岩石学报  2021, Vol. 37 Issue (11): 3399-3412, doi: 10.18654/1000-0569/2021.11.09   PDF    
青藏高原南部岩脉分布及其研究意义
赵志丹, 唐演, 朱弟成, 刘栋, 王青, 董国臣, 周肃, 莫宣学     
中国地质大学地质过程与矿产资源国家重点实验室, 地球科学与资源学院, 北京 100083
摘要: 青藏高原是面积大、海拔高、时代最新的经典碰撞造山带,其演化过程被记录在各类地质作用中,包括各类岩浆作用。岩脉是与其他类型岩浆作用具有相似矿物成分的小规模侵入体,德国人Harry Rosenbusch早在1877年对其开展了系统研究。区域上大规模产出的基性岩墙群经常发育在伸展构造环境,并被认为代表地质历史时期发生的大陆裂解作用,其深部则与地幔柱或者热点存在相关。在青藏高原的羌塘地体、拉萨地体和喜马拉雅造山带发育了不同类型的岩脉或岩墙群。在羌塘地体中部出露面积约为40000km2的早二叠世(约283Ma)基性岩墙群属于大火成岩省(LIP)岩浆作用,与二叠纪中特提斯洋的初始打开有关。在西藏南部的特提斯喜马拉雅带产出的时代约为132Ma的白垩纪措美-班伯里大火成岩省岩浆作用,覆盖面积超过50000km2,其最早的岩浆作用可能代表了特提斯喜马拉雅之下大陆裂解之前孕育克格伦地幔柱头部的相关岩石圈伸展作用,并继续裂解导致了印度与澳洲大陆的裂解分离。本文着重讨论了高原南部的白垩纪以来的岩脉,它们主要发育在拉萨地体南部,蕴含了岩浆作用与构造作用的双重信息。它们具有不同的产状、成分、年龄和成因,对于揭示冈底斯弧演化、印度与亚洲大陆的碰撞过程,以及碰撞导致的高原应力状态变化等都具有重要的意义。高原南部岩脉主要分为三期:(1)时代约为90Ma的岩脉,具有玄武质到中酸性的成分,主要侵位在日喀则白垩纪弧后盆地,例如在南木林县南部出现的基性-酸性双峰式岩浆作用,可能代表了冈底斯岩浆弧之上发育的伸展作用。(2)时代约为50Ma的同碰撞期岩脉,主要侵入到林子宗火山岩、冈底斯岩基或者白垩世设兴组/昂仁组沉积地层等单元中,它们发育时间为60~41Ma,其峰期作用时间与冈底斯岩浆大爆发的时间一致,可能受控于深部俯冲的特提斯洋洋壳的断裂作用。(3)碰撞后中新世岩脉,多具有埃达克质岩石的地球化学性质,与区域上钾质-超钾质火山岩和埃达克质侵入岩的时代一致,它们是高原南部加厚下地壳部分熔融作用的产物,可能受控于下地壳拆沉作用或者与南北向裂谷带密切相关的板片撕裂有关。这些岩脉的延伸方向既有南北向,也有东西向,在构造上可能代表了高原隆升到最大高度后深部拆沉作用导致的山体垮塌伴生的伸展构造有关。
关键词: 岩脉    岩墙群    地幔柱    伸展作用    拉萨地体    青藏高原    
Distribution and its significance of dikes in southern Tibetan Plateau
ZHAO ZhiDan, TANG Yan, ZHU DiCheng, LIU Dong, WANG Qing, DONG GuoChen, ZHOU Su, MO XuanXue     
State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
Abstract: The Tibetan Plateau is a typica collisional orogenic belt, with the biggest area, highest average altitude, and the youngest age on the world. Its evolutional processes were recorded in different geological events, including different type of magmatism. Dikes, which represent minor intrusions with mineral compositions corresponding to most other igneous rock types, has been studied since 1877 by Harry Rosenbusch. Large scale regional mafic dike swarms are often intruded in extensional tectonic environment, and are trend to represent continental break-up in geological history, and were linked to mantle plume or hot spots coming from below. Multiple type dikes emplaced on the Tibetan Plateau, including Qiangtang terrane, Lhasa terrane, and the Himalayan orogenic belt. The Early Permian (ca. 283Ma) mafic dike swarms which areal extent of ~40000km2 in the middle of the Qiangtang terrane suggest a Large Igneous Province (LIP), which has been linked to the initial opening of the Meso-Tethys Ocean during the Permian. The dike swarms outcropped on the Tethyan Himalaya in southern Tibet, which were named ~132Ma Comei-Bunbury LIP covering area more than 50000km2, are possibly related to the incubation of the Kerguelen plume head beneath the Tethyan Himalaya during pre-breakup lithospheric extension, and finally led to the break-up of India and Australia. This paper introduces mainly the dikes in the southern part of the plateau, which intruded in the southern Lhasa terrane since Cretaceous, which contain double information of magmatism and tectonism. These dikes show varies occurrence, composition, age, and petrogenesis, and play important role in revealing the tectonic evolution of the Gangdese arc, collisional processes between Indian and Asian continents, and the plateau stress regime in response to the collision. The dikes in southern plateau, focus mainly in three periods: (1) The ~90Ma dikes with basaltic to intermediate composition emplaced mainly in the Xigaze Cretaceous back arc basin. These dikes, such as with bimodal composition in Namling area, may suggest the extension processes on the Gangdese magmatic arc. (2) The ~50Ma syn-collisional dikes intruded into the Linzizong volcanic succession, Gangdese batholith, or the sedimentary strata of Cretaceous Shexing Formation/Angren Formation. These dikes emplaced during the times from 60Ma to 41Ma, with the same time span with the magmatic "flare-up", which explained to be related to the break-up of subducted Tethyan oceanic crust. (3) The post-collisional Miocene dikes showing geochemically adakitic composition, occurred within the age span of the potassic and ultrapotassic volcanics, and adakitic intrusions. They were generated from the partial melting of thickened lower crust caused by delamination or detachment related to N-S normal fault system. These dikes trending N-S or E-W directions also represent the extension that possibly indicate the uplift or collapse of the plateau thereafter it achieved the highest attitude.
Key words: Dike    Dike swarm    Mantle plume    Extension    Tibetan Plateau    

岩脉(Dike, dyke)相关的三类岩石(花岗斑岩、细晶岩与伟晶岩、煌斑岩)是德国人Harry Rosenbusch在1877年把脉岩(Ganggesteine)单独列出并首先开始研究的(Rosenbusch, 1877),脉岩是广泛出露在地表,呈薄板状、产状特殊、成分跨度大、不整合切穿围岩、与区域性构造关系密切的岩浆岩类。“岩脉”一词在表述中既是描述以岩脉形式产出的地质体的形态和产状术语,也代表一类岩石(脉岩)。依据产出规模可以称为岩脉或岩墙(宽度大于10cm、长度大于10m且倾向近直立的称为岩墙),区域上大规模产出的岩脉又称为岩脉群或岩墙群(Dike swarms),可以揭示不同规模的空间内的岩浆-成矿-构造作用,与大规模壳幔岩浆-成矿作用(扩张的大洋中脊基性岩墙群、与形成大火成岩省和层状侵入体关联的地幔柱和热点型岩浆作用中的放射状岩墙群)、岩浆弧构造-岩浆作用体系、造山带区域性或局部伸展过程的构造-岩浆作用演化等具有十分密切的关系。

岩墙群是岩脉中最重要的一类,镁铁质岩墙群的多学科研究在解决地球演化的动力学过程中发挥了重要作用。自Henry C. Halls教授于1985年在加拿大组织第一次国际岩墙群会议(IDC-1)至今已举办了七届国际岩墙群会议,每五年一次。最近的第七次会议于2016年在北京举行(IDC-7),主题为“Dyke Swarms: Keys to Paleogeographic Reconstruction”,会议在《地质学报》英文版出版了摘要集(Acta Geologica Sinica, 2016, Vol.90, Supp.1),2019年还由Springer出版了专著《Dyke Swarms of the World: A Modern Perspective》,同时在Precambrian Research(2019)发表了基于IDC-7研究新进展的特刊“Dyke Swarms: Keys for Precambrian Paleogeographic Reconstruction: Proceedings of the Seventh International Dyke Conference”。因此,岩脉和岩墙群研究是地球科学的重要科学问题。

