岩石学报  2021, Vol. 37 Issue (10): 3067-3094, doi: 10.18654/1000-0569/2021.10.07   PDF    
高黎贡东南缘龙陵-瑞丽俯冲增生杂岩带与中特提斯洋演化
戚学祥1, 沈辉2, 韦诚1,3, 任玉峰1, 蔡志慧1, 吉风宝4, 梁凤华1, 刘旭峰1     
1. 自然资然部深部动力学重点实验室, 中国地质科学院地质研究所, 北京 100037;
2. 云南省地质矿产勘查院, 昆明 650000;
3. 北京大学地球与空间科学学院, 北京 100871;
4. 西藏自然科学博物馆, 拉萨 850000
摘要: 龙陵-瑞丽增生杂岩带的构造属性对确定高黎贡构造带作为腾冲-保山地块的边界及班怒带南向延伸十分关键。本文在地质填图的基础上,通过岩石学、矿物学、岩石地球化学、同位素年代学和同位素示踪等方法,查明混杂岩带主要由蛇纹石化橄榄岩、玄武岩/辉长岩、硅质岩、碳酸盐岩、含放射虫层状硅质岩和锰结核的深海沉积岩等岩块呈规模不等的团块状、透镜状分布于浊积岩基质中,具有典型的俯冲增生杂岩岩石组合特征。蛇纹石化橄榄岩原岩由方辉橄榄岩和少量纯橄岩组成,具有轻稀土轻微富集、Mg#值高(88~92),铬尖晶石Cr#、Mg#值分别在60~70和20~26区间,橄榄石Fo值为90~95。在铬尖晶石Cr#-Mg#指数图解和橄榄石Mg#-铬尖晶石Cr#图解上样品都落在弧前SSZ型橄榄岩区,说明研究区内的地幔橄榄岩是经历了高度部分熔融(>30%)和熔体抽离后的残留相,形成于弧前构造背景。玄武岩和辉长岩地球化学特征类似,具有富钛(TiO2>2.26%)、高Mg#值特征(49~57),其稀土配分模式和微量元素蛛网图、构造环境判别图解、εNdt)值(+2.2~+5.1)、以及岩石中含少量富钛角闪石和黑云母等,表明它们属于洋岛/海山型基性岩类,其岩浆来源于富集地幔。橄榄岩中脉状辉石岩锆石U-Pb年龄为183~185Ma,浊积岩中杂砂岩最小碎屑锆石U-Pb年龄为212~241Ma。此外,增生杂岩带中存在含早白垩世流纹岩/凝灰岩夹层的弧前/弧间沉积,并被晚白垩世陆相沉积岩不整合覆盖,这些特点说明俯冲增生杂岩带形成于晚三叠-早白垩世。研究区内混杂岩带的构造属性和时代与班怒带(拉萨-南羌塘地块间)和缅甸境内密支那蛇绿混杂岩带完全一致,是中特提斯洋演化的产物。中生代,高黎贡东南缘混杂岩带北连班怒带、南东连密支那蛇绿混杂岩带,随后,在新生代印度板块向北俯冲过程中,密支那蛇绿混杂岩带被Sagaing断裂带分支——八莫断裂带右行走滑位移到现今位置。
关键词: 高黎贡东南缘    俯冲增生杂岩带    班怒带    密支那蛇绿岩带    中特提斯洋    
Longlin-Ruili subduction-accretionary complex belt in the southeastern Gaoligong orogen, and its relationship with the evolution of the Meso-Tethyan Ocean
QI XueXiang1, SHENG Hui2, WEI Cheng1,3, REN YuFeng1, CAI ZhiHui1, JI FengBao4, LIANG FengHua1, LIU XuFeng1     
1. Key Laboratory of Deep-Earth Dynamics, Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Yunnan Institute of Geology & Mineral Resources Exploration, Kunming 650000, China;
3. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
4. Tibet Museum of Natural Science, Lhasa 850000, China
Abstract: The tectonic setting of the Longlin-Ruili mélange belt is a key to identify the Gaoligong tectonic zone as the suture zone between Tengchong and Baoshan blocks, and the southward extension of the Bangonghu-Nujiang suture. Here we present new geological, petrochemical, mineral chemical, geochronological and isotopic data for the Longlin-Ruili mélange belt in the southeastern Gaoligong orogen. The slices inside this mélange belt include serpentinization peridotite, basalt/gabbro, chert, carbonite and pelagic sedimentary rock with radiolarian bearing layered siliceous rocks and manganese nodules distributed in the turbidites, showing typical rock assemblage of a subduction-accretionary complex. The peridotite consists of the harzburgite and a small amount of dunite. It is characterized by the slightly enriched LREE, high values of Mg# (88~92), high values of Fo (90~95) for olivine, and Cr# and Mg# values for chrome-spinel are 60~70 and 20~26, respectively. The Mg# (spinel) vs. Cr# (spinel) and Mg# (olivine) vs. Cr# (spinel) diagrams show the peridotite is the residual phases after high degree partial melting (>30%) and extraction of melt in supra-subduction environment. The basalt and gabbro are oceanic island or seamount type whose mafic magmas are derived from a metasomatized mantle, with features of the enriched TiO2(>2.26%) and high values of Mg# (49~57), and their REE patterns and trace element spider lines are consistent with that of OIB, with low εNd(t) (+2.2 to +5.1). Furthermore, a small amount of Ti-enriched biotite and hornblende occurred in mafic rocks. The U-Pb dating of the zircons from pyroxenites within harzburgite yielded weighted mean 206Pb/238U ages of 183~185Ma. The U-Pb dating of the detrital zircons from greywackes in turbidite yielded the youngest group 206Pb/238U ages of 212~241Ma. There are forearc and inter-arc sedimentary rocks with Early Cretaceous rhyolite or tuff in mélange belt. The Upper Cretaceous continental sedimentary rocks unconformably onlapped on the mélange zone. All these features suggest that this mélange belt was formed in a supra-subduction zone during Late Triassic to Early Cretaceous. The tectonic setting and age of the Longlin-Ruili mélange belt are consistent with that of the Bangonghu-Nujiang and Myitkyina ophiolitic mélange belts which are related with the subduction of the Meso-Tethyan Ocean. As a result, the Longlin-Ruili mélange belt should be connected with Bangonghu-Nujiang suture zone in the north, while the Myitkyina ophiolitic mélange belts in the southeast during Mesozoic. After that, the Myitkyina ophiolitic mélange belt was displaced to present position by Sagaing dextral slip-shearing in Cenozoic.
Key words: Southeastern Gaoligong    Subduction-accretionary complex belt    Bangonghu-Nujiang suture zone    Myitkyina ophiolitic mélange belt    Meso-Tethyan Ocean    

青藏高原东南缘是东特提斯构造域的重要组成部分,其形成经历了华南、印支、Sibumasu/保山、腾冲和印度等块体分别于中-晚泥盆世、二叠纪和三叠纪从冈瓦纳古陆东北缘相继裂离、向北漂移,并于晚古生代到新生代期间,块体之间的古特提斯洋、中特提斯洋和新特提斯洋相继俯冲导致块体拼合,自西向东依次形成印度板块、Wunthi-Popa弧带、腾冲、保山-Sibumasu、印支和扬子地块及与之对应的Kalaymyo(新特提斯)、Myitkyina(密支那)、高黎贡/怒江(中特提斯)、澜沧江、哀牢山-金沙江(古特提斯)缝合带,它们共同构成了一条复杂的构造带(Dewey et al., 1988; Metcalfe, 2002, 2006, 2011; Lepvrier et al., 2004Pedersen et al., 2010戚学祥等,2011; Liu et al., 2012, 2016; 杨经绥等,2012Qi et al., 2014, 2015, 2016, 2019; Mitchell et al., 2015; Ridd, 2016Htay et al., 2017; Searle et al., 2017; Gardiner et al., 2018; Ridd et al., 2019)(图 1)。其中,位于青藏高原中部、作为拉萨地块与羌塘地块边界的班公湖-怒江中特提斯缝合带,是一条近东西向展布、长达2000km,蛇绿岩(251~150Ma,Shi, 2007; Shi et al., 2008, 2012Wang et al., 2008; Qiangba et al., 2009黄启帅等, 2012; 周涛等, 2014)和高压变质岩(190~170Ma,Zhang et al., 2010, 2012b, 2014Guynn et al., 2013Wang et al., 2016)断续分布、以及其两侧侏罗纪-早白垩世俯冲-碰撞型岩浆岩带(170~150Ma,140~105Ma;Zhu et al., 2009, 2013; Ji et al., 2009; Zhang et al., 2012bChen et al., 2014, 2017Li et al., 2014a, b; Liu et al., 2014, 2017; Fan et al., 2015)发育的中特提斯缝合带。但该缝合带经东构造结向南如何延伸一直存在较大争议。

图 1 青藏高原东南缘构造略图 Fig. 1 Simplified tectonic map of the southeastern Tibet Plateau

近年来,很多学者对高黎贡构造带的属性开展了大量工作,认为其是腾冲与保山地块之间的边界性中特提斯缝合带,向北经东构造结与班怒带相连,其主要证据如下:1)高黎贡构造带内发育一条与班公湖-怒江缝合带侵位时代和构造背景一致的早白垩世花岗岩带和多金属成矿带(杨启军等,2006Zhu et al., 2009, 2015, 2017; 戚学祥等,2011杨启军和许义刚, 2011; Xu et al., 2012李再会等,2012a; Cao et al., 2014Qi et al., 2015; Xie et al., 2016Zhao et al., 2016);2)腾冲地块内二叠系的岩性组成、古生物组合和缺失卧牛寺组裂谷型玄武岩,以及地块内广泛分布的早古生代、早白垩世、晚白垩世和始新世岩浆岩特征与拉萨地块非常相似,而明显不同于Sibumasu(包括保山)和南羌塘地块,说明腾冲地块在冈瓦纳大陆中是一个介于澳大利亚和Sibumasu地块之间、位于拉萨地块北东缘的独立块体(刘本培等,2002Zhang et al., 2013Liao et al., 2015Xie et al., 2016);3)腾冲地块内花岗岩锆石Hf地壳模式年龄集中于1.3~1.8Ga,远小于保山地块内花岗岩锆石Hf地壳模式年龄(1.9~2.3Ga),以及两个地块内古生代沉积岩碎屑锆石U-Pb年龄峰值明显不同(戚学祥等,2011Xu et al., 2012; 李再会等,2012bCao et al., 2014Li et al., 2015, 2016Qi et al., 2015Zhu et al., 2015; Xie et al., 2016; Zhao et al., 2016),说明其基底岩石的形成时代不同及它们为冈瓦纳大陆北缘两个并不相连的地块;4)古地磁数据揭示晚石炭世腾冲地块的古纬度(南纬20.4°)与保山地块的古纬度(南纬25°~34.1°)相差4.6°~13.7°,暗示当时它们可能是两个独立的块体(李朋武等,2005);5)高黎贡构造带西南缘三台山一带存在由浊积岩构成的混杂基质和蛇纹石化橄榄岩、碳酸盐岩和变质岩等岩块组成的混杂岩带(刘本培等,2002储著银等,2009尹福光等,2012张克信等,2016)。但到目前为止,确定其为中特提斯缝合带的标志性证据——混杂岩带的构造属性及其与中特提斯洋演化的关系有待深入研究。鉴于此,本文通过大比例尺地质填图,以及构造地质学、岩石学、地球化学和同位素地质学等方法,查明高黎贡东南缘(龙陵-瑞丽)混杂岩带的构造属性和时代,探讨其与拉萨-南羌塘地块间班怒带和缅甸东部密支那蛇绿混杂岩带的关系,揭示中特提斯洋的空间分布和演化。

1 地质背景

高黎贡构造带构成腾冲地块与保山(Sibumasu)地块的边界,北起察隅,呈南北向经贡山、泸水至龙陵转为南西向经瑞丽至缅甸境内为Sagaing断裂带所截,全长约500km,宽10~20km(图 2)。构造带由中部的高绿片岩相-角闪岩相、局部达中压麻粒岩相(Song et al., 2010)的深变质变形带和两侧的低绿片岩相到绿片岩相浅变质带组成,其间分别以泸水-龙陵-瑞丽断裂带和龙川江断裂带构成其东、西边界。深变质带变质岩原岩主要为早古生代沉积岩(戚学祥等,2019)和古生代、中生代及新生代岩浆岩,并在新生代块体旋转挤出过程中叠加右行韧性剪切变形(Wang and Burchfiel, 1997季建清等,2000Wang et al., 2006杨启军等,2006Lin et al., 2009; Zhang et al., 2012aXu et al., 2012, 2015高永娟等,2012Eroǧlu et al., 2013; 邹光富等, 2013, 2014; Huang et al., 2015Qi et al., 2015, 2019),发生不同程度糜棱岩化,形成长英质、花岗质和角闪质糜棱岩及糜棱岩化角闪岩和大理岩,统称为高黎贡群,在缅甸境内称为Mogok群。构造带东侧浅变质岩原岩由古生代半深海、浅海和滨海相沉积岩及中生代浅海到海陆交互相沉积岩组成,并在下二叠统和中侏罗统中夹有海相火山岩(刘旭峰等,2019),但缺失中、上石炭统和上三叠-下侏罗统。在这套低绿片岩相变质岩中发育一套由蛇纹石化橄榄岩、玄武岩、硅质岩、碳酸盐岩、含层状放射虫硅质岩的远洋沉积岩岩块和浊积岩混杂基质构成的增生杂岩带(Qi et al., 2019),分布于龙陵-瑞丽一带(图 2)。

