon U-Pb dating, geochemistry and geological significance of the Duobagou granite pluton on the southern margin of the Dunhuang landmass. Geological Bulletin of China, 38(2-3): 242-253 (in Chinese with English abstract)
Wang ZM, Han CM, Su BX, Sakyi PA, Malaviarachchi SPK, Ao SJ and Wang LJ. 2013. The metasedimentary rocks from the eastern margin of the Tarim Craton: Petrology, geochemistry, zircon U-Pb dating, Hf isotopes and tectonic implications. Lithos, 179: 120-136 DOI:10.1016/j.lithos.2013.08.010
Wang ZM, Han CM, Xiao WJ, Wan B, Sakyi PA, Ao SJ, Zhang JE and Song DF. 2014. Petrology and geochronology of Paleoproterozoic garnet-bearing amphibolites from the Dunhuang Block, eastern Tarim Craton. Precambrian Research, 255: 163-180 DOI:10.1016/j.precamres.2014.09.025
Wang ZM, Han CM, Xiao WJ and Sakyi PA. 2017c. Paleozoic subduction-related magmatism in the Duobagou area, Dunhuang block: Constrained by zircon U-Pb geochronology and Lu-Hf isotopes and whole-rock geochemistry of metaigneous rocks. Lithosphere, 9(6): 1012-1032 DOI:10.1130/L688.1
Windley BF, Alexeiev D, Xiao WJ, Kröner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47 DOI:10.1144/0016-76492006-022
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1069
Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang JE, Ao SJ, Guo QQ, Cleven NR, Lin SF, Shan YH and Li JL. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310(10): 1553-1594 DOI:10.2475/10.2010.12
Xiao WJ, Windley BF, Sun S, Li JL, Huang BC, Han CM, Yuan C, Sun M and Chen HL. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507 DOI:10.1146/annurev-earth-060614-105254
Xiao WJ, Ao SJ, Yang L, Han CM, Wan B, Zhang JE, Zhang ZY, Li R, Chen ZY and Song SH. 2017. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Science China (Earth Sciences), 60(6): 1015-1039 DOI:10.1007/s11430-016-9043-3
Xu JL, Meng YC, Zhang JS, Ma ZY, Han WY and Bai XQ. 1997. New progress in the study of Dunhuang Group. Acta Geologica Gansu, 6(Suppl.1): 1-5 (in Chinese)
Xu W, Xu XY, Niu YZ, Chen GC, Shi JZ, Wei JS, Song B and Zhang YX. 2018. Geochronology, petrogenesis and tectonic implications of Early Permian A-type rhyolite from southern Beishan orogen, NW China. Acta Petrologica Sinica, 34(10): 3011-3033 (in Chinese with English abstract)
Xu W, Xu XY, Lu JC, Niu YZ, Chen GC, Shi JZ, Dang B, Song B, Zhang YX and Zhang Q. 2019. Geochronology, petrogenesis and tectonic implications of Devonian high-K acid magmatic rocks from Yemajing area in Beishan Orogen. Earth Science, 44(8): 2775-2793 (in Chinese with English abstract)
Yu HF, Lu SN, Zhao FQ, Li HK and Zheng JK. 1998. Litho-structural evidences of ancient Altyn Tagh and its significance. Progress in Precambrian Research, 21(4): 10-15 (in Chinese with English abstract)
Yu SY, Zhang JX, Zhao XL, Gong JH and Li YS. 2014. Geochronology, geochemistry and petrogenesis of the Late Palaeoproterozoic A-type granites from the Dunhuang block, SE Tarim Craton, China: Implications for the break-up of the Columbia supercontinent. Geological Magazine, 151(4): 629-648 DOI:10.1017/S0016756813000538