1 岩脉(岩墙群)及其揭示的伸展作用

Henry Halls开启了现代岩墙群研究领域(Halls, 1982; Halls and Fahrig, 1987)。镁铁质岩墙群是岩石圈伸展的重要标志,可以为识别和定位地幔柱的中心、揭示地幔演化、重建古地理格局、寻找成矿作用及与大规模灭绝事件有关的气候变化关联等提供非常有价值信息(Halls, 1982; Halls and Fahrig, 1987; 李江海等, 1997; Hanski et al., 2006; 侯贵廷等, 2009; Srivastava, 2011; Ernst, 2014; Ernst and Jowitt, 2013, 2017; Ernst and Youbi, 2017)。

岩墙群由数条至上百条岩墙组成,它们大多是同期岩浆作用产物,据几何形态可划分为放射状岩墙群、环状(扇状)岩墙群、平行岩墙群,不同形态岩墙群可能代表着不同构造背景。放射状岩墙群主要分布在火山机构周围,因局部应力集中而形成。大型放射状岩墙群常与地幔柱活动有关,是大火成岩省(LIPs)的岩浆通道,常位于LIP的地幔柱中心(Halls, 1982; Ernst and Buchan, 1997, 2001; Ernst, 2014),如Mackenzie岩墙群。环状岩墙群是指岩墙以(准)圆形或椭圆形环状成群分布,地球上存在一些巨型环状岩墙群(Buchan and Ernst, 2019),常与巨型放射状岩墙群相伴出现,且其焦点与前者放射中心近于重合,因而巨型环状岩墙群也被认为与地幔柱活动及LIPs有关(Buchan and Ernst, 2016, 2019),如Lake Victoria岩墙群(1385Ma,Mäkitie et al., 2014),其地下部分可能具有向内倾斜的锥形岩席形态(Buchan and Ernst, 2016)。平行岩墙群产出与区域应力场关系密切,一般具有固定方向,如华北克拉通广泛发育NNW基性岩墙群(侯贵廷等, 2009; 彭澎等, 2011)。

大规模岩脉(岩墙群)产出被认为是区域伸展构造的重要标志,多产出在裂谷系统。基性镁铁质岩脉(多为辉绿岩或辉长岩)是幔源岩浆侵入体,可能代表深源、大区域伸展作用(Williams et al., 2001)。在板块构造发育的不同阶段、不同区域有很多伸展背景,例如洋-洋或者洋-陆俯冲背景的弧上、弧后和弧前伸展;洋陆俯冲板片回转或断离产生的伸展背景(Xu et al., 2008),如华北克拉通地堑系统、北美西部盆岭省等,岛弧构造状态与演化可以从岩脉的发育揭示出来,弧后伸展起始于岩脉。与岛弧构造密切相关的是成矿作用,侯增谦等在滇西三江北段发现“压性弧”和“伸展弧”的控制了矿床类型。大陆裂谷的伸展作用(王明等, 2009)与大陆碰撞后板内伸展背景(彭敏等, 2009),包括造山带挤压大背景下,垂直于造山带走向形成一系列相互平行的裂谷系统,如西藏中、南部南北向裂谷系、贝加尔湖裂谷系等,还有与走滑拉分相关的伸展作用(张媛媛等, 2017)。

岩脉产出与伸展构造之间互为反馈和促进作用,可以限定区域构造演化的时限。岩墙由深部岩浆侵入地壳中围岩或岩浆超压形成脆性裂缝而形成。从脆性变形角度看,它不仅标记了填充岩浆的裂缝(通常是伸展或剪切)的空间分布模式,而且还给出了这些裂缝形成时的上限时间,同时由围岩年龄可以给出构造事件的时间下限)。在新近出版的有关岩浆迁移注入的专著中,岩脉侵位有关的浅部地壳构造和动力学机制,被称为“岩脉作用”(Diking, Kavanagh, 2018)。

由于岩脉类型多,开展研究至少包括如下内容和方法:(a)岩墙群及其相关岩石(如岩床等)的区域填图方法与技术,如利用遥感技术(航磁数据,Landsat,雷达等)绘制区域岩墙图,如Ni et al. (2019)通过使用多分辨率遥感图像半自动地绘制塔里木地块中的大型岩墙群;(b)岩墙群的地质年代学与基性岩定年方法;(c)岩墙群岩石学,地球化学和岩石成因;(d)岩墙群侵位机制及巨型岩浆系统成因;(e)巨型岩墙群重建超级大陆/古代大陆方法;(6)岩墙群与成矿作用的联系;(f)其他行星上岩墙群及其地形效应。

岩脉(岩墙群)定年技术近年来取得新进展,中酸性岩脉可以使用常规锆石U-Pb方法,而幔源基性和超基性岩脉则应用副矿物U-Pb体系定年,如锆石、斜锆石、钙钛矿、金红石等(Li et al., 2016)。如辉长岩、碱性岩和辉绿岩墙使用斜锆石(Heaman and LeCheminant, 1993; Söderlund, 2016)。金伯利岩和煌斑岩岩脉则应用钙钛矿、金红石、磷灰石等富U、Th副矿物SIMS U-Th-Pb定年方法,被成功用于华北和扬子克拉通金伯利岩/煌斑岩定年(Li et al., 2010a, b, 2011a, b, 2012)。

2 青藏高原南部岩脉(岩墙群)时空分布

青藏高原岩脉比较发育,按照侵入时间由早及近,主要可以归为以下四类:第一类是南羌塘地区二叠纪岩脉;第二类是藏南喜马拉雅地区早白垩世岩脉;第三类是发育在雅鲁藏布蛇绿岩套中的辉长-辉绿岩岩墙;第四类是发育在冈底斯岩浆弧和缝合带内的晚白垩世以来的岩脉。

2.1 南羌塘地区二叠纪岩脉

二叠纪时期,冈瓦纳北缘经历了裂谷事件,发育了广泛的板内岩浆作用,产生的玄武岩广泛分布在喜马拉雅、阿曼、羌塘、巴基斯坦北部、印度西北部等地区,并伴有同时期镁铁质岩墙,二者被认为与深地幔柱活动有关,并导致了冈瓦纳大陆北部裂解,形成新特提斯洋。羌塘地体南部沿龙木错-双湖板块缝合带的南侧呈近东西向(中央隆起地区)出露大规模基性岩墙群,总长约800km,为辉绿岩、辉长岩和苦橄岩岩墙,年龄为284~318Ma,属晚石炭世末期至早二叠世的板内岩浆,被认为是该时期冈瓦纳大陆北缘裂解相关的伸展作用的遗迹(图 1b)。基性岩墙中高Ti岩石与喜马拉雅地区二叠纪火山岩、同时期Panjal Traps玄武岩共同构成大约290Ma的大火成岩省,是地幔柱作用于冈瓦纳北缘的产物(Chauvet et al., 2009; 李才等, 2001, 2004; Metcalfe, 2006; Pogue et al., 1992; Sajid et al., 2018; Şengör, 1979; Shellnutt et al., 2014; 王明等, 2009; Wang et al., 2014; Xu et al., 2016; 翟庆国等, 2009; Zhai et al., 2013; Zhu et al., 2010)。

图 1 研究区大地构造位置图(a)及青藏高原羌塘岩墙群(b, 据Zhai et al., 2013)和喜马拉雅带岩墙群(c, 据Xia et al., 2020)分布图 Fig. 1 Tectonic map of study area (a) and distributions of dike swarms in Qiangtang (b, modified after Zhai et al., 2013) and in Himalaya (c, modified after Xia et al., 2020)
2.2 藏南喜马拉雅地区早白垩世岩墙群