图 2 高黎贡构造带地质略图(据Qi et al., 2019修改) LLRF-泸水-龙陵-瑞丽断裂带;LCJF-龙川江断裂带;DYJF-大盈江断裂带;NBS-那帮韧性剪切带. U-Pb年龄数据来源于杨启军等, 2006; Cong et al., 2011a, b; 戚学祥等, 2011; Xu et al., 2012; Qi et al., 2015, 2019; Xie et al., 2016 Fig. 2 Geological map of the Gaoligong Orogen showing the major geological units (modified after Qi et al., 2019) LLRF: Lushui-Longling-Ruili fault; LCJF: Longchuanjiang fault; DYJF: Dayingjiang fault; NBS: Nabang ductile shear zone. U-Pb zircon age data from Yang et al., 2006; Cong et al., 2011a, b, Qi et al., 2011, 2015, 2019; Xu et al., 2012; Yin et al., 2012; Xie et al., 2016

腾冲地块是青藏高原东南缘的重要块体之一,东以高黎贡构造带(班公湖-怒江缝合带南延部分)分隔于保山地块,西以密支那蛇绿岩带构成与Wunthi-Popa弧带的边界,是经历中特提斯班公湖-怒江洋俯冲、腾冲与保山地块碰撞拼合(170~100Ma,莫宣学和潘桂棠, 2006)和新特提斯雅鲁藏布-Kalaymyo洋俯冲、印度板块向北俯冲碰撞(150~65Ma,莫宣学和潘桂棠, 2006),并发生大规模旋转、逃逸、走滑(35~17Ma,Tapponnier and Molnar, 1976; Tapponnier et al., 1982)而形成的多期变形、岩浆活动和变质作用叠加的地块(图 1)。块体由高黎贡群深变质岩和晚古生代-中生代浅变质沉积岩及新生代沉积岩组成。其中,高黎贡群深变质岩分布于腾冲地块东部边缘的高黎贡构造带和西部边缘的那邦韧性剪切带内,在地块内部腾冲、梁河、盈江和拢川一带零星出露(图 2),面积约2414km2,总厚度大于3000m。岩石类型和变质程度与高黎贡构造带一致。这些变质岩普遍遭受后期糜棱岩化作用的改造(Wang and Burchfiel, 1997; 季建清等, 2000; Lin et al., 2009; Xu et al., 2012; Zhang et al., 2012a; Eroǧlu et al., 2013; Huang et al., 2015; Xu et al., 2015),致使原岩面貌消失,原生层理为新生片理、片麻理或糜棱面理所取代,属层状无序的构造岩层,各岩层之间不存在正常的叠置关系。晚古生代-中生代浅变质沉积岩为零星出露的形成于河流-三角洲相、滨海-浅海相下泥盆统、下-中二叠统和浅海相-开阔台地相上三叠统沉积岩,它们都经历了低绿片岩相变质。以缺失中、上泥盆统-石炭系、上二叠-中三叠统和侏罗-白垩系,以及下-中二叠统地层中发育厚达数千米冰碛岩,且不含玄武岩层区别于保山地块。

密支那蛇绿岩带位于中缅边界西缅甸境内,受Sagaing断裂带北端弧型撒开的八莫和莫冈分支断裂带控制、呈北北东向展布的“σ形透镜状”区域内。蛇绿岩带由中侏罗世地幔橄榄岩、基性岩和晚三叠世-侏罗纪浊积岩组成,形成于弧前俯冲带(施美凤等,2011Mitchell et al., 2012杨经绥等,2012; Liu et al., 2016Searle et al., 2017Gardiner et al., 2018Ridd et al., 2019),其上部为白垩纪-新近纪地层、第四纪沉积物覆盖。

泸水-龙陵-瑞丽断裂带走向与高黎贡构造带一致,由一系列近于平行的次级断裂组成。在龙陵以北呈近南北向,产状与糜棱面理一致,倾向东,倾角50°~60°,具有右行走滑剪切的特点,经龙陵呈弧型向南西方向延伸。进入龙陵-瑞丽段,由西部的龙潭-楠木桥断裂和东部的龙陵-瑞丽断裂等组成,分别分隔龙陵-瑞丽增生杂岩带于西北侧的高黎贡群变质岩和东侧的古生代、中侏罗统和上白垩统沉积岩。其中,龙潭-楠木桥断裂带总体倾向北西,倾角变化较大,多分布在50°~80°之间,糜棱岩化变形强烈,带内眼球状构造、糜棱面理、矿物拉伸线理发育,展示其右行走滑的特点,形成时代为35~10Ma,是中新世晚期-上新世右行走滑剪切变形的产物(Lin et al., 2009; Zhang et al., 2012a; Eroǧlu et al., 2013)。

Sagaing断裂带从安达曼海北缘向北穿过缅甸中部,构成含有Wuntho-Popa岩浆弧的西缅与中缅、东缅的边界,长约1200km,累积右行走滑距离约330~450km,由主断裂带及两侧伴生的次级断裂共同构成的近SN向右旋走滑剪切断裂系统(Mitchell, 1984; Panda et al., 2018)。主干断裂带向北延伸至Mogok后呈马尾状撒开为4条分支断裂带(Mitchell, 1984; 吴中海等,2015; Panda et al., 2018; Ridd et al., 2019; Barber, 2020)。断裂活动起始于中新世或渐新世(Searle et al., 2017; Barber et al., 2017; Gardiner et al., 2018; Barber, 2020),与南部安达曼海底洋脊转换断层和北部东构造结形成有关(Panda et al., 2018)。

腾冲地块内岩浆活动主要发生在中-新生代,自东往西依次为近于平行、带状分布的高黎贡早白垩世岩浆岩带、腾冲-梁河晚白垩世岩浆岩带和新岐-盈江新生代岩浆岩带。其中,早白垩世岩浆岩带内的侵入岩岩石组合为闪长岩-花岗闪长岩-花岗岩,岩体断续分布于构造带中,与围岩呈侵入接触关系(Qi et al., 2019)。早白垩世火山岩为英安岩和流纹岩,主要分布于高黎贡东南缘的龙陵-瑞丽和西北缘的曲石一带(戚学祥等,2020韦诚等,2020),夹于弧前/弧间粉砂岩、泥质粉砂岩和泥岩中,构成混杂岩带的一部分。此外,在腾冲-梁河一带还发育受断陷盆地控制的晚中新世-更新世火山岩。

2 俯冲增生杂岩带岩石组合

高黎贡东南缘俯冲增生杂岩带分布于龙陵-瑞丽一带,北东-南西向展布,其北西以龙潭-楠木桥主断裂带分隔于高黎贡构造带深变质带,南东以泸水-龙陵-瑞丽断裂为界,宽3~5km,长约130km,由浊积岩组成混杂基质,蛇纹石化橄榄岩、玄武岩、辉长岩/辉绿岩、硅质岩、含放射虫化石硅质岩深海沉积岩、早古生代碳酸盐岩和变质岩块组成混杂块体(图 3)。

图 3 高黎贡东南缘俯冲增生杂岩带地质图 Fig. 3 Geological map of subduction-accretionary complex belt in southeastern Gaoligong Orogen
2.1 蛇纹石化橄榄岩块

蛇纹石化橄榄岩呈块状断续产出,现已查明的15个橄榄岩块单个块体出露面积在0.02~2 km2之间,断续分布于浊积岩混杂基质中,呈断层接触(图 3)。岩石都已不同程度的片理化,尤其是在边部片理化强烈,在接触带附近,围岩片理化较强,无接触变质和烘烤边等岩浆侵位现象。在空间上可分为三台山、下芒岗、永欠和西山-营盘4个区(图 3)。

三台山区蛇纹石化橄榄岩块分布于帮滇村附近,由帮滇村西、东2个出露面积分别为1.1km2和2km2的岩块组成,呈北东向透镜状展布,西与浊积岩呈断层接触,东部逆冲到上白垩统沉积岩之上(图 4a),其顶部多发育规模不等的硅质岩块(图 4e)。橄榄岩块主体为方辉橄榄岩,内含少量纯橄岩(图 4b)和辉石岩脉(图 4c)。方辉橄榄岩由斜方辉石、橄榄石和铬尖晶石组成。其中,斜方辉石呈柱状,粒度:1×3mm~3×8mm,含量约29%,大部分蚀变为蛇纹石、绢石和滑石,但仍保留假象,并在核部有少量残留。在斜方辉石裂隙或解理中存在少量不规则状单斜辉石,粒度0.1~0.3mm,含量约1%。橄榄石呈自形-半自形短柱状,粒度在1×1.5mm~2×3mm之间,含量在67%左右,大部分强烈蚀变为蛇纹石,几乎没有橄榄石残留。铬尖晶石呈自形-半自形粒状,粒度为0.5×0.8mm~2×3mm,边部转变为磁铁矿,其间呈渐变关系,含量3%。在铬尖晶石内存在一些圆形或不规则状蛇纹石,可能为橄榄石矿物包裹体蚀变的产物。纯橄岩呈团块状分布于方辉橄榄岩中,呈渐变关系,出露面积约10~30m2。纯橄岩主要由橄榄石(97%)和铬尖晶石(3%)组成(图 5b)。橄榄石大部分蚀变为蛇纹石,局部存在少量残留体。辉石岩脉宽10cm~2m,墨绿色、块状,几乎全部蚀变为绿泥石(98%),仅保留少量的磷灰石、锆石、金红石、榍石和钛铁矿等副矿物(2%),但局部仍保留有辉石的晶体假象。

图 4 俯冲增生杂岩带主要块体与混杂基质宏观特征 (a)浊积岩逆冲到蛇纹石化橄榄岩之上;(b)方辉橄榄岩中纯橄岩体;(c)方辉橄榄岩中辉石岩脉;(d)玄武岩块露头和手标本;(e)硅质岩块野外露头;(f)含放射虫硅质岩层的深海沉积岩;(g)上为浊积岩中鲍马序列,下为鲍马序列中c段斜层理;(h)混杂基质中的锰结核 Fig. 4 Photos of the rock blocks and matrix in the subduction-accretionary complex (a)turbidite thrusted on the serpentinized peridotite block; (b)dunite within harzburgite; (c)pyroxenite veins in harzburgite; (d)basalt; (e) chert block; (f)abysmal sedimentary rock with radiolarian chert intercalation; (g)Bouma sequence in the upper part, the oblique bedding of c in the lower part; (h)manganese nodule

图 5 俯冲增生杂岩带主要岩石显微特征 (a)方辉橄榄岩;(b)纯橄岩;(c)蛇纹石化方辉橄榄岩;(d)堆晶辉石岩;(e)含单斜辉石和钛闪石斑晶的玄武岩;(f)辉长岩;(g)含铬尖晶石硅质岩;(h)含放射虫化石硅质岩. Ol-橄榄石;Opx-斜方辉石;Cpx-单斜辉石;Pl-斜长石;Hb-角闪石;Serp-蛇纹石;Bas-绢石;Tlc-滑石;Spl-铬尖晶石;Che-硅质岩;Rad-放射虫化石 Fig. 5 Microscopic pictures of rocks in the subduction-accretionary complex (a)harzburgite; (b)dunite; (c)serpentinized harzburgite; (d)cumulate pyroxenite; (e)basalt with clinopyroxene and amphibole phenocrysts; (f)gabbro; (g)chert with Cr-spinel; (h)radiolarian bearing chert. Ol-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Pl-plagioclase; Hb-ampholite; Serp-serpentine; Bas-bastite; Tlc-talc; Spl-chrome spinel; Che-chert; Rad- radiolarian

下芒岗区橄榄岩块分布于浊积岩混杂基质中,呈断层接触(图 3)。块体规模较小,出露面积约0.3km2。岩性为方辉橄榄岩,由橄榄石、斜方辉石和铬尖晶石组成。其中,橄榄石呈短柱状,粒度0.8×1.3mm~2×3mm,含量约为70%,强蛇纹石化,几乎见不到橄榄石残晶,但局部仍可见橄榄石晶体假象。斜方辉石呈柱状,粒度1×3mm~3×6mm,含量约占29%,强蛇纹石化、绢石化,局部可见斜方辉石晶体假象。铬尖晶石呈自形-半自形粒状,粒度0.5×0.8mm~2×3mm,边部转变为磁铁矿,其间呈渐变关系,含量较少,仅占1%左右。