Zhang JX, Gong JH and Yu SY. 2012. 1.85Ga HP granulite-facies metamorphism in the Dunhuang block of the Tarim Craton, NW China: Evidence from U-Pb zircon dating of mafic granulites. Journal of the Geological Society, 169(5): 511-514 DOI:10.1144/0016-76492011-158
Zhang JX, Yu SY, Gong JH, Li HK and Hou KJ. 2013. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China: Evidence from zircon U-Pb dating and Hf isotopic analyses. Precambrian Research, 226: 21-42 DOI:10.1016/j.precamres.2012.11.014
Zhang QWL, Liu JH, Wang HYC, Shi MY, Chen YC, Li ZMG, Zhang HCG, Pham VT and Wu CM. 2019. Amphibolite facies metamorphism and geochronology of the Paleoproterozoic Aketashitage Orogenic Belt, northwestern China. Precambrian Research, 328: 146-160 DOI:10.1016/j.precamres.2019.04.019
Zhang QWL, Wang HYC, Liu JH, Shi MY, Chen YC, Li ZMG and Wu CM. 2020. Diverse subduction and exhumation of tectono-metamorphic slices in the Kalatashitage area, western Paleozoic Dunhuang Orogenic Belt, northwestern China. Lithos, 360-361: 105434 DOI:10.1016/j.lithos.2020.105434
Zhang QWL, Li ZMG, Shi MY, Chen YC, Liu JH and Wu CM. 2021a. 40Ar/39Ar dating of hornblende and U-Pb dating of zircon in the Aketashitage orogen, NW China: Constraints on exhumation and cooling in the Paleoproterozoic. Precambrian Research, 352: 106018 DOI:10.1016/j.precamres.2020.106018
Zhang QWL, Liu JH, Li ZMG, Shi MY, Chen YC and Wu CM. 2021b. Juxtaposition of diverse, subduction-related tectonic blocks with contrasting metamorphic features and ages in the Paleoproterozoic Aketashitage orogen, NW China: Implications for Precambrian orogeny. GSA Bulletin, 133(7-8): 1483-1504 DOI:10.1130/B35766.1
Zhang ZC, Guo ZJ, Zou GQ, Feng ZS and Li HF. 2009. Geochemical characteristics and SHRIMP U-Pb age of zircons from the Danghe reservoir TTG in Dunhuang, Gansu Province, and its significations. Acta Petrologica Sinica, 25(3): 495-505 (in Chinese with English abstract)
Zhao Y, Diwu CR, Sun Y, Zhu T and Wang HL. 2013. Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province. Acta Petrologica Sinica, 29(5): 1698-1712 (in Chinese with English abstract)
Zhao Y, Sun Y, Yan JH and Diwu CR. 2015. The Archean-Paleoproterozoic crustal evolution in the Dunhuang region, NW China: Constraints from zircon U-Pb geochronology and in situ Hf isotopes. Precambrian Research, 271: 83-97 DOI:10.1016/j.precamres.2015.10.002
Zhao Y, Diwu CR, Ao WH, Wang HL, Zhu T and Sun Y. 2015a. Ca. 3.06Ga granodioritic gneiss in Dunhuang block. Chinese Science Bulletin, 60(1): 75-87 (in Chinese) DOI:10.1360/N972014-00382
Zhao Y, Diwu CR, Zhu T, Wang HL and Sun Y. 2015b. Discovery of the Late Devonian plagiogranite in Sanweishan area, Dunhuang, Gansu Province and its geological implications. Acta Petrologica Sinica, 31(7): 1855-1869 (in Chinese with English abstract)
Zhao Y, Sun Y, Diwu CR, Guo AL, Ao WH and Zhu T. 2016. The Dunhuang block is a Paleozoic orogenic belt and part of the Central Asian Orogenic Belt (CAOB), NW China. Gondwana Research, 30: 207-223 DOI:10.1016/j.gr.2015.08.012