藏南特提斯喜马拉雅地体的措美、隆子、洛扎、错那、江孜、浪卡子、哲古一带(图 1c),分布大量中基性岩墙群,它们主要为NW或近EW向展布,岩性多为辉长岩、辉绿岩、闪长岩和闪长玢岩,它们顺层或斜交层理产出,侵位于早白垩世以前的地层中, 长度可达百余米至数十千米,时代集中于早白垩世(130~145Ma)。区域上同期还形成了大规模双峰式岩浆活动。这些基性岩墙和大规模镁铁质岩类被认为是大规模陆内伸展背景下的产物,可能与古Kerguelen地幔柱活动相关,该地幔柱导致了东冈瓦纳大陆裂解,形成了早白垩世(132Ma)措美大火成岩省(Jiang et al., 2006; 江思宏等, 2007; 李永灿等, 2017; Liu et al., 2015; 潘桂棠等, 2004; 童劲松等, 2007; 夏瑛等, 2012; Xia et al., 2014, 2020; 徐晓霞等, 2009; 钟华明等, 2004; Zhu et al., 2007, 2008, 2009; 曾令森等, 2012; 王亚莹等, 2016; Wang et al., 2018)。

2.3 雅鲁藏布蛇绿岩剖面的辉长-辉绿岩岩墙群

它们是新特提斯洋壳的残余。岩石以辉绿岩脉或岩席形式产出,年龄集中在120~130Ma,有关研究这里不再赘述,详细综述见吴福元等(2014)。经典的蛇绿岩基于塞浦路斯的特罗多斯蛇绿岩,其中的席状岩墙杂岩体(席状岩墙群)被认为是海洋岩石圈和蛇绿岩的关键特征,在伸展环境中形成(Kusky and Robinson, 2016),代表拉张速率和岩浆供应之间的近似平衡(Karson, 2016, 2019)。

2.4 青藏高原白垩纪以来的岩脉

这类岩脉分布时间和空间范围比较广,在青藏高原的各个地区都有产出。例如在喜马拉雅地区也发育大量新生代淡色花岗岩及伟晶岩脉体。其中拉萨地体南缘晚白垩世-新生代岩脉,将在下文中进行重点探讨。

3 青藏高原拉萨地体南缘晚白垩世-新生代岩脉

青藏高原第四类岩脉主要发育在拉萨地体南缘的白垩纪(~90Ma)、古新世-始新世(~50Ma)和碰撞后中新世(10~24Ma)三个主要时期,分别对应冈底斯带南缘三期大规模岩浆作用。它们近东西向展布或近南北向展布,少数延伸方向介于其间,这些岩脉为识别藏南伸展构造提供了重要证据。

3.1 冈底斯弧~90Ma岩脉揭示的大陆弧演化过程

曾令森等(2017)根据日喀则弧前盆地东西向展布的早白垩世(107Ma)辉绿岩脉,认为新特提斯洋北向俯冲中海沟后撤导致强烈弧前伸展作用。南木林县城正南方(唐演等, 2019; 叶丽娟等, 2015)晚白垩世早期(92~94Ma)同期辉长岩体和花岗岩脉,揭示了弧后伸展作用,但该地区紧邻日喀则弧前盆地,应属于弧上区。高家昊等(2017)认为拉萨市南边的晚白垩世(85~68Ma)白堆复合岩体中的中-基性岩脉群代表了新特提斯洋斜向俯冲导致的弧上伸展,而Ma et al. (2017)将该区域花岗闪长岩(85Ma)和同期辉长闪长岩岩脉(82Ma)解释为板片回转导致同汇聚伸展的产物。90Ma是特提斯洋演化的重要时期,岩浆弧体系不同阶段的挤压作用和伸展作用代表了大洋俯冲构造体系演化状态,岩脉是最好的证据。对设兴组和昂仁组的碎屑锆石研究,揭示了岛弧发展阶段,但是当时构造演化和应力状态,都被大陆碰撞之后的构造挤压、变形掩盖了,而产出在90Ma作用的岩脉,可以很好揭示当时的构造环境,揭示当时大洋岩石圈俯冲、岛弧发展过程(Wei et al., 2020)。最近的研究表明,冈底斯弧晚白垩世时期发育了斜长岩和闪长岩脉,这些脉岩是在新特提洋平俯冲阶段导致弧地壳挤压、缩短加厚并发生含水熔融产生的(Ding et al., 2021)

以南木林县城到雅鲁藏布江一线公路边出露的山巴村东侧岩体为例探讨岩石成因与构造演化(唐演等, 2019)。岩体位于冈底斯岩基南缘,岩体基性岩石和其中各类岩脉的野外穿切关系和锆石U-Pb定年结果表明(图 2),它们都是晚白垩世早期岩浆作用的产物,在辉长质岩石(92~94Ma)构成的基性岩体侵位后,基性和酸性脉岩随后同时侵位(91Ma)。寄主辉长岩和基性脉岩为高钾钙碱性系列岩石;而酸性脉岩属于弱过铝质钾玄质系列,具有高硅(SiO2>70%)、高碱(8.06%~9.44%)特征,与基性岩体没有成分演化关系。辉长岩和酸性脉岩的锆石Hf同位素均具有亏损特征(εHf(t)=+6.8~+11.5),辉长岩应为流体交代后的弧下地幔楔源区部分熔融产物,酸性岩脉显示了埃达克质岩石的特征(高Sr/Y和(La/Yb)N),可能为弧下加厚的新生镁铁质下地壳部分熔融产物。整个冈底斯岩浆岩带中广泛发育95~85Ma岩浆活动,在南木林地区代表的冈底斯岩浆弧中段,在晚白垩世早期北向俯冲的新特提斯洋板片发生回转的深部过程驱动下,不仅在地幔和下地壳发生部分熔融作用,而且浅部岩浆弧也在同时期发生了构造伸展作用,促进了少量酸性岩脉侵入辉长质岩体中。

图 2 南木林南岩体与岩脉野外露头照片 (a)花岗岩脉包裹辉绿岩;(b)花岗岩脉和辉绿岩脉并邻侵位(据唐演等, 2019) Fig. 2 The field outcrops of dikes in the South Namling intrusions (a) granite dike enwrapped micro-diabase; (b) granitic dike and micro-diabase dike intruded into host rock adjacently (after Tang et al., 2019)
3.2 拉萨地体南缘~50Ma岩脉

峰期岩浆作用时间大约在52~53Ma的岩浆作用被认为是冈底斯带岩浆大爆发时期,揭示出岩浆混合作用、幔源物质大规模注入地壳等现象,其成因几乎都与俯冲洋壳板片的断离模型相关联,这同时也可能代表了青藏高原南部与大陆碰撞有关的巨厚地壳形成的岩浆贡献和高原可能发生的隆升过程(Chung et al., 2005; Mo et al., 2005, 2007, 2008, 2009; 莫宣学等, 2005; Dong et al., 2005; 董国臣等, 2006, 2008; Chu et al., 2006, 2011; Wen et al., 2008; Ji et al., 2009a, b; Lee et al., 2009; Zhu et al., 2011; 管琪, 2011; Guan et al., 201; Wang et al., 2019)。

该时期属于印度与亚洲大陆同碰撞时期的岩浆作用,该时期在冈底斯带南缘也发现了大量的基性到酸性成分的岩脉,它们侵入到同时期的冈底斯岩基、同时期的林子宗火山岩、或者白垩纪设兴组或昂仁组的变沉积地层中。产出地点从西到东包括日喀则复理石、尼木岩基、曲水岩基、当雄岩基、林周盆地等地区的日喀则到古新世地层和花岗岩中。前人根据东西向岩墙(镁铁质岩墙)的存在及其表现出的幔源地球化学特性识别出藏南古新世-始新世南北向伸展。达孜地区东西向镁铁质岩脉限定的伸展发生在60~53Ma,林周林子宗火山岩中的东西向镁铁质岩墙暗示伸展发生在55~50Ma;在曲水-尼木一带,也报道了41~53Ma的辉长-闪长质岩脉。研究者普遍认为是新特提斯洋板片折返-断离导致的伸展,但是时限可能宽泛到60~41Ma(董铭淳等, 2015; 岳雅慧和丁林, 2006; Ma et al., 2016, 2017; Mo et al., 2008; Huang et al., 2016; Zhu et al., 2015; 周鹏等, 2019)。