永欠区橄榄岩块群由4个规模较小的块体组成,沿浊积岩与上白垩统沉积岩之间的断层带串珠状分布,单个块体出露面积在0.2~0.5km2之间(图 3)。岩块主体为强烈片理化方辉橄榄岩,其次为宽1m左右片理化较弱的辉石岩脉,其顶部发育较多规模不等的硅质岩块。方辉橄榄岩呈似斑状结构,斑晶为粒度较粗的斜方辉石,基质为橄榄石和少量铬尖晶石(图 5ac)。其中,斜方辉石呈柱状,粒度2×3mm~3×8mm,含量30%,大部分蚀变为蛇纹石,局部保留少量斜方辉石晶体,其间呈渐变关系,且在其内部沿裂隙或解理发生不同程度的蛇纹石化。此外,在斜方辉石晶体内的裂隙或解理零星分布不规则状的单斜辉石,粒径0.1~0.4mm,含量约2%。橄榄石大部分蚀变为蛇纹石,但局部仍保留其晶体假象,存在少量橄榄石残留晶体,含量约为66%。铬尖晶石呈半自形-他形粒状,粒径0.1~0.8mm,含量约2%,磁铁矿化较强。辉石岩整体上片理化较弱,但边部亦有较强的片理化/糜棱岩化变形,主要矿物为斜方辉石,含有少量橄榄石,具有明显的堆晶结构(图 5d)。辉石岩存在2类蚀变:1)绢石化,岩石具有明显的堆晶结构,主体为斜方辉石,自形-半自形柱状,粒度0.2×0.4mm~0.6×1mm,含量约占98%,全部蚀变为绢石,且保留其完好的晶体假象。副矿物有磷灰石、锆石、铬尖晶石,含量约为2%;2)绿泥石化,岩石全部蚀变为叶绿泥石,仅保留少量辉石的晶体假象,其内磷灰石、榍石粒度较粗,个别达0.2×0.4mm,金红石和钛铁矿含量达1%。

西山-营盘区8个规模不等的蛇纹石化橄榄岩块呈串珠状沿北东向断续分布于浊积岩中,单个块体出露面积0.02~0.9km2,由方辉橄榄岩、纯橄岩和辉长岩脉组成。其中,方辉橄榄岩构成岩块主体,特征与上述一致。纯橄岩分布在西山一带,主要由橄榄石(93%)和斜方辉石(5%)组成。橄榄石大部分蚀变为蛇纹石,局部仍有残留。铬尖晶石仍是其重要的副矿物,含量2%左右,呈半自形-他形粒状,粒径0.2~0.7mm,边部蚀变为磁铁矿。

2.2 玄武岩块和辉长岩块

玄武岩块和辉长岩块是本次地质调查过程中新发现的基性岩块。玄武岩块分布于下芒岗区,目前已查明下芒岗、下芒岗西和下芒岗西南3个块体,它们都分布于含硅质岩薄层的深海沉积岩中(图 3),强片理化,与围岩呈断层接触。此外,在三台山区帮滇村浊积岩中发现薄层状玄武岩块。下芒岗玄武岩具有块状、气孔状、杏仁状构造,间粒结构和斑状结构。斑晶为单斜辉石,自形-半自形柱状,粒度0.2×0.4mm~0.5×0.8mm,含量约15%,部分晶体边部存在绿泥石化蚀变边。基质为斜长石、单斜辉石/钛闪石和隐晶质。斜长石呈半自形长柱状,杂乱分布,粒度0.05×0.2mm,含量30%,其内存在不同程度的钠黝帘石化蚀变。单斜辉石呈半自形柱状,零星分布,粒度0.05×0.1mm,含量7%,部分蚀变为绿泥石。此外,岩石中还存在榍石、钛磁铁矿等副矿物。下芒岗西玄武岩呈块状、气孔状和杏仁状构造,斑状结构和间粒结构,强片理化。斑晶为单斜辉石、角闪石和黑云母(图 5e)。单斜辉石呈自形-他形短柱状,粒度0.1×0.2mm~0.2×0.3mm,轻微蚀变,含量15%。角闪石呈半自形-他形长柱状,褐红色、粒度0.05×0.8mm~0.8×1.6mm,属于富钛角闪石或钛闪石,含量10%。黑云母呈他形片状集合体分布,粒度0.03×0.2mm~0.5×0.8mm,含量5%。基质为钛闪石和隐晶质。其中,钛闪石呈他形长柱状,褐红色,粒度0.02×0.4mm,含量30%。

辉长岩在永欠村东南蛇纹石化橄榄岩块附近坡积物中发现的,块状构造,辉长结构,主要矿物为斜长石和单斜辉石(图 5f),其次为少量方解石和磁铁矿。斜长石呈自形-半自形长柱状,粒度0.3×1mm~0.5×6mm,含量63%,有不同程度的绢云母化和钠长石化蚀变。单斜辉石呈半自形-他形短柱状,粒度0.6×1mm~1×1.5mm,含量35%,部分蚀变为绿泥石,并析出磁铁矿,沿辉石裂隙或解理分布。方解石呈他形粒状分布于斜长石和辉石粒间,应为原生矿物,含量1%左右。磁铁矿呈他形不规则状分布于硅酸盐矿物粒间,含量约1%。

2.3 硅质岩岩块

硅质岩块是增生杂岩带中重要组成部分,断续分布在蛇纹石化橄榄岩块上部,规模变化很大,从10×10cm到10×20m不等(图 4e),褐红色,质地坚硬,瓷状断口,块状构造,隐晶质-微晶质结构。镜下鉴定结果表明这些硅质岩存在2期:1)褐红色隐晶质硅质岩,其内含有褐铁矿和少量粘土类矿物,局部存在强烈揉皱的软沉积变形构造,反映其在未固结时因外力,如地震或海底洋流等诱发其发生软沉积变形,形成类似于褶皱的构造行迹;2)微晶质硅质岩,成分单一,无粘土类和褐铁矿类矿物,胶结早期硅质岩。该硅质岩的一个重要特点是其内有大小不一、零星分布、呈晶屑状、棱角分明、裂隙发育的铬尖晶石(图 5g),以及其内没有任何其他岩屑或晶屑矿物和生物化石。硅同位素和地球化学成分分析结果表明其形成与海底低温热液活动有关(韦诚,2021)。

2.4 基质特征

增生杂岩基质由浊积岩组成,构成增生杂岩的主体,主要有杂砂岩、泥岩互层组成典型的韵律层(图 4f)。在大部分地段岩石都发生强烈片理化构造变形,但从相对完整的岩层中仍保留完整的鲍马序列(图 4g),即:a段杂砂岩,灰黑-灰绿色、厚2~20cm,具有明显的自下而上逐渐变细的递变层理,杂基支撑结构。碎屑粒度自下而上从0.3~0.1mm,分选、磨圆度差,多呈棱角状。碎屑成分主要为单晶石英(40%~45%)、斜长石(20%~25%)和白云母(3%~5%),其次为燧石、泥岩和变质石英岩等岩屑,含量小于5%。杂基为粘土类,含量15%~20%,;b段亦为杂砂岩,但具有明显的平行纹层,厚2~5cm,与下段呈渐变关系,为细-微细砂岩,碎屑成分与a段一致;c段为微细砂岩-粉砂岩,底切顶截的爬升斜层理发育,厚1~5cm,与下段呈突变关系(图 4g下)。碎屑含量约占70%,其中粒径0.06~0.03mm约占50%、0.03~0.01mm约占20%。碎屑成分以单晶石英为主,棱角状-次圆状,含少量长条状白云母。粘土基质约占30%;d段为粉砂岩-泥质粉砂岩,发育平行纹理,与下段呈渐变关系。碎屑含量约占75%,其中粒径0.06~0.03mm约占45%、0.03~0.01mm约占30%。碎屑成分以单晶石英为主,含量约占63%,棱角状-次圆状,含少量长条状白云母,约占12%,粘土基质约占25%;e段为泥岩,厚0.3~1.0cm,层理不发育。泥岩层中局部发育层状泥质硅质岩和硅质岩,含放射虫化石(图 5h),层厚3~15cm。局部可见锰结核(图 4h)。

这套具有鲍马层序的沉积岩组合, 整体颜色较深, 多为灰黑色、深灰色和灰緑色,反映水体较深的缺氧沉积环境,结合岩石中发育鲍马层序c、d、e段组合分析,认为其形成于稳定、比较封闭的深水浊积扇外扇亚相的深海环境。

3 测试分析方法

在野外选择岩石出露面大、岩石新鲜、无脉体穿插的露头采集样品,经薄片观察确定其无细脉体的岩石进行锆石分选和岩石地球化学分析,以保证锆石来源的单一性和地球化学成分的代表性。

锆石分选在河北省地质调查研究院完成。样品经常规的粉碎和重选,分选出纯度较高的锆石,然后在双目镜下经人工挑选出纯度在99%以上的锆石样品。在北京讯得丰科技发展有限公司用环氧树脂将锆石样品和标样固定成圆饼状,用不同型号砂纸和磨料将锆石磨去一半并抛光后,对抛光好的锆石进行阴极发光成像观察,查明锆石内部生长层的分布和结构。LA-ICP-MS锆石U-Pb定年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,采用GeoLas 2005 ArF准分子激光剥蚀系统(LA)和Agilent7500a四级杆质谱(ICP-MS)进行锆石U-Pb同位素定年和锆石成分测试。其中,激光波长193nm,能量密度14J/cm2,频率8Hz,光斑直径24~32μm。锆石U-Pb年龄测定采用国际标准锆石91500作为外标校正方法,以29Si (锆石中SiO2的含量为32.18%)作为内标,测定锆石中U、Th和Pb的含量。每测定3~5个点后插入一次标样测定,以便及时校正。以合成硅酸岩玻璃NIST 610标示仪器的运行状态。采用ICPMSDataCal (V3.7)软件对同位素比值数据进行处理,详细的仪器操作条件和数据处理方法见(Liu et al., 2010)。SHRIMP锆石U-Pb测年在北京离子探针中心SHRIMP Ⅱ离子探针仪上完成,光斑20μm,U的标准用的是M257、U 84010-6,测试方法和流程详见Williams(1998)。ISOPLOT程序(Ludwig, 2001)进行锆石加权平均年龄计算及谐和图的绘制。

岩石地球化学分析样品在河北省地质调查研究院完成。样品经仔细挑选,确定无任何脉状体后,洗净、晒干、磨成200目粉末。岩石的常量元素、微量元素和稀土元素分析在国家地质测试实验中心完成。其中,常量元素依据GB/T14506.28-2010标准,采用X-射线荧光光谱仪(PW4400)进行测定,并用等离子光谱法进行验证,分析精度优于5%;微量元素和稀土元素依据GB/T 14506.30-2010标准,采用等离子质谱仪ICP-MS(Inductively Coupled Plasma Mass Spectrometry)(PE300D)方法进行测定,含量大于10×10-6的元素测试精度为5%,而小于10×10-6的元素测试精度为10%。镜下鉴定显示基性超基性岩都经历了不同程度的蚀变,尤其是超基性岩蚀变强烈,超基性岩化学分析结果表明其有较高的烧蚀量。这些特点说明化学分析结果中活动性元素,如Rb、K、Na、Sr、Ba、Fe等在蚀变过程中存在迁移,不能作为岩石特征参考,而稀土元素、大离子亲石元素等不受影响,仍可以作为岩石特征判别元素(Safonova et al., 2016)

样品的Nd同位素分析在中国科学技术大学放射性同位素地球化学实验室进行, 采用同位素稀释法, 利用热电离质谱仪MAT-26测试完成。样品的化学分离纯化在净化实验室完成。Nd同位素比值分析结果采用146Nd/144Nd=0.7219进行质量分馏标准化校正。在分析样品期间Nd同位素监测标样为La Jolla, 测定值为143Nd/144Nd=0.511869±0.000006 (2σ, n=25)。详细的分析方法和流程见Chen et al. (2007)

4 玄武岩和辉长岩地球化学

岩石地球化学分析结果(表 1)表明增生杂岩带中玄武岩和辉长岩SiO2含量普遍较高,10件样品中2件样品为45.78%~47.09%、3件为53.36%~54.60%(与玄武岩中硅质杏仁有关)外,其他都在50.57%~51.29%之间。TiO2含量很高,都在2.26%以上,部分达到3.43%,FeOT、MgO含量分别在7.64%~13.9%和2.90%~5.66%之间,Mg#多在49~57之间,少量分布在38~42之间。岩石的另一个特点是K2O含量较高,除2个样品为0.62%~0.70%外,其他都大于1.0%,甚至2件样品达到4.88%~4.99%,是对岩石中局部富集钛角闪石和黑云母矿物的反映。岩石中CaO含量除1件样品为5.80%外,其他都在7.85%~9.97%之间,与岩石中斜长石含量较高及存在角闪石和方解石矿物有关。在Nb/Y-Zr/Ti和Zr/(P2O5×10000)-Nb/Y图解上,所有样品都落在碱性玄武岩区(图 6),说明其属于富钛碱性玄武岩类。

表 1 玄武岩和辉长岩化学成分表(主量元素: wt%;稀土和微量元素: ×10-6) Table 1 Major (wt%) and trace (×10-6) element compositions of basalts and gabbros

图 6 玄武岩和辉长岩Nb/Y-Zr/Ti和Zr/(P2O5×10000)-Nb/Y图解 Fig. 6 Diagrams of Nb/Y vs. Zr/Ti and Zr/(P2O5×10000) vs. Nb/Y of basalts and gabbros

岩石稀土总量较低,变化于158×10-6~203×10-6之间,LREE/HREE在7.36~8.84范围内,δEu为0.96~1.11,(La/Sm)N和(Gd/Yb)N分别为2.49~3.14和3.28~3.75。岩石大离子亲石元素相对原始地幔富集,部分样品Ba、K和Sr具有正异常或负异常,与这些元素活性较强,在后期蚀变过程中有不同程度的富集或丢失有关。总体来看,俯冲增生杂岩带中玄武岩和辉长岩具有轻稀土相对富集、重稀土相对亏损、有一定程度的分馏和无Eu异常的特点。