Zhao Y, Sun Y, Diwu CR, Zhu T, Ao WH, Zhang H and Yan JH. 2017. Paleozoic intrusive rocks from the Dunhuang tectonic belt, NW China: Constraints on the tectonic evolution of the southernmost Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 138: 562-587 DOI:10.1016/j.jseaes.2017.02.037
Zhao Y and Sun Y. 2018. Composition and evolution of Precambrian geological units in the composite Dunhuang orogenic belt, Northwest China. Acta Petrologica Sinica, 34(4): 963-980 (in Chinese with English abstract)
Zhao Y, Sun Y, Ao WH, Zhang H and Zhu T. 2019. Depositional age, provenance and tectonic significance of Precambrian metasedimentary rocks from the Dunhuang Complex, NW China: Evidence from field investigation, zircon U-Pb geochronology and whole-rock geochemistry. Precambrian Research, 326: 272-294 DOI:10.1016/j.precamres.2017.12.032
Zhao ZH, Guo ZJ and Wang Y. 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23(8): 1847-1860 (in Chinese with English abstract)
Zhu T, Wang HL, Xu XY, Chen JL, Ma ZP, Li ZP, Zhu XH and Li P. 2014. Discovery of adakitic rocks in south margin of Dunhuang block and its geological significance. Acta Petrologica Sinica, 30(2): 491-502 (in Chinese with English abstract)
Zhu T, Wang HL, Xu XY, Zhao Y, Li ZP and Zhu XH. 2018. Zircon U-Pb age and Hf isotopes of the biotite plagioclase genesis in Duobagou area, Gansu Province. Geological Bulletin of China, 37(4): 682-692 (in Chinese with English abstract)
Zhu T, Wang HL, Zhao Y, Xu XY and Li ZP. 2020. Palaeozoic diorites from the south-western Dunhuang terrane, NW China: Constraints on tectonic evolution of southernmost CAOB. Geological Journal, 55(1): 893-911 DOI:10.1002/gj.3447
Zong KQ, Zhang ZM, He ZY, Hu ZC, Santosh M, Liu YS and Wang W. 2012. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. Journal of Metamorphic Geology, 30(8): 753-768 DOI:10.1111/j.1525-1314.2012.00997.x
Zong KQ, Liu YS, Zhang ZM, He ZY, Hu ZC, Guo JL and Chen K. 2013. The generation and evolution of Archean continental crust in the Dunhuang block, northeastern Tarim craton, northwestern China. Precambrian Research, 235: 251-263 DOI:10.1016/j.precamres.2013.07.002
Zuo GC, Zhang SL, He GQ and Zhang Y. 1991. Plate tectonic characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics, 188(3-4): 385-392 DOI:10.1016/0040-1951(91)90466-6
Zuo GC, Liu YK and Liu CY. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu, Xinjiang and Inner Mongolia provinces. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract)
陈艺超, 张继恩, 侯泉林, 闫全人, 肖文交. 2021. 增生弧基本特征与地质意义. 地质科学, 56(2): 615-634.
范文寿, 王浩, 张谦, 刘嘉惠, 石梦岩, 李真, 吴春明. 2018. 敦煌造山带长山子地区变质演化及年代学研究. 岩石学报, 34(9): 2773-2792.
冯继承, 张文, 吴泰然, 郑荣国, 罗红玲, 贺元凯. 2012. 甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义. 北京大学学报(自然科学版), 48(1): 61-70.
冯志硕, 张志诚, 李建锋, 郭召杰. 2010. 敦煌三危山地区白垩纪OIB型基性岩墙的特征及地质意义. 岩石学报, 26(2): 607-616.
甘肃省地质矿产局. 1989. 甘肃省区域地质志. 北京: 地质出版社, 1-629.
贺振宇, 宗克清, 姜洪颖, 向华, 张泽明. 2014. 北山造山带南部早古生代构造演化: 来自花岗岩的约束. 岩石学报, 30(8): 2324-2338.
贺振宇, 孙立新, 毛玲娟, 宗克清, 张泽明. 2015. 北山造山带南部片麻岩和花岗闪长岩的锆石U-Pb定年和Hf同位素: 中元古代的岩浆作用与地壳生长. 科学通报, 60(4): 389-399.
黄汲清, 任纪舜, 姜春发, 张正坤, 秦德余. 1980. 中国大地构造及其演化. 北京: 科学出版社.