以拉萨东北方向的林周盆地为例,介绍该时期脉岩的特征(董铭淳等, 2015)。林周盆地是林子宗火山岩的命名地,也是揭示印度-欧亚大陆碰撞机制的重要研究区域。盆地产出的脉岩主要侵入到林子宗火山岩中,为中酸性脉岩,大部分侵入到典中组第一段和第二段地层中,少数侵入到年波组。岩石绝大多数为亚碱性系列、过铝质花岗岩。花岗岩的锆石U-Pb年龄为55~61Ma,闪长玢岩年龄为62.4Ma。脉岩具有较亏损的锆石Hf同位素特征(εHf(t)=-1.1~+10.4),且显示了变化范围较大Hf同位素特征(变化超过3.5~8.8单位),表明脉岩继承了地幔源区特征,形成过程中出现了岩浆混合作用,或者代表了下地壳物质的部分熔融。

3.3 中新世岩脉与碰撞后高原隆升-构造-岩浆作用

印度与亚洲大陆碰撞后阶段,已识别出高原中部、南部广泛发育南北向正断层系统和镁铁质岩脉,确认了中新世东西向伸展事件(Blisniuk et al., 2001; Mahéo et al., 2002; Garzione et al., 2003; Harrison et al., 1995; Mitsuishi et al., 2012),大多数研究者认为该期伸展发生在18~9Ma(18~13Ma, Williams et al., 2001; 17~13Ma, Huang et al., 2016)。Wang et al. (2010)对双湖附近岩脉研究认为高原中部东西向伸展发生在47~38Ma。绝大多数研究者认为东西向伸展是和高原隆升密切关联的。青藏高原南部构造伸展-高原隆生与深部的岩浆作用-成矿作用显示了较好的同时性(图 3, Zhao et al., 2009)。

图 3 青藏高原构造-沉积和岩浆作用的发生时间图(据Zhao et al., 2009) Fig. 3 3Age span of the post-collisional magmatism and tectonic-sedimentary events in the Lhasa terrane and adjacent areas (after Zhao et al., 2009)

青藏高原碰撞后伸展构造的初始发育被认为代表了高原隆升到最大高度、应力状态从挤压变为伸展、进而高原开始垮塌的标志,Williams et al. (2011)获得的17.5Ma的南北向延伸的基性岩脉,Wang et al. (2010)在藏北羌塘地区与南北向伸展构造伴生的岩浆作用的研究,获得高原中部N-S伸展构造发育、进而预示高原隆升到最大高度的时间为47~34Ma(Wang et al., 2010),这与Wang et al. (2008)从沉积与古地磁等方面获得的早期高原隆升(40Ma)和Chung et al. (1998)从岩浆作用获得的结果(40Ma)异曲同工。碰撞后岩脉的产出,显示了与构造作用紧密结合、共同揭示高原构造演化的重要价值(Xu et al., 2020)。

以日喀则地区昂仁组产出的脉岩为例(唐演, 2020),岩脉产出区位于冈底斯岩浆弧系统的日喀则弧前盆地内(图 4),主要出露在雅鲁藏布江南岸的日喀则、仲巴、昂仁、江当和年木等地大致构成的东西向山间盆地,其中南部与晚侏罗世至早白垩世蛇绿岩断层接触,北部与渐新世-中新世大竹卡组砾岩断层接触。盆地总体形态呈西宽东窄近东西向展布的楔形,最主要出露的是昂仁组复理石沉积地层。在日喀则市西北的聂日雄乡数条近南北向山谷,多条脉岩顺层或切层侵入到昂仁组地层中,多呈岩墙状产出,宽1.5~5m(图 5),单条岩脉延伸可达5km以上,多呈东西向平行展布,少数近南北向展布,岩墙的岩性和时代分别是,闪长玢岩(3个样品均为14Ma)、细粒闪长岩和花岗斑岩等。日喀则弧前盆地的脉岩主要侵位时代为中新世~14Ma。

图 4 日喀则北部岩脉出露区地质简图(据唐演, 2020修改) Fig. 4 Geological sketch map showing the distribution of dikes in Shikaze area (modified after Tang, 2020)

图 5 日喀则岩脉野外剖面和样品照片 (a)日喀则岩脉剖面与露头(RK1702-RK 1706);(b、c) RK1707野外露头与镜下照片;(d) RK1706角闪石斑晶;(e) RK1607镜下照片;(f) RK1609斜长石卡纳复合双晶(据唐演, 2020).Pl-斜长石;Kfs-钾长石;Amp-角闪石 Fig. 5 Images showing outcrops and samples of the dikes in Xigaze area (a) outcrops and samples in Xigaze area (RK1702 to RK 1706); (b, c) Sample RK 1707; (d) Sample RK 1706; (e) Sample RK 1607; (f) Sample RK1609 (after Tang, 2020). Pl-plagiocalse; Kfs-K-feldspar; Amp-amphibole
3.4 拉萨地体南缘白垩纪以来岩脉成分、成因和意义

从拉萨地体南部晚白垩世以来产出的脉岩看(唐演, 2020, 及其中文献),脉岩类型多(图 6),包括了基性到酸性的成分,例如基性的辉长岩、辉绿岩,中性的闪长玢岩、细粒闪长岩,酸性脉岩则有花岗细晶岩、白云母花岗岩、花岗斑岩等类型。从侵位时代看,拉萨地体南部白垩纪以来脉岩侵位于早白垩世、晚白垩世(100~67Ma)、古近纪(62~47Ma)和中新世(17~12Ma)四个主要时期。其中早白垩世主要在日喀则弧前盆地带发育,岩性以辉绿岩和辉绿玢岩为主(曾令森等, 2017);晚白垩世主要是基性和酸性成分(叶丽娟等, 2015; 李晓雄等, 2015; 高家昊等2017; Ma et al., 2017; 唐演等, 2019),为相伴产出的钙碱性和高钾钙碱性两个系列,缺少中性成分脉岩;古近纪基性、中性和酸性脉岩都有发育(岳雅慧和丁林, 2006; 董铭淳等, 2015; Ma et al., 2016; Huang et al., 2016, 2017; 唐演, 2020),成分也跨越了低钾拉斑系列到钾玄岩系列的所有类型;中新世脉岩以钙碱性-高钾钙碱性系列的中性闪长玢岩为主,酸性岩类次之(陈希节等, 2014; Huang et al., 2016; 曾令森等, 2017; 唐演, 2020)。从微量元素地球化学特征看,晚白垩世以来的中酸性脉岩,大多具有高Sr低Y的埃达克质岩石特征(图 7),可能为加厚下地壳或者俯冲洋壳熔融的产物。

图 6 拉萨地体南部脉岩类型TAS图解(底图据Wilson, 2001)和K2O-SiO2图解(底图据Peccerillo and Taylor, 1976)(唐演, 2020, 及其文献) Fig. 6 TAS diagrams (after Wilson, 2001) and K2O vs. SiO2 plots (after Peccerillo and Taylor, 1976) of the dikes from southern Lhasa terrane (after Tang, 2020, and references therein)

图 7 拉萨地体南部脉岩显示的埃达克质岩石特征图 MgO-SiO2底图据Karsli et al. (2010);(La/Yb)N-YbN和Sr/Y-Y判别图解引自Martin (1986)Defant and Drummond (1990),标准化数据引自Sun and McDonough (1989). 唐演(2020)及其引用文献 Fig. 7 Plots of major and trace elements compositions of the dikes showing adakitic signatures in southern Lhasa terrane MgO vs. SiO2 diagrams after Karsli et al. (2010), (La/Yb)N vs. YbN diagrams and Sr/Y vs. Y diagrams after Martin (1986) and Defant and Drummond (1990). After Tang (2020) and references therein