5 俯冲增生杂岩带的形成时代 5.1 辉石岩锆石U-Pb定年

辉石岩脉广泛分布于蛇纹石化方辉橄榄岩中,都发生强烈的绿泥石化和绢云母化。镜下鉴定结果表明,辉石岩(18QMCP-5)中的辉石大部分转变为叶绿泥石,局部有辉石残留或辉石假象。岩石中含有较多的磷灰石、锆石和钛磁铁矿等副矿物。锆石呈长柱状,大部分都被碎断,长宽比在1.5~2.0之间。锆石内部干净整洁、无继承性锆石核和新生边、平行于长轴方向的韵律清晰(图 7a),且明显不同于中酸性岩浆岩的锆石。辉石岩(19QYS-9)为含橄榄石辉石岩,叠加了后期韧性变形的改造,糜棱面理清晰,其中的辉石大多蚀变为绢石,橄榄石蚀变为蛇纹石(2%),但仍保留少量辉石假象。岩石中的副矿物主要有金红石、锆石、钛铁矿和磷灰石。锆石破碎可能与糜棱岩化作用有关。锆石透射光呈浅棕色,几乎没有矿物包裹体,呈他形不规则棱角状,长宽比为1.1~1.5,阴极发光图像显示其存在韵律环带(图 7b),但没有18QMCP-5样品中锆石的环带清晰。18QMCP-5采用LA-ICP-MS U-Pb方法测定,19QYS-9采用SHRIMP U-Pb方法测定。

图 7 辉石岩锆石阴极发光图像 Fig. 7 CL images and U-Pb ages of analytical spots in zircons from the pyroxenites

18QMCP-5样品共测定22颗锆石,除去锆石阴极发光图像明显不同(可能为混入的)和谐和度低于60%的测点外,共18颗有效锆石测点的Th含量变化于314×10-6~1169×10-6之间,U含量为545×10-6~1522×10-6,Th/U比值大于0.5,个别达1.1(表 2)。锆石∑REE变化于1905×10-6~5681×10-6(基性岩锆石:2000×10-6~10000×10-6Belousova et al., 1998, 2002),以及稀土配分模式图上展示其重稀土富集、Eu强烈负异常、Ce正异常,说明这些锆石是在基性岩浆中生长的(Belousova et al., 1998, 2002; Zhong et al., 2006)。206Pb/238U年龄分布在178~190Ma之间,加权平均年龄为183±1.7Ma(MSWD=1.3)(图 8a),结合锆石韵律环带清晰的特点,我们认为该锆石加权平均年龄代表辉石岩脉的侵位时代。

表 2 辉石岩锆石LA-ICP-MS U-Pb和SHRIMP U-Pb定年数据 Table 2 Zircon LA-ICP-MS U-Pb and SHRIMP U-Pb data for the pyroxenites

图 8 辉石岩锆石U-Pb谐和图 红线测点未参与年龄计算 Fig. 8 U-Pb concordia diagrams for zircons from the pyroxenites The red lines are not calculated

19QYS-9样品共测定39颗锆石,Th、U含量分别为1441×10-6~11661×10-6和2314×10-6~8729×10-6,Th/U比值都大于0.5,且大部分在1.0~1.7之间(表 2)。39颗测点中有8颗测点206Pb/238U年龄分布91~155Ma之间,在谐和图上零星分布在谐和线上,可能受后期糜棱岩化和蚀变影响,第27号测点206Pb/238U年龄为211±3.2Ma,远大于其它测点年龄,它们都未参与加权平均年龄计算。其余30颗锆石测点206Pb/238U年龄在163~204Ma之间,在谐和图上,存在163~171Ma、180~187Ma和198~204Ma三个集中区,对应的加权平均年龄分别为169±1.7Ma(MSWD=0.6,n=7)、185±1.7Ma(MSWD=0.74,n=12)和203±2.8Ma(MSWD=0.48,n=5)(图 8b)。这3组年龄锆石的阴极发光图像和形态没有明显的差别,稀土总量和配分模式也一致,且都集中在谐和线上,说明它们都是岩浆锆石。其中,最大组年龄(203Ma)可能为岩浆形成初期在岩浆房中结晶的锆石,最小组年龄(169Ma)可能与岩石强烈糜棱岩化和蛇纹石化、绢石化蚀变有关,中间组年龄(185Ma)与样品18QMCP-5锆石年龄一致,代表了辉石岩侵位时代。

综合上述2个样品锆石U-Pb年龄特点,分析认为方辉橄榄岩中辉石岩脉的形成时代为183~185Ma,与拉萨-南羌塘地块间班怒带蛇绿岩带的形成时代一致,它们是在洋壳俯冲过程中诱发地幔楔物质部分熔融形成的基性岩浆与地幔橄榄岩发生反应形成的(Karimov et al., 2020; Belousov et al., 2021)。据此,我们认为这组辉石岩的年龄是对腾冲-保山地块间怒江中特提斯洋壳俯冲作用的体现,代表怒江洋初始俯冲的时代。

5.2 浊积岩的形成时代

迄今为止,增生杂岩带中除硅质岩层中存在放射虫化石外,没有发现其他生物化石,而且放射虫化石的硅化作用致使其时代难以确定。为此,项目组对浊积岩中的杂砂岩(17QMH-12和20QSG-9)进行了碎屑锆石U-Pb定年,以厘定其沉积时代的上限。17QMH-12样品中锆石多呈浑圆状,晶形不一,粒度相对均匀,约50×80μm。阴极发光图像(图略)显示其以具有韵律环带的为主,少量有核边结构,且大部分呈深灰色,少量呈灰白色-白色。总体来看,该样品中的锆石以岩浆碎屑锆石为主。在55颗锆石测点中,所有锆石U-Pb年龄谐和度都在90%以上,其Th/U比值都大于0.1,反映其岩浆锆石特征。55颗锆石206Pb/238U年龄分布在218~2611Ma之间(表 3)。其中,最小年龄组3颗锆石的Th/U比值为0.3~0.8,206Pb/238U年龄分别为218±2.0Ma、236±2.7Ma和241±2.3Ma,谐和度分别为99%、91%和99%。其锆石CL图像展示其韵律环带清晰,都属于典型的岩浆锆石。20QSG-9样品锆石呈浑圆状、粒度100~200μm,阴极发光图像(图略)显示其以具有韵律环带的为主,少量有核边结构,且大部分呈深灰-灰黑色,少量呈灰白色-白色,反映锆石中U、Pb含量存在差异。在60颗锆石测点中,所有锆石谐和度都在90%以上。锆石Th/U比值都大于0.2,反映其岩浆锆石特征。60颗锆石206Pb/238U年龄分布在212~2479Ma之间(表 3)。其中,4颗年轻年龄锆石的Th/U比值为0.2~0.4,206Pb/238U年龄为212±2.2Ma、223±2.7Ma、237±2.9Ma和239±2.7Ma,谐和度在92%以上,锆石CL图像展示其韵律环带清晰,属于典型的岩浆锆石。结合研究区内少量晚三叠世花岗岩体(220Ma和204Ma,未发表数据)的存在,我们认为这2件样品最小年龄组锆石年龄代表这套沉积岩沉积时代的上限。样品采集点西缘就是高黎贡早白垩世岩浆岩带,研究区内还存在早白垩世酸性火山岩,但在样品中没有任何显示,以及增生杂岩带被晚白垩世花岗岩(69~75Ma)侵位及晚白垩世陆相沉积岩覆盖的特点,说明沉积作用发生在早白垩世大规模岩浆活动之前。鉴于此,我们认为这套浊积岩形成时代为晚三叠世-侏罗纪。

表 3 浊积岩中杂砂岩碎屑锆石LA-ICP MS U-Pb定年数据 Table 3 Detrital zircon LA-ICP MS U-Pb data from the greywackes in turbidite

总体来看,蛇纹石化橄榄岩中辉石岩脉锆石U-Pb年龄为185Ma、浊积岩中杂砂岩碎屑锆石U-Pb最小年龄组分布在212~241Ma区间,以及高黎贡早白垩世大陆边缘弧型岩浆岩带,俯冲增生杂岩带中存在有早白垩世流纹岩/凝灰岩夹层的弧前/弧间沉积,俯冲增生杂岩带被晚白垩世陆相沉积岩不整合覆盖和晚白垩世花岗岩(69~75Ma)侵位的特点,认为怒江洋形成于晚三叠世-早白垩世。其中,蛇纹石化橄榄岩、玄武岩、辉长岩和浊积岩、硅质岩、深海沉积岩形成于晚三叠世-侏罗纪,早白垩世岩浆活动和弧前/弧间沉积作用与怒江洋壳向腾冲地块下俯冲有关。

6 讨论 6.1 混杂岩带的构造属性

前人研究成果表明原始地幔橄榄岩为二辉橄榄岩(橄榄石:55%~60%,Al2O3:3.0%~3.5%)经部分熔融及熔体抽取后形成的残留相为方辉橄榄岩和纯橄岩(橄榄石:70%~80%,Al2O3:0.5%~1.5%)(Bodinier and Godard, 2003)。地幔橄榄岩中的单斜辉石是快速消耗的矿物(Jaques and Green, 1980),单斜辉石的比例越低,岩石发生部分熔融的程度越高(Dick and Bullen, 1984; Johnson et al., 1990; Kostopoulos, 1991; Seyler et al., 2001; Arai and Miura, 2016; Seyler and Brunelli, 2018; 王云鹏等,2019)。高黎贡东南缘俯冲增生杂岩带中的蛇纹石化橄榄岩主要为方辉橄榄岩,纯橄岩仅以团块状或透镜状分布于方辉橄榄岩中。方辉橄榄岩中的橄榄石含量在66%~70%,仅含~2%的单斜辉石,纯橄岩中橄榄石含量高达93%,不含单斜辉石,以及方辉橄榄岩中辉石岩脉群附近存在反映地幔橄榄岩部分熔融形成的基性岩浆与地幔橄榄岩反应形成的乳滴状、透镜状辉石岩(图 9),表明该区橄榄岩经历过高度部分融熔和熔体的抽取。岩石地球化学成分和矿物化学成分特征为这一结论提供了有力的证明,具体如下:1)橄榄岩Al2O3(0.2%~0.91%)、CaO(0.01%~0.25%)、Na2O(<0.1%)和K2O(<0.03%)含量很低、轻稀土富集;2)橄榄岩中铬尖晶石Cr#(Cr#=100(molar Cr/(Cr+Al))值除个别点较低(56)或较高(75~94)外其余都在60~70之间,Mg#(Mg#=100(molar Mg/(Mg+Fe2+))值除少量较低(20~26)外其余都分布在39~68之间,橄榄石Fo(Fo=100(molar Mg/(Mg+Fe2+))值相对稳定,分布于90~95之间,橄榄岩铬尖晶石Cr#值大于60(据韦诚,2021);3)在铬尖晶石Cr#-Mg#指数图解上大部分样品落在SSZ型区,少量落在SSZ型边部克拉通橄榄岩区和远洋橄榄岩区(图 10a),在橄榄石Mg#-铬尖晶石Cr#图解中所有样品都落在SSZ型橄榄岩区,及熔融程度30%以上区域(图 10b)。这些特征进一步说明研究区内的地幔橄榄岩是经历了高度部分熔融(>30%)和熔体抽离后的残留相,形成于弧前构造背景,属于SSZ型(Dick and Bullen, 1984; Arai and Yurimoto, 1994; Zhou and Robinson, 1994, 1997; Dick et al., 2010; Zhou et al., 2014; Arai and Miura, 2016; Karimov et al., 2020Belousova et al., 2021; Yang et al., 2021)。

图 9 方辉橄榄岩中辉石岩脉及其附近乳滴状、透镜状辉石岩 Fig. 9 Pyroxene veins, emulsion drops and lens in the harzburgite

图 10 橄榄岩中橄榄石和铬尖晶石矿物成分判别图解(底图据Arai,1994;数据来源于韦诚,2021) Fig. 10 Discrimination diagrams for the mineral compositions of the olivines and Cr-spinels in the peridotite (base map after Arai, 1994; data from Wei, 2021)

玄武岩和辉长岩的高TiO2含量、碱性玄武岩性质, 以及Th/Nb和La/Nb都<1,Zr/Nb<10,Al2O3/TiO2<8,尤其是与OIB、E-MORB和N-MORB相比,其稀土配分模式和微量元素蛛网图曲线与OIB几乎完全一致(图 11),结合岩石的主要矿物组合为单斜辉石和斜长石,并含少量富钛角闪石和黑云母(图 5c)的特点,说明其属于洋岛型玄武岩。在Nb/Yb-TiO2/Yb、Nb/Yb-Th/Yb、La/Nb-Th/Nb和(Gd/Yb)N-Al2O3/TiO2图解上,所有样品均落在与夏威夷玄武岩一致的OIB区(图 12),进一步说明混杂岩带中玄武岩块和辉长岩块与夏威夷类似,为洋岛/海山型,岩浆来源于富集地幔。

图 11 玄武岩和辉长岩球粒陨石标准化稀土配分模式和原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 11 Chondrite-normalized REE patterns and primitive-mantle-normalized trace element spider diagrams for the basalts and gabbros (normalization values after Sun and McDonough, 1989)

图 12 玄武岩和辉长岩Nb/Yb-TiO2/Yb、Nb/Yb-Th/Yb、La/Nb-Th/Nb和(Gd/Yb)N-Al2O3/TiO2图解(底图据Pearce, 2005; Safonova et al., 2016) Fig. 12 Nb/Yb vs. TiO2/Yb, Nb/Yb vs. Th/Yb, La/Nb vs. Th/Nb and (Gd/Yb)N vs. Al2O3/TiO2 discrimination diagrams for the basalts and gabbros (after Pearce, 2005; Safonova et al., 2016)