黄万堂, 王玉玺, 李通国, 杨婧, 张翔, 王怀涛, 王晓伟, 朱永新. 2018. 敦煌地块南缘小红山埃达克岩的年代学、地球化学特征及地球动力学意义. 地质学报, 92(12): 2437-2452. DOI:10.3969/j.issn.0001-5717.2018.12.005
姜洪颖, 贺振宇, 宗克清, 张泽明, 赵志丹. 2013. 北山造山带南缘北山杂岩的锆石U-Pb定年和Hf同位素研究. 岩石学报, 29(11): 3949-3967.
李继亮. 1992. 碰撞造山带大地构造相. 见: 李清波, 戴金星, 刘如琦, 李继亮编. 现代地质科学研究论文集(上). 南京: 南京大学出版社
李继亮, 郝杰, 柴育成, 杨美芳, 何海清. 1993. 赣南混杂带与增生弧联合体: 图尔基型碰撞造山带的缝合带. 见: 李继亮编. 东南大陆岩石圈结构与地质演化. 北京: 冶金工业出版社, 2-11
李继亮, 孙枢, 郝杰, 陈海泓, 侯泉林, 肖文交. 1999. 论碰撞造山带的分类. 地质科学, 34(2): 129-138.
李继亮. 2004. 增生型造山带的基本特征. 地质通报, 23(9-10): 947-952.
李继亮. 2009. 全球大地构造相刍议. 地质通报, 28(10): 1375-1381. DOI:10.3969/j.issn.1671-2552.2009.10.002
李建锋, 张志诚, 韩宝福. 2010. 中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义. 岩石学报, 26(8): 2431-2444.
李锦轶, 王克卓, 李亚萍, 孙桂华, 褚春华, 李丽群, 朱志新. 2006. 天山山脉地貌特征、地壳组成与地质演化. 地质通报, 25(8): 895-909. DOI:10.3969/j.issn.1671-2552.2006.08.001
李舢, 王涛, 童英, 洪大卫, 欧阳志侠. 2009. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义. 岩石矿物学杂志, 28(5): 407-422. DOI:10.3969/j.issn.1000-6524.2009.05.001
李舢, 王涛, 童英, 王彦斌, 洪大卫, 欧阳志侠. 2011. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义. 岩石学报, 27(10): 3055-3070.
李志琛. 1994. 敦煌地块变质岩系时代新认识. 中国区域地质, (2): 131-134.
刘洋. 2019. 敦煌地块变沉积岩原岩形成年龄、源区性质及其构造意义. 硕士学位论文. 西安: 西北大学, 1-96
路鹏飞, 王玉玺, 张渊, 马国杰, 尤泽华, 张兵兵. 2019. 敦煌地块南缘晚三叠世花岗岩成岩时代与地质意义. 甘肃地质, 28(3-4): 18-25.
陆松年. 2002. 青藏高原北部前寒武纪地质初探. 北京: 地质出版社.
毛启贵, 肖文交, 韩春明, 孙敏, 袁超, 张继恩, 敖松坚, 李继亮. 2010. 北山柳园地区中志留世埃达克质花岗岩类及其地质意义. 岩石学报, 26(2): 584-596.
梅华林, 于海峰, 李铨, 左国朝. 1997. 甘肃敦煌-北山早前寒武纪岩石组合-构造初步框架. 前寒武纪研究进展, 20(4): 47-54.
孟繁聪, 张建新, 相振群, 于胜尧, 李金平. 2011. 塔里木盆地东北缘敦煌群的形成和演化: 锆石U-Pb年代学和Lu-Hf同位素证据. 岩石学报, 27(1): 59-76.
彭涛, 王浩, 陈泓旭, 孟洁, 卢俊生, 王国栋, 吴春明. 2014. 甘肃敦煌观音沟地区变质作用初步研究. 岩石学报, 30(2): 503-511.
石梦岩, 侯泉林, 吴春明, 王浩, 陈泓旭. 2017. 敦煌造山带岩石-构造组合特征及其构造环境. 地质通报, 36(2-3): 238-250.
石梦岩, 侯泉林, 吴春明, 王浩, 程南南, 张谦, Pham VT. 2018. 敦煌造山带南部红柳峡混杂带基质的沉积学、地球化学和年代学特征及其大地构造意义. 岩石学报, 34(7): 2099-2118.