总之,岩脉(岩墙群)是深部岩浆作用与构造叠加到达地壳浅部的“使者”,它从深部源区上侵、岩浆灌入裂隙系统定位到冷却形成岩脉,再从地壳浅部被剥露到地表,如果是侵入到岩浆岩中,可以指示与围岩之间形成期次关系,如果是侵入到白垩纪或者侏罗纪地层(昂仁组、设兴组等变质变形的沉积岩地层),则可以指示深部隐伏的同期岩浆作用;同时,岩脉指示了浅部构造状态,可以揭露岩浆弧的弧上、弧前和弧后伸展作用,揭示大陆碰撞同期和碰撞后的构造状态。

4 结论

(1) 青藏高原发育了不同时期的脉岩,它们岩石类型多、成分跨度大,具有不同的成因,揭示了青藏高原发生大陆碰撞之前的地幔柱活动、特提斯构造域演化和印度与亚洲大陆碰撞后的高原伸展构造等综合演化历史。

(2) 青藏高原南部白垩纪以来的岩浆作用主要产出在三个时期,分别是约为90Ma、50Ma和中新世时期,它们为揭示冈底斯岩浆弧的演化、高原隆生和伸展构造的演化历史等提供了重要依据。

致谢      审稿专家曾令森和匿名专家提供了宝贵修改建议;编辑部俞良军博士给予了热情支持和帮助;一并表示诚挚谢意。

参考文献
Blisniuk PM, Hacker BR, Glodny J, Ratschbacher L, Bi SW, Wu ZH, McWilliams MO and Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5Myr ago. Nature, 412(6847): 628-632
Buchan KL and Ernst RE. 2016. Giant circumferential dyke swarms on Earth: Possible analogues of coronae on Venus and similar features on Mars. Acta Geologica Sinica, 90(Suppl.1): 186-187
Buchan KL and Ernst RE. 2019. Giant circumferential dyke swarms: Catalogue and characteristics. In: Srivastava RK, Ernst RE and Peng P (eds. ). Dyke Swarms of the World: A Modern Perspective. Singapore: Springer, 1-44
Chauvet F, Dumont T and Basile C. 2009. Structures and timing of Permian rifting in the central Oman Mountains (Saih Hatat). Tectonophysics, 475(3-4): 563-574 DOI:10.1016/j.tecto.2009.07.008
Chen XJ, Xu ZQ, Meng YK and He ZY. 2014. Petrogenesis of Miocene adakitic diorite-porphyrite in middle Gangdese batholith, southern Tibet: Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 30(8): 2253-2268 (in Chinese with English abstract)
Chu MF, Chung SL, Song B, Liu DY, O'Reilly SY, Pearson NJ, Ji JQ and Wen DJ. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745-748 DOI:10.1130/G22725.1
Chu MF, Chung SL, O'Reilly SY, Pearson NJ, Wu FY, Li XH, Liu DY, Ji JQ, Chu QH and Lee HY. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters, 307(3-4): 479-486 DOI:10.1016/j.epsl.2011.05.020
Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL and Wang PL. 1998. Diachronous uplift of the Tibetan Plateau starting 40Myr ago. Nature, 394(6695): 769-773 DOI:10.1038/29511
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Dong GC, Mo XX, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Geochronologic constraints on the magmatic underplating of the Gangdisê belt in the India-Eurasia collision: Evidence of SHRIMP Ⅱ zircon U-Pb dating. Acta Geologica Sinica, 79(6): 787-794 DOI:10.1111/j.1755-6724.2005.tb00933.x
Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang LL, Chen T and Li B. 2006. Magma mixing in middle part of Gangdise magma belt: Evidences from granitoid complex. Acta Petrologica Sinica, 22(4): 835-844 (in Chinese with English abstract)
Dong GC, Mo XX, Zhao ZD, Zhu DC, Song YT and Wang L. 2008. Gabbros from southern Gangdese: Implication for mass exchange between mantle and crust. Acta Petrologica Sinica, 24(2): 203-210 (in Chinese with English abstract)
Dong MC, Zhao ZD, Zhu DC, Liu D, Dong GC, Mo XX, Hu ZC, Liu YS and Zou ZH. 2015. Geochronology, geochemistry, and petrogenesis of the intermediate and acid dykes in Linzhou Basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1268-1284 (in Chinese with English abstract)
Ernst RE and Buchan KL. 1997. Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. In: Mahoney J and Coffin M (eds. ). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism 100. Washington: American Geophysical Union, 297-333
Ernst RE and Buchan KL. 2001. Large mafic magmatic events through time and links to mantle-plume heads. In: Ernst RE and Buchan KL (eds. ). Mantle Plumes: Their Identification Through Time. Geological Society of America, 483-575
Ernst RE and Jowitt SM. 2013. Large igneous provinces (LIPs) and metallogeny. In: Colpron M, Bissig T, Rusk BG and Thompson JFH (eds. ). Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Society of Economic Geologists, Special Publication, 17-51
Ernst RE. 2014. Large Igneous Provinces. Cambridge: Cambridge University Press, 1-653
Ernst RE and Jowitt SM. 2017. Multi-commodity, multi-scale exploration targeting using the large igneous province record. GSWA Record 2017/6 Target 2017, Perth, Australia, Abstracts Volume: 41-44
Ernst RE and Youbi N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52 DOI:10.1016/j.palaeo.2017.03.014
Gao JH, Zeng LS, Guo CL, Li QL and Wang YY. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa. Acta Petrologica Sinica, 33(8): 2412-2436 (in Chinese with English abstract)
Garzione CN, DeCelles PG, Hodkinson DG, Ojha TP and Upreti BN. 2003. East-west extension and Miocene environmental change in the southern Tibetan Plateau: Thakkhola graben, central Nepal. GSA Bulletin, 115(1): 3-20 DOI:10.1130/0016-7606(2003)115<0003:EWEAME>2.0.CO;2
Guan Q. 2011. Geochronology and geochemistry of the Mesozoic and Cenozoic granitoids in eastern South Gangdese and its implicatioins. Ph. D. Dissertation. Beijing: China University of Geosciences (in Chinese, with English summary)
Guan Q, Zhu DC, Zhao ZD, Dong GC, Zhang LL, Li XW, Liu M, Mo XX, Liu YS and Yuan HL. 2012. Crustal thickening prior to 38Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88-99 DOI:10.1016/j.gr.2011.07.004
Halls HC. 1982. The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geoscience Canada, 9(3): 145-154
Halls HC and Fahrig WF. 1987. Mafic Dyke Swarms. St. John's: Geological Association of Canada
Hanski E, Mertanen S, Rämö T and Vuollo J. 2006. Dyke Swarms: Time Markers of Crustal Evolution. London: Taylor & Francis
Harrison TM, Copeland P, Kidd WSF and Lovera OM. 1995. Activation of the Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 14(3): 658-676 DOI:10.1029/95TC00608
Heaman LM and LeCheminant AN. 1993. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 110(1-3): 95-126 DOI:10.1016/0009-2541(93)90249-I
Hou GT, Halls H, Davis D, Huang BL, Yang MH and Wang CC. 2009. Paleomagnetic poles of mafic dyke swarms from the North China craton and their relevance to the reconstruction of the supercontinent Columbia. Acta Petrologica Sinica, 25(3): 650-658 (in Chinese with English abstract)
Huang F, Xu JF, Chen JL, Wu JB, Zeng YC, Xiong QW, Chen XF and Yu HX. 2016. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane: Evidence from geology and geochronology. Lithos, 245: 118-132 DOI:10.1016/j.lithos.2015.08.014
Huang F, Xu J, Zeng Y, Chen J, Wang B, Yu H, Chen L, Huang W and Tan R. 2017. Slab breakoff of the Neo-Tethys Ocean in the Lhasa Terrane inferred from contemporaneous melting of the mantle and crust. Geochemistry, Geophysics, Geosystems, 18(11): 4074-4095 DOI:10.1002/2017GC007039