玄武岩Sm-Nd测试结果(表 4)表明,其143Nd/144Nd分布于0.512647~0.51280之间,与南太平洋南端岩浆来源于受到俯冲远洋沉积物改造地幔的Pitcairn洋岛玄武岩一致(Delavault et al., 2016)。以辉石岩锆石U-Pb年龄185Ma计算出εNd(t)值分布在+2.2~+5.1区间,与密支那玄武岩(+4~+5.3,杨经绥等,2012)相近,略高于区内中侏罗世玄武岩(-0.6~+2.6, 刘旭峰,2021),但远低于来源于亏损地幔部分熔融的现代大洋中脊玄武岩(+7~+12,Handler et al., 2005)。储著银等(2009)对该区三台山蛇纹石化橄榄岩进行了Sm-Nd同位素测试,我们对其同位素数据按185Ma进行重新计算后得出的εNd(t) 值集中分布在-8.8~-5.3之间,远低于玄武岩εNd(t)值,反映研究区内地幔的不均一性,可能与早期洋壳俯冲的壳幔物质再循环有关(Delavault et al., 2016Nelson et al., 2019; Castillo et al., 2020; Yang et al., 2021)。玄武岩中角闪石和黑云母等含水矿物,以及气孔、方解石、石英等杏仁矿物普遍存在,反映本区玄武岩内含有大量的挥发分和流体。这些流体和挥发份可能是早期俯冲洋壳带入地幔的(Nelson et al., 2019; Castillo et al., 2020)。19QBL38~41样品单阶段Nd模式年龄集中在523~586Ma,与该区曾经历过原特提斯洋俯冲时代(蔡志慧等,2013戚学祥等,2019)相近,表明该区地幔受到原特提斯俯冲洋壳物质的改造,形成不均一的富集地幔,并在中特提斯洋形成过程中保留了这种不均一性。

表 4 玄武岩和辉长岩全岩Sm-Nd同位素分析结果 Table 4 Sm-Nd isotopic data for basalts and gabbros

总体来看,该区橄榄岩为SSZ型,玄武岩为OIB型,均来自与原特提斯洋壳俯冲和壳幔物质再循环有关的不均一地幔。

高黎贡东南缘由蛇纹石化橄榄岩、玄武岩、辉长岩和含放射虫硅质岩、锰结核的深海沉积岩等块体和鲍马序列发育的浊积岩为基质构成的增生杂岩带,其岩石组合、块体性质和时代与拉萨-南羌塘地块之间班怒带内的SSZ型蛇绿带(Hsü et al., 1995; 潘桂棠等, 2006; Shi, 2007Shi et al., 2008, 2012Wang et al., 2008Zhu et al., 2009, 2013, 2015; 强巴扎西等, 2009; 戚学祥等, 2011黄启帅等, 2012; Liu et al., 2014, 2017周涛等, 2014; Fan et al., 2015)一致,都与洋陆俯冲有关,唯一区别是前者以浊积岩为基质,后者以基性-超基性岩为主,结合研究区内俯冲增生杂岩基质-浊积岩形成于深海,向东逐渐变浅至半深海-浅海环境(中侏罗世沉积岩),以及俯冲增生杂岩带西缘高黎贡构造带内发育形成于大陆边缘弧构造背景的早白垩世岩浆岩带,说明高黎贡东南缘混杂岩带是怒江洋向腾冲地块下俯冲过程中刮擦下来的产物,属于俯冲增生杂岩带,构成班公湖-怒江缝合带南向延伸部分。鉴于此,我们认为高黎贡东南缘俯冲增生杂岩带形成经历了如下阶段:1) 晚三叠世-侏罗纪,怒江洋壳开始向腾冲地块下俯冲,富集的岩石圈地幔部分熔融形成的基性熔体上升过程中与地幔橄榄岩反应形成脉状辉石岩,在靠近保山地块的被动大陆边缘,地幔柱引发幔源物质部分融熔形成的玄武岩浆喷发到海底,形成下部为玄武岩,上部为灰岩的海岛/海山。在大洋盆地内低温热液沿洋底断裂带向上运移,进入海底,并与海水混合后SiO2沉积,并有少量铬尖晶石从蛇纹石化橄榄岩中被海底流带入随SiO2一起沉积,形成含铬尖晶石的硅质岩块。远洋沉积物在海底沉积形成含层状放射虫化石硅质岩层的深海沉积,在靠近海沟一带形成鲍马序列发育的浊积岩。同时,因俯冲作用,在靠近腾冲地块活动大陆边缘形成含玄武岩块、含辉石岩脉的蛇纹石化橄榄岩块和含放射虫化石硅质岩、锰结核的深海沉积岩块的增生楔混杂岩;2)早白垩世,俯冲洋壳诱发地幔楔物质部分熔融,形成的基性岩浆向上运移,导致壳源物质部分熔融形成酸性岩浆,这两种岩浆按不同比例混合后侵入上地壳,形成中、酸性侵入岩,喷出地表后形成中、酸性火山岩,并在弧前和弧间形成含火山岩夹层的沉积岩;3)晚白垩世,腾冲地块与保山地块发生碰撞,怒江洋闭合,形成紫红色陆相砂岩、砾岩不整合覆盖在俯冲增生杂岩之上(图 13)。

图 13 高黎贡东南缘俯冲增生杂岩带与怒江洋俯冲关系 Fig. 13 Formation of the subduction-accretionary complex and its relationship with the evolution of the Nujiang ocean
6.2 高黎贡东南缘俯冲增生杂岩带与密支那蛇绿混杂岩带

密支那(Myitkyina)蛇绿混杂岩带位于中缅边境西缘缅甸境内的Tagaung-Myitkyina一带,西以莫冈断裂带为界,东以八莫弧形断裂带构成蛇绿岩带与腾冲地块的边界,整体上形成向两端收敛、走向北北东、长约250km、中间宽约120km的“σ形透镜体”(图 14)。

图 14 青藏高原东南缘构造影像图(Sagaing断裂带及其分支断裂据Barber, 2020; 吴中海等, 2015; Panda et al., 2018; Ridd et al., 2019及野外观测修订) LRS:高黎贡东南缘龙陵-瑞丽俯冲增生杂岩带;Sagaing F:实揩新生代右行走滑断裂带 Fig. 14 Tectonic image for the southeastern Tibet(Sagaing and its secondary faults modified after Barber, 2020; Wu et al., 2015; Panda et al., 2018; Ridd et al., 2019) LRS: Longling-Ruili subduction-accretionary complex belt; Sagaing F: Sagaing Cenozoic dextral sliping fault

蛇绿混杂岩带由地幔橄榄岩、基性岩和沉积岩组成。其中,地幔橄榄岩零星分布,主体为方辉橄榄岩,夹有少量纯橄岩、二辉橄榄岩、异剥橄榄岩; 基性岩随地幔橄榄岩分布,由辉长岩、辉绿岩、斜方辉石岩、单斜辉石岩和枕状玄武岩组成(Htay et al., 2017)。方辉橄榄岩主要由橄榄石、斜方辉石和少量单斜辉石(1%~4%)、铬尖晶石(1%~2%)组成,其岩石和矿物地球化学特征表明其为SSZ型(Liu et al., 2016魏超等,2018)。席状辉石岩和斜长花岗岩侵位到方辉橄榄岩中,近于平行排列。玄武岩具有流动构造和柱状节理,局部发育枕状构造,其岩石地球化学和低的87Sr/86Sr(i)(0.70367~0.70397)、正的εNd(t)值(+4~+5.3)反映其岩浆来源于亏损地幔,形成于典型的SSZ构造背景(杨经绥等,2012)。辉长岩和斜长花岗岩锆石U-Pb年龄为166~176Ma代表洋壳形成时代(杨经绥等,2012; Liu et al., 2016)。沉积岩由含红色层状硅质岩的复理石沉积建造和低绿片岩相变质岩组成。其中,复理石沉积建造主要为层内滑塌、火焰结构和包卷层理等软沉积变形构造发育的绿色杂砂岩、页岩、块状玄武岩、少量枕状玄武岩、红色、绿色硅质岩和少量硅质凝灰岩组成,其上部为白垩纪灰岩覆盖(Gardiner et al., 2018)。硅质岩中放射虫化石反映其形成于侏罗纪(施美凤等,2011Mitchell et al., 2012Maung et al., 2014)。变质岩分布于莫冈断裂带东缘,由滑石-绿泥石片岩、绿片岩、棕色千枚岩和少量板岩组成,其时代为晚三叠世(Searle et al., 2017Ridd et al., 2019)。

总体来看,辉长岩和斜长花岗岩锆石U-Pb年龄和放射虫化石表明Tagaung-Myitkyina洋为形成于晚三叠世-侏罗纪的中特提斯洋(Mitchell et al., 2015; Ridd, 2016Htay et al., 2017),蛇绿混杂岩的构造属性为SSZ型(杨经绥等,2012; Liu et al. 2016; Zhang et al., 2018),与高黎贡东南缘俯冲增生杂岩带高度一致。

前人对密支那蛇绿岩带的构造归属进行了广泛的讨论。主要集中在以下三点:1)根据其形成时代与班怒带蛇绿岩(拉萨-南羌塘地块间的)一致,认为密支那蛇绿岩带是班怒带的南向延伸部分(Liu et al., 2016魏超等,2018),但该带东部腾冲地块内的岩浆岩整体上具有自西向东从新生代、晚白垩世到早白垩世逐渐变老的分带性,没有展示出与密支那洋壳俯冲相对应的岩浆岩带。同时,密支那蛇绿岩带距东部分隔腾冲与保山地块的龙陵-瑞丽俯冲增生杂岩带170km,向北为东构造结所截,在空间上是无法与拉萨-南羌塘地块间班怒带相连的;2)密支那蛇绿混杂岩带是从龙陵-瑞丽俯冲增生杂岩带向西大规模逆冲过来的,或是中特提斯洋的分支(Mitchell et al., 2015),但从龙陵-瑞丽到密支那蛇绿混杂岩带之间的高黎贡造山带、腾冲地块内,未发现大规模逆冲推覆的构造痕迹,沿途亦未见任何蛇绿混杂岩带的残留,显然该观点的证据不足;3)密支那蛇绿岩带是雅鲁藏布新特提斯洋内俯冲的产物,在空间上应与雅鲁藏布缝合带相连(Zaw,2017杨经绥等,2012),但雅鲁藏布缝合带中侏罗纪蛇绿岩为MOR型(杨经绥等,2012),其形成的构造背景不同,以及在密支那蛇绿岩带西部存在一条形成时代、岩石组合特征和构造属性与雅鲁藏布缝合带相同,构成雅鲁藏布缝合带南延部分的Kalaymyo蛇绿岩带(127~95Ma, Pedersen et al., 2010; Liu et al., 2016; Ridd et al., 2019)。因此,将密支那蛇绿混杂岩带作为雅鲁藏布缝合带的一部分,难以令人信服。

密支那蛇绿混杂岩带分布于中缅边界西部,其内岩石仅在靠近莫冈断裂带附近存在低緑片岩相变质,在靠近腾冲地块基本没有变质,与其紧邻的腾冲地块内角闪岩相,局部麻粒岩相变质的高黎贡群(或Mogok变质带)变质程度截然不同。从卫星影像上分析,Sagaing主干断裂带向北延伸至Mogok后呈马尾状撒开为4条分支断裂带(吴中海等,2015Panda et al., 2018; Ridd et al., 2019Barber, 2020)(图 14)。其中,莫冈断裂和西侧班茂断裂带,呈向北东撒开的反S弧形断裂带,具右旋走滑+逆冲性质(吴中海等,2015)。八莫断裂带呈向东北偏转的弧形,沿密支那蛇绿岩带与腾冲地块(Mogok变质带)的边界展布,南部与泸水-龙陵-瑞丽断裂带汇合后,继续向西南方向延伸,在Mogok西并入Sagaing主干断裂带,构成Sagaing断裂带的东部分支(吴中海等,2015Gardiner et al., 2018)。该断裂带在腾冲地块西缘那帮-下石梯一带存在广泛的走向SN-NNE向的新生代糜棱岩化带,糜棱面理和拉伸线理发育。其中,糜棱面理倾向90°~130°,倾角60°~80°,拉伸线理总体向北-北北东倾伏,倾伏角5°~15°,构造指向揭示其右行走滑剪切的运动性质。鉴于此,我们可以认为密支那蛇绿混杂岩带是被八莫右行走滑剪切带位移到腾冲地块西缘的。结合其构造属性、形成时代与高黎贡东南缘俯冲增生杂岩带一致,以及Sagaing断裂带右行滑移量达330~450km(Mitchell,1984Panda et al., 2018)的特点,推测其形成时的位置可能在Tagaung南部,与龙陵-瑞丽俯冲增生杂岩带相连,是腾冲地块与保山-Sibumasu地块间中特提斯洋(怒江洋)向西俯冲并于晚白垩世闭合的产物。在新生代Sagaing断裂带大规模右行走滑剪切过程中,密支那蛇绿混杂岩带被其分支——八莫断裂带右行走滑位移到现今位置,在空间上与龙陵-瑞丽俯冲增生杂岩带近于平行并分列于腾冲地块的两侧。