宋东方, 肖文交, 韩春明, 田忠华, 李咏晨. 2018. 北山中部增生造山过程: 构造变形和40Ar-39Ar年代学制约. 岩石学报, 34(7): 2087-2098.
王楠, 吴才来, 马昌前, 雷敏, 郭文峰, 张昕, 陈红杰. 2016a. 敦煌地块三危山地区花岗岩体地球化学、锆石U-Pb定年及Hf同位素特征. 地质学报, 90(10): 2681-2705.
王楠, 吴才来, 马昌前, 雷敏, 郭文峰, 张昕, 陈红杰. 2016b. 敦煌地块南部古生代花岗岩地球化学、锆石U-Pb定年及Hf同位素特征研究. 岩石学报, 32(12): 3753-3780.
王玉玺, 董雅清, 余超, 张丹青, 王金荣, 张鑫, 朱永新. 2019. 敦煌地块南缘多坝沟花岗岩锆石U-Pb定年、地球化学特征及其地质意义. 地质通报, 38(2-3): 242-253.
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
肖文交, 敖松坚, 杨磊, 韩春明, 万博, 张继恩, 张志勇, 李睿, 陈振宇, 宋帅华. 2017. 喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局. 中国科学(地球科学), 47(6): 631-656.
许敬龙, 孟易辰, 张建树, 马志勇, 韩文云, 拜小琪. 1997. 敦煌群研究新进展. 甘肃地质学报, 6(增1): 1-5.
许伟, 徐学义, 牛亚卓, 陈高潮, 史冀忠, 魏建设, 宋博, 张宇轩. 2018. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义. 岩石学报, 34(10): 3011-3033.
许伟, 徐学义, 卢进才, 牛亚卓, 陈高潮, 史冀忠, 党犇, 宋博, 张宇轩, 张乔. 2019. 北山野马井地区泥盆纪富钾酸性岩浆岩地球化学特征及其地质意义. 地球科学, 44(8): 2775-2793.
于海峰, 陆松年, 赵风清, 李怀坤, 郑健康. 1998. 古阿尔金断裂的岩石构造依据及意义. 前寒武纪研究进展, 21(4): 10-15. DOI:10.3969/j.issn.1672-4135.1998.04.002
张志诚, 郭召杰, 邹冠群, 冯志硕, 李建锋. 2009. 甘肃敦煌党河水库TTG地球化学特征、锆石SHRIMP U-Pb定年及其构造意义. 岩石学报, 25(3): 495-505.
赵燕, 第五春荣, 孙勇, 朱涛, 王洪亮. 2013. 甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 29(5): 1698-1712.
赵燕, 第五春荣, 敖文昊, 王洪亮, 朱涛, 孙勇. 2015a. 敦煌地块发现~3.06Ga花岗闪长质片麻岩. 科学通报, 60(1): 75-87.
赵燕, 第五春荣, 朱涛, 王洪亮, 孙勇. 2015b. 敦煌三危山地区晚泥盆世斜长花岗岩的发现及其地质意义. 岩石学报, 31(7): 1855-1869.
赵燕, 孙勇. 2018. 敦煌复合造山带前寒武纪地质体的组成和演化. 岩石学报, 34(4): 963-980.
赵泽辉, 郭召杰, 王毅. 2007. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义. 岩石学报, 23(8): 1847-1860. DOI:10.3969/j.issn.1000-0569.2007.08.007
朱涛, 王洪亮, 徐学义, 陈隽璐, 马中平, 李智佩, 朱小辉, 李平. 2014. 敦煌地块南缘石炭纪埃达克岩的发现及其地质意义. 岩石学报, 30(2): 491-502.
朱涛, 王洪亮, 徐学义, 赵燕, 李智佩, 朱小辉. 2018. 甘肃多坝沟地区黑云斜长片麻岩锆石U-Pb年龄和Hf同位素特征. 地质通报, 37(4): 682-692.
左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化. 甘肃地质学报, 12(1): 1-15.