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020
Ji WQ, Wu FY, Liu CZ and Chung S. 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet. Science in China (Series D), 52(9): 1240-1261 DOI:10.1007/s11430-009-0131-y
Jiang SH, Nie FJ, Hu P and Liu Y. 2006. An important spreading event of the Neo-Tethys Ocean during the Late Jurassic and Early Cretaceous: Evidence from zircon U-Pb SHRIMP dating on diabase in Nagarze, southern Tibet. Acta Geologica Sinica, 80(4): 522-527
Jiang SH, Nie FJ, Hu P, Liu Y and Lai XR. 2007. Geochemical characteristics of the mafic dyke swarms in South Tibet. Acta Geologica Sinica, 81(1): 60-71 (in Chinese with English abstract)
Karsli O, Dokuz A, Uysal, Aydin F, Kandemir R and Wijbrans J. 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos, 114(1-2): 109-120 DOI:10.1016/j.lithos.2009.08.003
Karson JA. 2016. Sheeted dike complexes in contemporary oceanic crust: Implications for spreading processes and the interpretation of ophiolites. Acta Geologica Sinica, 90(Suppl.1): 202-203
Karson JA. 2019. From ophiolites to oceanic crust: Sheeted dike complexes and seafloor spreading. In: Srivastava RK, Ernst RE and Peng P (eds. ). Dyke Swarms of the World: A Modern Perspective. Singapore: Springer, 459-492
Kavanagh JL. 2018. Mechanisms of magma transport in the upper crust: Dyking. In: Burchardt S (ed. ). Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth's Crust. Amsterdam: Elsevier, 55-88
Kusky T and Robinson P. 2016. The significance of sheeted dike complexes in ophiolites. Acta Geologica Sinica, 90(Suppl.1): 204-205
Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q and Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20-35 DOI:10.1016/j.tecto.2009.02.031
Li C, Wang TW, Yang DM and Yang RH. 2001. The lithological composition and tectonic evolution of Qiangtang central uplift region, Tibet. Journal of Changchun University of Science and Technology, 31(1): 25-31, 36 (in Chinese with English abstract)
Li C, He ZH and Li HM. 2004. U-Pb and Sm-Nd dating of mafic dike swarms in southern Qiangtang, Qinghai-Tibet Plateau and its tectonic significance. Geology in China, 31(4): 384-389 (in Chinese with English abstract)
Li JH, He WY and Qian XL. 1997. Genetic mechanism and tectonic setting of Proterozoic mafic dyke swarm: Its implication for paleoplate reconstruction. Geological Journal of China Universities, 3(3): 33-42 (in Chinese with English abstract)
Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010a. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107-1113 DOI:10.1039/b923444f
Li QL, Li XH, Liu Y, Wu FY, Yang JH and and Mitchell RH. 2010b. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chemical Geology, 269(3-4): 396-405 DOI:10.1016/j.chemgeo.2009.10.014
Li QL, Wu FY, Li XH, Qiu ZL, Liu Y, Yang YH and Tang GQ. 2011a. Precisely dating paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos, 126(1-2): 127-134 DOI:10.1016/j.lithos.2011.07.001
Li QL, Lin W, Su W, Li XH, Shi YH, Liu Y and Tang GQ. 2011b. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 122(1-2): 76-86 DOI:10.1016/j.lithos.2010.11.007
Li QL, Li XH, Wu FY, Yin QZ, Ye HM, Liu Y, Tang GQ and Zhang CL. 2012. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb. Gondwana Research, 21(4): 745-756 DOI:10.1016/j.gr.2011.07.008
Li QL, Li XH, Wu FY, Liu Y and Tang GQ. 2016. Accessary Minerals SIMS U-Th-Pb Dating for Kimberlite and Lamproite. Acta Geologica Sinica, 90(Suppl.1): 74-75
Li XX, Jiang W, Liang JH, Zhao ZD, Liu D and Mo XX. 2015. The geochemical characteristics and significance of the basalt from Shexing Formation in Linzhou basin, southern Tibet. Acta Petrologica Sinica, 31(5): 1285-1297 (in Chinese with English abstract)
Li YC, Zhou Q, Li YX, Lai Y, Wu JY, Xia XB and Qing CS. 2017. Geochronologic and petrogenesis studies for the Segang diabase dikes, South Tibet. Geological Journal of China Universities, 23(1): 26-38 (in Chinese with English abstract)
Liu Z, Zhou Q, Lai Y, Qing CS, Li YX, Wu JY and Xia XB. 2015. Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya: Implications for the break-up of Eastern Gondwana. Lithos, 236-237: 190-202 DOI:10.1016/j.lithos.2015.09.006
Ma XX, Xu ZQ and Meert JG. 2016. Eocene slab breakoff of Neotethys as suggested by dioritic dykes in the Gangdese magmatic belt, southern Tibet. Lithos, 248: 55-65
Ma XX, Xu ZQ and Meert JG. 2017. Syn-convergence extension in the southern Lhasa terrane: Evidence from late Cretaceous adakitic granodiorite and coeval gabbroic-dioritic dykes. Journal of Geodynamics, 110: 12-30 DOI:10.1016/j.jog.2017.07.004
Mahéo G, Guillot S, Blichert-Toft J, Rolland Y and Pêcher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45-58 DOI:10.1016/S0012-821X(01)00578-7
Mäkitie H, Data G, Isabirye E, Mänttäri I, Huhma H, Klausen MB, Pakkanen L and Virransalo P. 2014. Petrology, geochronology and emplacement model of the giant 1.37Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa. Journal of African Earth Sciences, 97: 273-296
Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756 DOI:10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1-2): 24-46 DOI:10.1016/j.gr.2005.04.002
Mitsuishi M, Wallis SR, Aoya M, Lee J and Wang Y. 2012. E-W extension at 19Ma in the Kung Co area, S.Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen. Earth and Planetary Science Letters, 325-326: 10-20
Mo XX, Dong GC, Zhao ZD, Guo TY, Wang LL and Chen T. 2005. Timing of magma mixing in the gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76 DOI:10.1111/j.1755-6724.2005.tb00868.x
Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities, 11: 281-290 (in Chinese with English abstract)
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96: 225-242 DOI:10.1016/j.lithos.2006.10.005
Mo XX, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67 DOI:10.1016/j.chemgeo.2008.02.003
Mo XX, Dong GC, Zhao ZD, Zhu DC, Zhou S and Niu YL. 2009. Mantle input to the crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf isotopic evidence. Journal of Earth Science, 20(2): 241-249 DOI:10.1007/s12583-009-0023-2
Ni NN, Chen NH, Ernst RE, Yang SF and Chen JY. 2019. Semi-automatic extraction and mapping of dyke swarms based on multi-resolution remote sensing images: Applied to the dykes in the Kuluketage region in the northeastern Tarim Block. Precambrian Research, 329: 262-272 DOI:10.1016/j.precamres.2018.05.020