7 结论

高黎贡东南缘混杂岩带由蛇纹石化橄榄岩、玄武岩/辉长岩、硅质岩、碳酸盐岩、含放射虫化石层状硅质岩和锰结核的深海沉积岩等岩块和浊积岩混杂基质组成。岩块呈规模不等的团块状、透镜状分布于基质中,属于典型的俯冲增生杂岩带。

岩石学、岩石地球化学、矿物成分特征表明蛇纹石化橄榄岩原岩由方辉橄榄岩和少量纯橄岩组成,是经历高度部分熔融的残留相,属于SSZ型;玄武岩/辉长岩为OIB型。橄榄岩和玄武岩Sm-Nd同位素组成,以及稀土元素配分模式和微量元素蛛网图特征反映其源区为富集地幔,并具有壳幔物质再循环的特点。玄武岩Nd同位素单阶段模式年龄(523~586Ma)说明地幔中的壳源物质可能来源于俯冲的原特提斯洋壳。

蛇纹石化橄榄岩中脉状辉石岩锆石U-Pb年龄为185Ma、复理石沉积岩中杂砂岩碎屑锆石U-Pb最小年龄组分布在212~241Ma区间,以及高黎贡早白垩世大陆边缘弧型岩浆岩带,混杂岩带中存在有早白垩世流纹岩/凝灰岩夹层的弧前/弧间沉积,俯冲增生杂岩带被晚白垩世陆相沉积岩不整合覆盖和晚白垩世花岗岩(69~75Ma)侵位的特点,表明怒江洋形成于晚三叠世-早白垩世。其中,蛇纹石化橄榄岩和浊积岩形成于晚三叠世-侏罗纪,早白垩世岩浆活动和弧前/弧间沉积作用与怒江洋壳向腾冲地块下俯冲有关。

高黎贡东南缘混杂岩带北连班怒带,南连密支那蛇绿混杂岩带。在新生代印度板块向北俯冲、碰撞致使青藏高原东南缘块体向东南、南挤出过程中,密支那蛇绿混杂岩带被Sagaing断裂带分支——八莫断裂带右行走滑位移到现今位置。

致谢      本文在成文过程中与冯庆来教授、闫臻研究员、吴中海研究员、熊发挥研究员和刘飞副研究员进行了有益的探讨; 刘燕学研究员协助完成野外调研; 牛漫兰教授和王涛研究员认真审阅了初稿并提出了中肯的修改意见,使文章得以完善;中国地质调查局成都中心施美凤高级工程师提供了密支那蛇绿岩带方面的地质资料;在此一并表示衷心感谢!

参考文献
Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113: 191-204 DOI:10.1016/0009-2541(94)90066-3
Arai S and Yurimoto H. 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Economic Geology, 89(6): 1279-1288 DOI:10.2113/gsecongeo.89.6.1279
Arai S and Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277-295 DOI:10.1016/j.lithos.2016.08.039
Barber AJ, Zaw K and Crow MJ. 2017. The pre-Cenozoic tectonic evolution of Myanmar. In: Barber AJ, Zaw K and Crow MJ (eds.). Myanmar: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 48: 687-671
Barber T. 2020. Geological belts, plate boundaries, and mineral deposits in Myanmar. American Mineralogist, 105: 287-288 DOI:10.2138/am-2020-B10521
Belousov I, Batanova V, Sobolev A, Savelieva G, Danyushevsky L and Draayers E. 2021. Pyroxenites from mantle section of Voykar Ophiolite: Melt/peridotite reaction and crystallization in SSZ mantle. Lithos, 388-389: 106063 DOI:10.1016/j.lithos.2021.106063
Belousova E, Griffin W, O'Reilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622 DOI:10.1007/s00410-002-0364-7
Belousova EA, Griffin WL and Pearson NJ. 1998. Trace element composition and cathodoluminescence properties of Southern African kimberlitic zircons. Mineralogical Magazine, 62(3): 355-366 DOI:10.1180/002646198547747
Bodinier JL and Godard M. 2003. Orogenic, ophiolitic, and abyssal peridotites. In: Holland HD and Turekian KK (eds.). Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 2: 103-170
Cai ZH, Xu ZQ, Duan XD, Li HQ, Cao H and Huang XM. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau. Acta Petrologica Sinica, 29(6): 2123-2140 (in Chinese with English abstract)
Cao HW, Zhang ST, Lin JZ, Zheng L, Wu JD and Li D. 2014. Geology, geochemistry and geochronology of the Jiaojiguanliangzi Fe-polymetallic deposit, Tengchong County, western Yunnan (China): Regional tectonic implications. Journal of Asian Earth Sciences, 81: 142-152 DOI:10.1016/j.jseaes.2013.11.002
Castillo PR, Liu XJ and Scarsi P. 2020. The geochemistry and Sr-Nd-Pb isotopic ratios of high 3He/4He Afar and MER basalts indicate a significant role of the African superplume in EARS magmatism. Lithos, 376-377: 105791 DOI:10.1016/j.lithos.2020.105791
Chen FK, Li XH, Wang XL, Li QL and Siebel W. 2007. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. International Journal of Earth Sciences, 96(6): 1179-1194 DOI:10.1007/s00531-006-0146-y
Chen SS, Shi RD, Gong XH, Liu DL, Huang QS, Yi GD, Wu K and Zou HB. 2017. A syn-collisional model for Early Cretaceous magmatism in the northern and central Lhasa subterranes. Gondwana Research, 41: 93-109 DOI:10.1016/j.gr.2015.04.008
Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca.113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463 DOI:10.1016/j.gr.2013.06.005
Chu ZY, Wang W, Chen FK, Wang XL, Li XH and Ji JQ. 2009. Os-Nd-Pb-Sr isotopic compositions of the Santaishan ultramafic rock in western Yunnan and its geological significances. Acta Petrologica Sinica, 25(12): 3221-3228 (in Chinese with English abstract)
Cong F, Lin SL, Zou GF, Li ZH, Xie T, Peng ZM and Liang T. 2011a. Magma mixing of granites at Lianghe: In-situ zircon analysis for trace elements, U-Pb ages and Hf isotopes. Science China (Earth Sciences), 54(9): 1346-1359 DOI:10.1007/s11430-011-4208-z
Cong F, Lin SL, Zou GF, Xie T, Li ZH, Tang FW and Peng ZM. 2011b. Geochronology and petrogenesis for the protolith of biotite plagioclase gneiss at Lianghe, western Yunnan. Acta Geologica Sinica, 85(4): 870-880 DOI:10.1111/j.1755-6724.2011.00491.x
Delavault H, Chauvel C, Thomassot E, Devey CW and Dazas B. 2016. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proceedings of the National Academy of sciences of the United States of America, 113(46): 12952-12956 DOI:10.1073/pnas.1523805113
Dewey JF, Shackleton RM, Chang CF and Sun YY. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London (Series A): Mathematical and Physical, 327(1594): 379-413
Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76 DOI:10.1007/BF00373711
Dick HJB, Lissenberg CJ and Warren JM. 2010. Mantle melting, melt transport, and delivery beneath a slow-spreading ridge: The paleo-MAR from 23°15'N to 23°45'N. Journal of Petrology, 51(1-2): 425-467 DOI:10.1093/petrology/egp088
Eroǧlu S, Siebel W, Danišík M, Pfänder JA and Chen FK. 2013. Multi-system geochronological and isotopic constraints on age and evolution of the Gaoligongshan metamorphic belt and shear zone system in western Yunnan, China. Journal of Asian Earth Sciences, 73: 218-239 DOI:10.1016/j.jseaes.2013.03.031
Fan WM, Wang YJ, Zhang YH, Zhang YZ, Jourdan F, Zi JW and Liu HC. 2015. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics, 662: 95-108 DOI:10.1016/j.tecto.2014.12.021
Gao YJ, Lin SL, Cong F, Zou GF, Xie T, Tang FW, Li ZH and Liang T. 2012. LA-LCP-MS zircon U-Pb dating and geological implications for the Early Cretaceous volcanic rocks on the southeastern margin of the Tengchong block, western Yunnan. Sedimentary Geology and Tethyan Geology, 32(4): 59-64 (in Chinese with English abstract)
Gardiner NJ, Searle MP, Morley CK, Robb LJ, Whitehouse MJ, Roberts NMW, Kirkland CL and Spencer CJ. 2018. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Research, 62: 27-60 DOI:10.1016/j.gr.2018.02.008
Guynn J, Tropper P, Kapp P and Gehrels GE. 2013. Metamorphism of the Amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the Bangong suture zone. Journal of Metamorphic Geology, 31(7): 705-727 DOI:10.1111/jmg.12041
Handler MR, Bennett VC and Carlson RW. 2005. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle?. Geochimica et Cosmochimica Acta, 69(24): 5747-5763 DOI:10.1016/j.gca.2005.08.003
Hsü KJ, Pan GT and Şengör AMC. 1995. Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the archipelago model of orogenesis. International Geology Review, 37(6): 473-508 DOI:10.1080/00206819509465414
Htay H, Zaw K and Oo TT. 2017. The mafic-ultramafic (ophiolitic) rocks of Myanmar. In: Barber AJ, Zaw K and Crow MJ (eds.). Myanmar: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 48: 117-141
Huang QS, Shi RD, Ding BH, Liu DL, Zhang XR, Fan SQ and Zhi XC. 2012. Re-Os isotopic evidence of MOR-type ophiolite from the Bangong Co for the opening of Bangong-Nujiang Tethys Ocean. Acta Petrologica et Mineralogica, 31(4): 465-478 (in Chinese with English abstract)
Huang XM, Xu ZQ, Li HQ and Cai ZH. 2015. Tectonic amalgamation of the Gaoligong shear zone and Lancangjiang shear zone, southeast of Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 106: 64-78 DOI:10.1016/j.jseaes.2014.12.018
Jaques AL and Green DH. 1980. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310 DOI:10.1007/BF00381447
Ji JQ, Zhong DL and Zhang LS. 2000. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, West Yunnan: Implications for the block movement in the southeastern Tibet Plateau. Scientia Geologica Sinica, 35(3): 336-349 (in Chinese with English abstract)
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020
Johnson KTM, Dick HJB and Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research: Solid Earth, 95(B3): 2661-2678 DOI:10.1029/JB095iB03p02661
Karimov AA, Gornova MA, Belyaev VA, Medvedev AY and Bryanskiy NV. 2020. Genesis of pyroxenite veins in supra-subduction zone peridotites: Evidence from petrography and mineral composition of Egiingol massif (Northern Mongolia). China Geology, 3(2): 299-313
Kostopoulos DK. 1991. Melting of the shallow upper mantle: A new perspective. Journal of Petrology, 32(4): 671-699 DOI:10.1093/petrology/32.4.671
Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Thi PT and Van Vuong N. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif), implications for the geodynamic evolution of Indochina. Tectonophysics, 393(1-4): 87-118 DOI:10.1016/j.tecto.2004.07.030
Li DP, Chen YL, Hou KJ, Lu Z and Cui D. 2015. Detrital zircon record of Paleozoic and Mesozoic meta-sedimentary strata in the eastern part of the Baoshan block: Implications of their provenance and the tectonic evolution of the southeastern margin of the Tibetan Plateau. Lithos, 227: 194-204 DOI:10.1016/j.lithos.2015.04.009
Li DP, Chen YL, Hou KJ and Luo ZH. 2016. Origin and evolution of the Tengchong block, southeastern margin of the Tibetan Plateau: Zircon U-Pb and Lu-Hf isotopic evidence from the (meta-) sedimentary rocks and intrusions. Tectonophysics, 687: 245-256 DOI:10.1016/j.tecto.2016.07.008
Li JX, Qin KZ, Li GM, Richards JP, Zhao JX and Cao MJ. 2014a. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos, 198-199: 77-91 DOI:10.1016/j.lithos.2014.03.025
Li PW, Gao R, Cui JW and Guan Y. 2005. Paleomagnetic results from the three rivers region, SW China: Implications for the collisional and accretionary history. Acta Geoscientica Sinica, 26(5): 387-404 (in Chinese with English abstract)
Li SM, Zhu DC, Wang Q, Zhao ZD, Sui QL, Liu SA, Liu D and Mo XX. 2014b. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284-297 DOI:10.1016/j.lithos.2014.07.010
Li ZH, Lin SL, Cong F, Zou GF and Xie T. 2012a. U-Pb dating and Hf isotopic compositions of quartz diorite and monzonitic granite from the Tengchong-Lianghe block, western Yunnan, and its geological implications. Acta Geologica Sinica, 86(7): 1047-1062 (in Chinese with English abstract)
Li ZH, Lin SL, Cong F, Xie T and Zou GF. 2012b. U-Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance. Acta Petrologica Sinica, 28(5): 1529-1541 (in Chinese with English abstract)
Liao SY, Wang DB, Tang Y, Yin FG, Cao SN, Wang LQ, Wang BD and Sun ZM. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana's northern margin. GSA Bulletin, 127(9-10): 1313-1330 DOI:10.1130/B31210.1
Lin TH, Lo CH, Chung SL, Hsu FJ, Yeh MW, Lee TY, Ji JQ, Wang YZ and Liu DY. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34(5): 674-685 DOI:10.1016/j.jseaes.2008.10.009
Liu BP, Feng QL, Chonglakmani C and Helmcke D. 2002. Framework of Paleotethyan archipelago ocean of western Yunnan and its elongation towards north and south. Earth Science Frontiers, 9(3): 161-171 (in Chinese with English abstract)
Liu CZ, Chung SL, Wu FY, Zhang C, Xu Y, Wang JG, Chen Y and Guo S. 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314 DOI:10.1130/G37342.1
Liu DL, Huang QS, Fan SQ, Zhang LY, Shi RD and Ding L. 2014. Subduction of the Bangong-Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49(2): 188-206 DOI:10.1002/gj.2510
Liu DL, Shi RD, Ding L, Huang QS, Zhang XR, Yue YH and Zhang LY. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong-Nujiang Tethyan Ocean. Gondwana Research, 41: 157-172 DOI:10.1016/j.gr.2015.04.007
Liu JL, Tran MD, Tang Y, Nguyen QL, Tran TH, Wu WB, Chen JF, Zhang ZC and Zhao ZD. 2012. Permo-Triassic granitoids in the northern part of the Truong Son belt, NW Vietnam: Geochronology, geochemistry and tectonic implications. Gondwana Research, 22(2): 628-644 DOI:10.1016/j.gr.2011.10.011
Liu XF, Ren YF, Wei C and Qi XX. 2019. Geochemistry and implications of the Mid-Jurassic basalts on eastern margin of the Gaoligong tectonic zone, western Yunnan. Acta Petrologica Sinica, 35(6): 1757-1772 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.06.08
Liu XF. 2021. Formation of the middle Jurassic basalt in Lushui-Luxi fault-folded belt, western Yunnan, and its tectonic implications. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 34-36 (in Chinese with English summary)
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546 DOI:10.1007/s11434-010-3052-4
Ludwig KR. 2001. Users Manual for Isoplot/Ex Rev. 2.49: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1a: 55
Maung M, Thu AN and Suzuki H. 2014. Latest Jurassic radiolarian fauna from the Chinghkran area, Myitkyina Township, Kachin State, northern Myanmar. In: Swe W, Tun ST, Thant M and Zaw K (eds.). Regional Congress on Mineral and Energy Resources of Southeast Asia, GEOSEA 13. Yangon: Myanmar Geosciences Society, 38-39
Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences, 20(6): 551-566 DOI:10.1016/S1367-9120(02)00022-6
Metcalfe I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Research, 9(1-2): 24-46 DOI:10.1016/j.gr.2005.04.002
Metcalfe I. 2011. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19(1): 3-21
Mitchell A, Chung SL, Oo T, Lin TH and Hung CH. 2012. Zircon U-Pb ages in Myanmar: Magmatic-metamorphic events and the closure of a neo-Tethys ocean?. Journal of Asian Earth Sciences, 56: 1-23 DOI:10.1016/j.jseaes.2012.04.019
Mitchell AHG. 1984. Post-Permian events in the Zangbo 'suture' zone, Tibet. Journal of the Geological Society, 141: 129-136 DOI:10.1144/gsjgs.141.1.0129
Mitchell AHG, Htay MT and Htun KM. 2015. The medial Myanmar suture zone and the western Myanmar-Mogok foreland. Journal of the Myanmar Geosciences Society, 6: 73-88
Mo XX and Pan GT. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6): 43-51 (in Chinese with English abstract)
Nelson WR, Hanan BB, Graham DW, Shirey SB, Yirgu G, Ayalew D and Furman T. 2019. Distinguishing plume and metasomatized lithospheric mantle contributions to post-flood basalt volcanism on the southeastern Ethiopian Plateau. Journal of Petrology, 60(5): 1063-1094 DOI:10.1093/petrology/egz024
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
Panda D, Kundu B, Gahalaut VK and Rangin C. 2018. Crustal deformation, spatial distribution of earthquakes and along strike segmentation of the Sagaing Fault, Myanmar. Journal of Asian Earth Sciences, 166: 89-94 DOI:10.1016/j.jseaes.2018.07.029
Pearce JA. 2005. Mantle preconditioning by melt extraction during flow: Theory and petrogenetic implication. Journal of Petrology, 46: 973-997 DOI:10.1093/petrology/egi007
Pedersen RB, Searle MP, Carter A and Bandopadhyay PC. 2010. U-Pb zircon age of the Andaman ophiolite: Implications for the beginning of subduction beneath the Andaman-Sumatra arc. Journal of the Geological Society, 167(6): 1105-1112 DOI:10.1144/0016-76492009-151
Qi XX, Zhu LH, Hu ZC and Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 27(11): 3409-3421 (in Chinese with English abstract)
Qi XX, Santosh M, Zhu LH, Zhao YH, Hu ZC, Zhang C and Ji FB. 2014. Mid-Neoproterozoic arc magmatism in the northeastern margin of the Indochina block, SW China: Geochronological and petrogenetic constraints and implications for Gondwana assembly. Precambrian Research, 245: 207-224 DOI:10.1016/j.precamres.2014.02.008
Qi XX, Zhu LH, Grimmer JC and Hu ZC. 2015. Tracing the Transhimalayan magmatic belt and the Lhasa block southward using zircon U-Pb, Lu-Hf isotopic and geochemical data: Cretaceous-Cenozoic granitoids in the Tengchong block, Yunnan, China. Journal of Asian Earth Sciences, 110: 170-188 DOI:10.1016/j.jseaes.2014.07.019
Qi XX, Santosh M, Zhao YH, Hu ZC, Zhang C, Ji FB and Wei C. 2016. Mid-Neoproterozoic ridge subduction and magmatic evolution in the northeastern margin of the Indochina block: Evidence from geochronology and geochemistry of calc-alkaline plutons. Lithos, 248-251: 138-152 DOI:10.1016/j.lithos.2015.12.028
Qi XX, Wei C, Zhang C, Zhang SQ, Hu ZC and Ji FB. 2019. Southward extension of the Bangonghu-Nujiang Suture: Evidence from Early Cretaceous intermediate and felsic magmatism in the Gaoligong Orogen, China. Journal of Asian Earth Sciences, 175: 1-25 DOI:10.1016/j.jseaes.2018.09.007