Pan GT, Wang LQ and Zhu DC. 2004. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23(1): 12-19 (in Chinese with English abstract)
Peccerillo A and Taylor SR. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Peng M, Wu YB, Wang J, Jiao WF, Liu XC and Yang SH. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin, 54(6): 1098-1104
Peng P, Liu F, Zhai MG and Guo JH. 2012. Age of the Miyun dyke swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110 DOI:10.1007/s11434-011-4771-x
Pogue KR, DiPietro JA, Khan SR, Hughes SS, Dilles JH and Lawrence RD. 1992. Late Paleozoic rifting in northern Pakistan. Tectonics, 11(4): 871-883 DOI:10.1029/92TC00335
Rosenbusch H. 1877. Mikroskopische Physiographie der Mineralien und Gesteine.Vol. Ⅱ. Massige Gesteine. . Schweizerbart, Stuttgart: 596
Sajid M, Andersen J and Arif M. 2018. Petrogenesis and tectonic association of rift-related basic Panjal dykes from the northern Indian plate, North-Western Pakistan: evidence of high-Ti basalts analogous to dykes from Tibet. Mineralogy and Petrology, 112(3): 415-434 DOI:10.1007/s00710-017-0536-9
Şengör AMC. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590-593 DOI:10.1038/279590a0
Shellnutt JG, Bhat GM, Wang KL, Brookfield ME, Jahn BM and Dostal J. 2014. Petrogenesis of the flood basalts from the early Permian Panjal traps, Kashmir, India: geochemical evidence for shallow melting of the mantle. Lithos, 204: 159-171 DOI:10.1016/j.lithos.2014.01.008
Söderlund U. 2016. Geochronology of Mafic Intrusions. Acta Geologica Sinica, 90(Suppl.1): 83
Srivastava RK. 2011. Dyke Swarms: Keys for Geodynamic Interpretation. Berlin Heidelberg: Springer
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345 DOI:10.1144/GSL.SP.1989.042.01.19
Tang Y, Zhao ZD, Qi NY, Wang ZZ, Liu D, Luan JY and Zhu DC. 2019. Geochemistry and petrogenesis of Late Cretaceous Namling gabbro and dykes in Gangdese batholith, Tibet. Acta Petrologica Sinica, 35(2): 387-404 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.08
Tang Y. 2020. Dykes and extension events in the southern Lhasa subterrane during the Cretaceous and Cenozoic. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Tong JS, Liu J, Zhong HM, Xia J, Lu RK and Li YH. 2007. Zircon U-Pb dating and geochemistry of mafic dike swarms in the Lhozag area, southern Tibet, China, and their tectonic implications. Geological Bulletin of China, 26(12): 1654-1664 (in Chinese with English abstract)
Wang CS, Zhao XX, Liu ZF, Lippert PC, Graham SA, Coe RS, Yi HS, Zhu LD, Liu S and Li YL. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987-4992 DOI:10.1073/pnas.0703595105
Wang M, Li C, Wu YW and Xie CM. 2014. Geochronology, geochemistry, Hf isotopic compositions and formation mechanism of radial mafic dikes in northern Tibet. International Geology Review, 56(2): 187-205 DOI:10.1080/00206814.2013.825076
Wang M, Li C, Zhai QG, Xie CM and Wu YH. 2009. Magma homology of mafic dyke and basalt in southern Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1281-1289 (in Chinese with English abstract)
Wang Q, Wyman DA, Li ZX, Sun WD, Chung SL, Vasconcelos PM, Zhang QY, Dong H, Yu YS, Pearson N, Qiu HN, Zhu TX and Feng XT. 2010. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift?. Earth and Planetary Science Letters, 298(1-2): 205-216 DOI:10.1016/j.epsl.2010.07.046
Wang YF, Zeng LS, Gao JH, Zhao LH, Gao LE and Shang Z. 2019. Along-arc variations in isotope and trace element compositions of Paleogene gabbroic rocks in the Gangdese batholith, southern Tibet. Lithos, 324-325: 877-892 DOI:10.1016/j.lithos.2018.11.036
Wang YY, Gao LE, Zeng LS, Chen FK, Hou KJ, Wang Q, Zhao LH and Gao JH. 2016. Multiple phases of Cretaceous mafic magmatism in the Gyangze-Kangma area, Tethyan Himalaya, southern Tibet. Acta Petrologica Sinica, 32(12): 3572-3596 (in Chinese with English abstract)
Wang YY, Zeng LS, Asimow PD, Gao LE, Ma C, Antoshechkina PM, Guo CL, Hou KJ and Tang SH. 2018. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province. Lithos, 296-299: 396-411 DOI:10.1016/j.lithos.2017.11.014
Wei YQ, Zhao ZD, Niu YL, Zhu DC, DePaolo DJ, Jing TJ, Liu D, Guan Q and Sheikh L. 2020. Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic-Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 78: 41-57 DOI:10.1016/j.gr.2019.08.014
Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW and Lo CH. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191-201 DOI:10.1016/j.chemgeo.2008.03.003
Williams H, Turner S, Kelley S and Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339-342 DOI:10.1130/0091-7613(2001)029<0339:AACODI>2.0.CO;2
Wilson M. 2001. Igneous Petrogenesis. London: Kluwer Academic Publishers
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)
Xia Y, Zhu DC, Zhao ZD, Wang Q, Yuan SH, Chen Y and Mo XX. 2012. Whole-rock geochemistry and zircon Hf isotope of the OIB-type mafic rocks from the Comei Large Igneous Province in southeastern Tibet. Acta Petrologica Sinica, 28(5): 1588-1602 (in Chinese with English abstract)
Xia Y, Zhu DC, Wang Q, Zhao ZD, Liu D, Wang LQ and Mo XX. 2014. Picritic porphyrites and associated basalts from the remnant Comei Large Igneous Province in SE Tibet: Records of mantle-plume activity. Terra Nova, 26(6): 487-494 DOI:10.1111/ter.12124
Xia Y, Wang Q, Zhu DC, Ernst RE, Zhang S, Liu D and Zhao ZD. 2020. Intermediate rocks in the Comei large igneous provinces produced by amphibole crystallization of tholeiitic basaltic magma. Lithos, 374-375: 105731 DOI:10.1016/j.lithos.2020.105731
Xu Q, Zeng LS, Zhao LH, Hu ZP, Wang HT, Shen Y, Wang YY and Wang YF. 2020. Geochemical characteristics and petrogenesis of Miocene high Sr/Y rocks in Xigatze fore-arc basin, southern Tibet. Lithos, 366-367: 105543 DOI:10.1016/j.lithos.2020.105543
Xu W, Dong YS, Zhang XZ, Deng MR and Zhang L. 2016. Petrogenesis of high-Ti mafic dykes from Southern Qiangtang, Tibet: Implications for a ca.290Ma large igneous province related to the Early Permian rifting of Gondwana. Gondwana Research, 36: 410-422
Xu XX, Ding L, Xu Q, Cai FL, Zhang QH, Zhang LY and Lai QZ. 2009. Tectonics implications of the ultramafic dykes in southeastern Tibet. Chinese Journal of Geology, 44(3): 1012-1024 (in Chinese with English abstract)
Xu YG, Lan JB, Yang QJ, Huang XL and Qiu HN. 2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology, 255(3-4): 439-453 DOI:10.1016/j.chemgeo.2008.07.016