Qi XX, Wei C, Cai ZH, Huang MH, Liu YX, Zhang C and Ji FB. 2019. Sedimentary age of metamorphic rocks of Gaoligong Group in Tengchong block, western Yunnan and its relationship with subduction/accretion of Prototethys: Evidences from detrital zircon U-Pb dating and geochemistry. Acta Geologica Sinica, 93(1): 94-116 (in Chinese with English abstract)
Qi XX, Shen H, Ren YF, Wei C, Cai ZH, Zhang C, Ji FB and Liang FH. 2020. Early Cretaceous volcanism in the northwestern Gaoligong orogen and its relationship with subduction of the Nujiang Ocean: Evidence from geochemistry, zircon U-Pb dating and Hf isotopic compositions of rhyolites. Acta Petrologica Sinica, 36(10): 2946-2962 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.10.02
Qiangba ZX, Xie YW, Wu YW, Xie CM, Li QL and Qiu JQ. 2009. Zircon SIMS U-Pb dating and its significance of cumulate gabbro from Dengqen ophiolite, eastern Tibet, China. Geological Bulletin of China, 28(9): 1253-1258 (in Chinese with English abstract)
Ridd MF. 2016. Should Sibumasu be renamed Sibuma? The case for a discrete Gondwana-derived block embracing western Myanmar, upper Peninsular Thailand and NE Sumatra. Journal of the Geological Society, 173(2): 249-264 DOI:10.1144/jgs2015-065
Ridd MF, Crow MJ and Morley CK. 2019. The role of strike-slip faulting in the history of the Hukawng Block and the Jade Mines Uplift, Myanmar. Proceedings of the Geologists' Association, 130(2): 126-141 DOI:10.1016/j.pgeola.2019.01.002
Safonova I, Maruyama S, Kojima S, Komiya T, Krivonogov S and Koshida K. 2016. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry. Gondwana Research, 33: 92-114 DOI:10.1016/j.gr.2015.06.013
Searle MP, Morley CK, Waters DJ, Gardiner NJ, Htun UK, Nu TT and Robb LJ. 2017. Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar). In: Barber A, Zaw K and Crow MJ (eds.). Myanmar: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 48: 261-293
Seyler M, Toplis MJ, Lorand JP, Luguet A and Cannat M. 2001. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology, 29(2): 155-158 DOI:10.1130/0091-7613(2001)029<0155:CMRIEM>2.0.CO;2
Seyler M and Brunelli D. 2018. Sodium-chromium covariation in residual clinopyroxenes from abyssal peridotites sampled in the 43°~46°E region of the Southwest Indian Ridge. Lithos, 302-303: 142-157 DOI:10.1016/j.lithos.2017.12.018
Shi MF, Lin FC, Li XZ, Ling XM and Shi HZ. 2011. Stratigraphic zoning and tectonic events in Indochina and adjacent areas of Southwest China. Geology in China, 38(5): 1244-1256 (in Chinese with English abstract)
Shi RD. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chinese Science Bulletin, 52(2): 936-941
Shi RD, Yang JS, Xu ZQ and Qi XX. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32(5-6): 438-457 DOI:10.1016/j.jseaes.2007.11.011
Shi RD, Griffin WL, O'Reilly SY, Huang QS, Zhang XR, Liu DL, Zhi XC, Xia QX and Ding L. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21(1): 194-206 DOI:10.1016/j.gr.2011.05.011
Song SG, Niu YL, Wei CJ, Ji JQ and Su L. 2010. Metamorphism, anatexis, zircon ages and tectonic evolution of the Gongshan block in the northern Indochina continent: An eastern extension of the Lhasa Block. Lithos, 120(3-4): 327-346 DOI:10.1016/j.lithos.2010.08.021
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tapponnier P and Molnar P. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264(5584): 319-324 DOI:10.1038/264319a0
Tapponnier P, Peltzer G, Le Dain AY, Armijo R and Cobbold PR. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616 DOI:10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB and Chen LK. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18-33 DOI:10.1016/j.lithos.2015.07.016
Wang EC and Burchfiel BC. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis. International Geology Review, 39(3): 191-219 DOI:10.1080/00206819709465267
Wang EC, Fan C, Wang G, Shi XH, Chen LZ and Chen ZL. 2006. Deformational and geomorphic processes in the formation of the Ailao Shan-Diancang Range, West Yunnan. Quaternary Sciences, 26(2): 220-227 (in Chinese with English abstract)
Wang WL, Aitchison JC, Lo CH and Zeng QG. 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet. Journal of Asian Earth Sciences, 33(1-2): 122-138 DOI:10.1016/j.jseaes.2007.10.022
Wang YJ, Fan WM, Zhang YH, Peng TP, Chen XY and Xu YG. 2006. Kinematics and 40Ar/39Ar geochronology of the Gaoligong and Chongshan shear systems, western Yunnan, China: Implications for Early Oligocene tectonic extrusion of SE Asia. Tectonophysics, 418(3-4): 235-254 DOI:10.1016/j.tecto.2006.02.005
Wang YP, Niu XL, Yang JS, Li Y, Xu XZ, Feng GY, Xiong FH, Liu F, Liu Z, Tian YZ, Guo GL, Lian DY and Zhao YY. 2019. The drilling core (DSD-1) study of the Dongbo peridotite massif, Yarlung Zangbo suture zone, western Tibet. Acta Geologica Sinica, 93(10): 2486-2508 (in Chinese with English abstract)
Wei C, Peng TP, Fan WM, Zhang JY, Gao JF, Dong XH, Liang XR and Chen LL. 2018. Petrological and mineralogical chemistry of mantle peridotites from the Myitkyina-Mogok ophiolitic belt (Myanmar) and its tectonic significance. Geochimica, 47(6): 612-626 (in Chinese with English abstract)
Wei C, Qi XX, Shen H, Ji FB, Ren YF and Liu XF. 2020. Geochronology, geochemistry and zircon Hf isotope of the low Na rhyolite at Longling-Ruili belt, and its geological implications. Acta Petrologica Sinica, 36(10): 3117-3136 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.10.11
Wei C. 2021. Geological characteristics, age and tectonic setting of the mélange in southeastern Gaoligong orogen, West Yunnan. Ph. D. Dissertation. Beijing: Peking University, 45-82 (in Chinese with English summary)
Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III and Ridle WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralising Processes. Reviews in Economic Geology, 7: 1-35
Wu ZH, Long CX, Fan TY, Zhou CJ, Feng H, Yang ZY and Tong YB. 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract)
Xie JC, Zhu DC, Dong GC, Zhao ZD, Wang Q and Mo XX. 2016. Linking the Tengchong Terrane in SW Yunnan with the Lhasa Terrane in southern Tibet through magmatic correlation. Gondwana Research, 39: 217-229 DOI:10.1016/j.gr.2016.02.007
Xu YG, Yang QJ, Lan JB, Luo ZY, Huang XL, Shi YR and Xie LW. 2012. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 53: 151-175 DOI:10.1016/j.jseaes.2011.06.018
Xu ZQ, Wang Q, Cai ZH, Dong HW, Li HQ, Chen XJ, Duan XD, Cao H, Li J and Burg JP. 2015. Kinematics of the Tengchong Terrane in SE Tibet from the Late Eocene to Early Miocene: Insights from coeval mid-crustal detachments and strike-slip shear zones. Tectonophysics, 665: 127-148 DOI:10.1016/j.tecto.2015.09.033
Yang JS, Xu ZQ, Duan XD, Li J, Xiong FH, Liu Z, Cai ZH and Li HQ. 2012. Discovery of a Jurassic SSZ ophiolite in the Myitkyina region of Myanmar. Acta Petrologica Sinica, 28(6): 1710-1730 (in Chinese with English abstract)
Yang JS, Wu WW, Lian DY and Rui HC. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2(3): 198-212
Yang QJ, Xu YG, Huang XL and Luo ZY. 2006. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: Tectonic implications. Acta Petrologica Sinica, 22(4): 817-834 (in Chinese with English abstract)
Yang QJ and Xu YG. 2011. The emplacement of granites in Nujiang-Gaoligong belt, western Yunnan, and response to the evolvement of Neo-Tethys. Journal of Jilin University (Earth Science Edition), 41(5): 1353-1361 (in Chinese with English abstract)
Yin FG, Zhang H, Huang Y, Ye PS, Yang XJ, Lü Y and Lin SL. 2012. Advances in the basic geological survey along Dali-Ruili section of Fanya railway, western Yunnan Province. Geological Bulletin of China, 31(2-3): 218-226 (in Chinese with English abstract)
Zaw K. 2017. Overview of mineralization styles and tectonic-metallogenic setting in Myanmar. In: Barber A, Zaw K and Crow MJ (eds.). Myanmar: Geology, Resources and Tectonics. Geological Society, London, Memoirs, 48: 531-556
Zhang B, Zhang JJ, Zhong DL, Yang LK, Yue YH and Yan SY. 2012a. Polystage deformation of the Gaoligong metamorphic zone: Structures, 40Ar/39Ar mica ages, and tectonic implications. Journal of Structural Geology, 37: 1-18 DOI:10.1016/j.jsg.2012.02.007
Zhang JE, Xiao WJ, Windley BF, Wakabayashi J, Cai FL, Sein K, Wu HR and Naing S. 2018. Multiple alternating forearc- and backarc-ward migration of magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the orogenic architecture of eastern Neotethys in SE Asia. Earth-Science Reviews, 185: 704-731 DOI:10.1016/j.earscirev.2018.07.009
Zhang KX, He WH, Xu YD, Luo MS, Song BW, Kou XH, Zhang ZY, Xiao QH and Pan GT. 2016. Palaeogeographic distribution and tectonic evolution of OPS in China. Earth Science Frontiers, 23(6): 23-30 (in Chinese with English abstract)
Zhang XR, Shi RD, Huang QS, Liu DL, Cidan S, Yang JS and Ding L. 2010. Finding of high-pressure mafic granulites in the Amdo basement, central Tibet. Chinese Science Bulletin, 55(32): 3694-3702 DOI:10.1007/s11434-010-4127-y
Zhang XR, Shi RD, Huang QS, Liu DL, Gong XH, Chen SS, Wu K, Yi GD, Sun YL and Ding L. 2014. Early Jurassic high-pressure metamorphism of the Amdo Terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites. Gondwana Research, 26(3-4): 975-985 DOI:10.1016/j.gr.2013.08.003
Zhang YC, Shi GR and Shen SZ. 2013. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai-Tibet Plateau. Gondwana Research, 24(1): 55-76 DOI:10.1016/j.gr.2012.06.010
Zhang ZM, Dong X, Liu F, Lin YH, Yan R and Santosh M. 2012b. Tectonic evolution of the Amdo Terrane, Central Tibet: Petrochemistry and zircon U-Pb geochronology. The Journal of Geology, 120(4): 431-451 DOI:10.1086/665799
Zhao SW, Lai SC, Qin JF and Zhu RZ. 2016. Tectono-magmatic evolution of the Gaoligong belt, southeastern margin of the Tibetan Plateau: Constraints from granitic gneisses and granitoid intrusions. Gondwana Research, 35: 238-256 DOI:10.1016/j.gr.2015.05.007
Zhong YF, Ma CQ and She ZB. 2006. Geochemical characteristics of zircon and its applications in geosciences. Geological Science and Technology Information, 25(1): 27-34, 40 (in Chinese with English abstract)
Zhou MF and Robinson PT. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36(7): 678-686 DOI:10.1080/00206819409465481
Zhou MF and Robinson PT. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92(2): 259-262 DOI:10.2113/gsecongeo.92.2.259
Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS and Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in supra-subduction zone environments. Gondwana Research, 26(1): 262-283 DOI:10.1016/j.gr.2013.12.011
Zhou T, Chen C, Liang S, Chen GF, Li HL and Li DW. 2014. Zircon U-Pb geochronology and geochemical characteristics of volcanic rocks in the ophiolite mélange at the Bangong Lake, Tibet. Geotectonica et Metallogenia, 38(1): 157-167 (in Chinese with English abstract)
Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated Ⅰ-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239 DOI:10.1007/s11430-009-0132-x
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu RZ, Lai SC, Qin JF and Zhao SW. 2015. Early-Cretaceous highly fractionated Ⅰ-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 100: 145-163 DOI:10.1016/j.jseaes.2015.01.014
Zhu RZ, Lai SC, Santosh M, Qin JF and Zhao SW. 2017. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean. Lithos, 286-287: 175-190 DOI:10.1016/j.lithos.2017.05.017
Zou GF, Mao Y, Lin SL, Cong F, Li ZH, Xie T and Gao YJ. 2013. Zircon U-Pb age and geochemistry of Mengyang intrusion and its tectonic implications in the Lianghe, western Yunnan. Journal of Mineralogy and Petrology, 33(1): 87-99 (in Chinese with English abstract)
Zou GF, Mao Y, Lin SL, Cong F, Li ZH, Xie T and Gao YJ. 2014. Zircon U-Pb age and geochemistry of the Shibancun biotite monzo-granites and its tectonic implications in Mangshi County, western Yunnan. Geological Review, 60(6): 1425-1436 (in Chinese with English abstract)
蔡志慧, 许志琴, 段向东, 李化启, 曹汇, 黄学猛. 2013. 青藏高原东南缘滇西早古生代早期造山事件. 岩石学报, 29(6): 2123-2140.
储著银, 王伟, 陈福坤, 王秀丽, 李向辉, 季建清. 2009. 云南潞西三台山超镁铁岩体Os-Nd-Pb-Sr同位素特征及地质意义. 岩石学报, 25(12): 3221-3228.
高永娟, 林仕良, 丛峰, 邹光富, 谢韬, 唐发伟, 李再会, 梁婷. 2012. 滇西腾冲地块东南缘早白垩世火山岩锆石U-Pb定年及地质意义. 沉积与特提斯地质, 32(4): 59-64. DOI:10.3969/j.issn.1009-3850.2012.04.009
黄启帅, 史仁灯, 丁炳华, 刘德亮, 张晓冉, 樊帅权, 支霞臣. 2012. 班公湖MOR型蛇绿岩Re-Os同位素特征对班公湖-怒江特提斯洋裂解时间的制约. 岩石矿物学杂志, 31(4): 465-478. DOI:10.3969/j.issn.1000-6524.2012.04.001
季建清, 钟大赉, 张连生. 2000. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义. 地质科学, 35(3): 336-349. DOI:10.3321/j.issn:0563-5020.2000.03.009
李朋武, 高锐, 崔军文, 管烨. 2005. 西藏和云南三江地区特提斯洋盆演化历史的古地磁分析. 地球学报, 26(5): 387-404. DOI:10.3321/j.issn:1006-3021.2005.05.001
李再会, 林仕良, 丛峰, 邹光富, 谢韬. 2012a. 滇西腾冲-梁河地块石英闪长岩-二长花岗岩锆石U-Pb年龄、Hf同位素特征及其地质意义. 地质学报, 86(7): 1047-1062.
李再会, 林仕良, 丛峰, 谢韬, 邹光富. 2012b. 滇西高黎贡山群变质岩的锆石年龄及其构造意义. 岩石学报, 28(5): 1529-1541.
刘本培, 冯庆来, Chonglakmani C, Helmcke D. 2002. 滇西古特提斯多岛洋的结构及其南北延伸. 地学前缘, 9(3): 161-170. DOI:10.3321/j.issn:1005-2321.2002.03.020
刘旭峰, 任玉峰, 韦诚, 戚学祥. 2019. 滇西高黎贡构造带东缘中侏罗世玄武岩岩石地球化学特征及其构造意义. 岩石学报, 35(6): 1757-1772.
刘旭峰. 2021. 滇西泸水-潞西断褶带中侏罗世玄武岩形成机制及其构造意义. 硕士学位论文. 北京: 中国地质大学(北京), 34-36
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43-51. DOI:10.3321/j.issn:1005-2321.2006.06.007
潘桂棠, 莫玄学, 侯增谦, 朱第成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMPU-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409-3421.
戚学祥, 韦诚, 蔡志慧, 黄蒙辉, 刘燕学, 张超, 吉风宝. 2019. 滇西腾冲地块高黎贡群变质沉积岩时代与原特提斯洋俯冲/增生: 来自碎屑锆石U-Pb定年和岩石地球化学证据. 地质学报, 93(1): 94-116. DOI:10.3969/j.issn.0001-5717.2019.01.006
戚学祥, 沈辉, 任玉峰, 韦诚, 蔡志慧, 张超, 吉风宝, 梁凤华. 2020. 高黎贡西北缘早白垩世火山活动与怒江洋俯冲: 来自流纹岩岩石地球化学、锆石U-Pb定年和Hf同位素的证据. 岩石学报, 36(10): 2946-2962.
强巴扎西, 谢尧武, 吴彦旺, 解超明, 李秋立, 邱军强. 2009. 藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义. 地质通报, 28(9): 1253-1258. DOI:10.3969/j.issn.1671-2552.2009.09.013
施美凤, 林方成, 李兴振, 凌小明, 石洪召. 2011. 东南亚中南半岛与中国西南邻区地层分区及沉积演化历史. 中国地质, 38(5): 1244-1256. DOI:10.3969/j.issn.1000-3657.2011.05.011
王二七, 樊春, 王刚, 石许华, 陈良忠, 陈智樑. 2006. 滇西哀牢山-点苍山形成的构造和地貌过程. 第四纪研究, 26(2): 220-227. DOI:10.3321/j.issn:1001-7410.2006.02.009
王云鹏, 牛晓露, 杨经绥, 李源, 徐向珍, 冯光英, 熊发挥, 刘飞, 刘钊, 田亚洲, 郭国林, 连东洋, 赵一珏. 2019. 雅鲁藏布江缝合带西段东波地幔橄榄岩体钻孔岩心研究. 地质学报, 93(10): 2486-2508. DOI:10.3969/j.issn.0001-5717.2019.10.008
魏超, 彭头平, 范蔚茗, 张靖祎, 高剑峰, 董晓涵, 梁细荣, 陈林丽. 2018. 缅甸密支那、抹谷地区地幔橄榄岩岩石和矿物化学组成研究及其构造意义. 地球化学, 47(6): 612-626.
韦诚, 戚学祥, 沈辉, 吉风宝, 任玉峰, 刘旭峰. 2020. 滇西龙陵-瑞丽低钠流纹岩年代学、岩石地球化学和锆石Hf同位素组成及其地质意义. 岩石学报, 36(10): 3117-3136.
韦诚. 2021. 滇西高黎贡东南缘混杂岩带地质特征、时代和构造背景. 博士学位论文. 北京: 北京大学, 45-82
吴中海, 龙长兴, 范桃园, 周春景, 冯卉, 杨振宇, 仝亚博. 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制. 地质通报, 34(1): 1-31. DOI:10.3969/j.issn.1671-2552.2015.01.002
杨经绥, 许志琴, 段向东, 李静, 熊发挥, 刘钊, 蔡志慧, 李化启. 2012. 缅甸密支那地区发现侏罗纪的SSZ型蛇绿岩. 岩石学报, 28(6): 1710-1730.
杨启军, 徐义刚, 黄小龙, 罗震宇. 2006. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义. 岩石学报, 22(4): 817-834.
杨启军, 徐义刚. 2011. 滇西怒江-高黎贡构造带内花岗岩的侵位过程及其对特提斯演化过程的响应. 吉林大学学报(地球科学版), 41(5): 1353-1361.
尹福光, 张虎, 黄勇, 叶培盛, 杨学俊, 吕勇, 林仕良. 2012. 泛亚铁路滇西大理至瑞丽段基础地质综合调查进展. 地质通报, 31(2-3): 218-226.
张克信, 何卫红, 徐亚东, 骆满生, 宋博文, 寇晓虎, 张智勇, 肖庆辉, 潘桂棠. 2016. 中国洋板块地层分布及构造演化. 地学前缘, 23(6): 24-30.
周涛, 陈超, 梁桑, 陈桂凡, 李华亮, 李德威. 2014. 西藏班公湖蛇绿混杂岩中火山岩锆石U-Pb年代学及地球化学特征. 大地构造与成矿学, 38(1): 157-167.
邹光富, 毛英, 林仕良, 丛峰, 李再会, 谢韬, 高永娟. 2013. 滇西粱河勐养花岗岩的锆石U-Pb年龄、地球化学特征及其地质意义. 矿物岩石, 33(1): 87-99. DOI:10.3969/j.issn.1007-2802.2013.01.007
邹光富, 毛英, 林仕良, 丛峰, 李再会, 谢韬, 高永娟. 2014. 滇西芒市地区石板村黑云母二长花岗岩的年代学、地球化学特征及地质意义. 地质论评, 60(6): 1425-1436.