Yang JB, Zhao ZD, Hou QY, Niu YL, Mo XX, Sheng D and Wang LL. 2018. Petrogenesis of Cretaceous (133~84Ma) intermediate dykes and host granites in southeastern China: Implications for lithospheric extension, continental crustal growth, and geodynamics of Palaeo-Pacific subduction. Lithos, 296-299: 195-211 DOI:10.1016/j.lithos.2017.10.022
Ye LJ, Zhao ZD, Liu D, Zhu DC, Dong GC, Mo XX, Hu ZC and Liu YS. 2015. Late Cretaceous diabase and granite dike in Namling, Tibet: Petrogenesis and implications for extension. Acta Petrologica Sinica, 31(5): 1298-1312 (in Chinese with English abstract)
Yue YH and Ding L. 2006. 40Ar/39Ar Geochronology, geochemical characteristics and genesis of the Linzhou basic dikes, Tibet. Acta Petrologica Sinica, 22(4): 855-866 (in Chinese with English abstract)
Zeng LS, Gao LE, Hou KJ and Tang SH. 2012. Late Permian mafic magmatism along the Tethyan Himalaya Belt, southern Tibet and tectonic implications. Acta Petrologica Sinica, 28(6): 1731-1740 (in Chinese with English abstract)
Zeng LS, Gao LE, Guo CL, Hou KJ and Wang Q. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, southern Tibet. Acta Petrologica Sinica, 33(8): 2377-2394 (in Chinese with English abstract)
Zhai QG, Li C, Wang J, Ji ZS and Wang Y. 2009. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern Tibet. Chinese Science Bulletin, 54(13): 2279-2285 DOI:10.1007/s11434-009-0203-6
Zhai QG, Jahn BM, Su L, Ernst RE, Wang KL, Zhang RY, Wang J and Tang SH. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28-43 DOI:10.1016/j.lithos.2012.10.018
Zhang YY, Yan J, Liu XQ and Chen YK. 2017. Zircon age dating for dikes in the Yuexi area of Dabie orogen and its significance. Journal of Mineralogy and Petrology, 37(1): 49-56 (in Chinese with English abstract)
Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH and Hou ZQ. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113: 190-212 DOI:10.1016/j.lithos.2009.02.004
Zhong HM, Xia J, Tong JS, Lu RK, Li YH and Xu SF. 2004. New results and major progress in regional geological survey of the Lhozag County Sheet. Regional Geology of China, 23(5-6): 451-457 (in Chinese with English abstract)
Zhou P, Rong F, Li Q and Liu GX. 2019. Zircon U-Pb ages of gabbro-diorite veins in Tinggong, Tibet and its geological significance. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 773-780 (in Chinese with English abstract)
Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS, Wang LQ and Zhao ZD. 2007. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction. Journal of Asian Earth Sciences, 29(2-3): 320-335 DOI:10.1016/j.jseaes.2005.12.004
Zhu DC, Mo XX, Pan GT, Zhao ZD, Dong GC, Shi YR, Liao ZL, Wang LQ and Zhou CY. 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in South Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere?. Lithos, 100(1-4): 147-173 DOI:10.1016/j.lithos.2007.06.024
Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B and Yang YH. 2009. The 132Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583-586 DOI:10.1130/G30001A.1
Zhu DC, Mo XX, Zhao ZD, Niu YL, Wang LQ, Chu QH, Pan GT, Xu JF and Zhou CY. 2010. Presence of Permian extension-and arc-type magmatism in southern Tibet: Paleogeographic implications. GSA Bulletin, 122(7-8): 979-993 DOI:10.1130/B30062.1
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Wang Q, Zhao ZD, Chung SL, Cawood PA, Niu YL, Liu SA, Wu FY and Mo XX. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5: 14289 DOI:10.1038/srep14289
陈希节, 许志琴, 孟元库, 贺振宇. 2014. 冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 30(8): 2253-2268.
董国臣, 莫宣学, 赵志丹, 朱弟成, 王亮亮, 陈涛, 李冰. 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据. 岩石学报, 22(4): 835-844.
董国臣, 莫宣学, 赵志丹, 朱弟成, 宋云涛, 王磊. 2008. 西藏冈底斯南带辉长岩及其所反映的壳幔作用信息. 岩石学报, 24(2): 203-210.
董铭淳, 赵志丹, 朱弟成, 刘栋, 董国臣, 莫宣学, 胡兆初, 刘勇胜, 邹子昊. 2015. 西藏林周盆地中酸性脉岩的年代学、地球化学和岩石成因. 岩石学报, 31(5): 1268-1284.
高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中-基性岩脉群为例. 岩石学报, 33(8): 2412-2436.
管琪. 2011. 西藏南冈底斯东段中新生代花岗岩类年代学与地球化学及其意义. 博士学位论文. 北京: 中国地质大学(北京)
侯贵廷, Halls H, Davis D, 黄宝玲, 杨默函, 王传成. 2009. 华北基性岩墙群的古地磁极及其哥伦比亚超大陆重建意义. 岩石学报, 25(3): 650-658.
江思宏, 聂凤军, 胡朋, 刘妍, 赖新荣. 2007. 藏南基性岩墙群的地球化学特征. 地质学报, 81(1): 60-72.
李才, 王天武, 杨德明, 杨日红. 2001. 西藏羌塘中央隆起区物质组成与构造演化. 长春科技大学学报, 31(1): 25-31, 36. DOI:10.3969/j.issn.1671-5888.2001.01.005
李才, 和钟铧, 李惠民. 2004. 青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构造意义. 中国地质, 31(4): 384-389.
李江海, 何文渊, 钱祥麟. 1997. 元古代基性岩墙群的成因机制、构造背景及其古板块再造意义. 高校地质学报, 3(3): 33-42.
李晓雄, 江万, 梁锦海, 赵志丹, 刘栋, 莫宣学. 2015. 西藏林周盆地设兴组玄武岩地球化学特征及意义. 岩石学报, 31(5): 1285-1297.
李永灿, 周清, 李应栩, 赖杨, 吴建阳, 夏祥标, 卿成实. 2017. 藏南色岗辉绿岩墙群年代学及成因研究. 高校地质学报, 23(1): 26-38.
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281-290. DOI:10.3969/j.issn.1006-7493.2005.03.001
潘桂棠, 王立全, 朱弟成. 2004. 青藏高原区域地质调查中几个重大科学问题的思考. 地质通报, 23(1): 12-19. DOI:10.3969/j.issn.1671-2552.2004.01.007
彭敏, 吴元保, 汪晶, 焦文放, 刘小驰, 杨赛红. 2009. 扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义. 科学通报, 54(5): 641-647.
彭澎, 刘富, 翟明国, 郭敬辉. 2011. 密云岩墙群的时代及其对长城系底界年龄的制约. 科学通报, 56(35): 2975-2980.
唐演, 赵志丹, 齐宁远, 王珍珍, 刘栋, 栾炅雨, 朱弟成. 2019. 西藏冈底斯岩基南木林晚白垩世岩体和脉岩地球化学与岩石成因. 岩石学报, 35(2): 387-404.
唐演. 2020. 南拉萨地体白垩纪-新生代脉岩与伸展事件. 硕士学位论文. 北京: 中国地质大学(北京)
童劲松, 刘俊, 钟华明, 夏军, 鲁如魁, 李运怀. 2007. 藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义. 地质通报, 26(12): 1654-1664. DOI:10.3969/j.issn.1671-2552.2007.12.019
王明, 李才, 翟庆国, 解超明, 吴彦旺. 2009. 藏北羌塘南部地区基性岩墙与玄武岩的岩浆同源性. 地质通报, 28(9): 1281-1289. DOI:10.3969/j.issn.1671-2552.2009.09.017
王亚莹, 高利娥, 曾令森, 陈福坤, 侯可军, 王倩, 赵令浩, 高家昊. 2016. 藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用. 岩石学报, 32(12): 3572-3596.
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325.
夏瑛, 朱弟成, 赵志丹, 王青, 袁四化, 陈越, 莫宣学. 2012. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素. 岩石学报, 28(5): 1588-1602.
徐晓霞, 丁林, 许强, 蔡福龙, 张清海, 张利云, 来庆洲. 2009. 藏东南超镁铁质岩墙及其地质意义. 地质科学, 44(3): 1012-1024. DOI:10.3321/j.issn:0563-5020.2009.03.018
叶丽娟, 赵志丹, 刘栋, 朱弟成, 董国臣, 莫宣学, 胡兆初, 刘勇胜. 2015. 西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景. 岩石学报, 31(5): 1298-1312.
岳雅慧, 丁林. 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因. 岩石学报, 22(4): 855-866.
曾令森, 高利娥, 侯可军, 唐索寒. 2012. 藏南特提斯喜马拉雅带晚二叠纪基性岩浆作用及其构造地质意义. 岩石学报, 28(6): 1731-1740.
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用. 岩石学报, 33(8): 2377-2394.
翟庆国, 李才, 王军, 纪战胜, 王永. 2009. 藏北羌塘地区基性岩墙群锆石SHRIMP定年及Hf同位素特征. 科学通报, 54(21): 3331-3337.
张媛媛, 闫峻, 刘晓强, 陈永康. 2017. 大别造山带岳西地区岩脉群锆石定年及意义. 矿物岩石, 1: 49-56.
钟华明, 夏军, 童劲松, 鲁如魁, 李运怀, 徐生发. 2004. 洛扎县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 451-457.
周鹏, 荣风, 李强, 刘恭喜. 2019. 西藏厅宫地区辉长岩-闪长岩脉锆石U-Pb年龄及地质意义. 矿物岩石地球化学通报, 38(4): 773-780.