2. 南方海洋科学与工程广东省实验室(广州), 广州 511458;
3. 山东省金刚石成矿机理与探测院士工作站, 山东省第七地质矿产勘查院, 临沂 276006;
4. 南京大学地球科学与工程学院, 南京 210023
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
3. Shandong Academician Workstation of Diamond Mineralization Mechanism and Exploration, Shandong No. 7 Exploration Institute of Geology and Mineral Resources, Linyi 276006, China;
4. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
阿尔卑斯-喜马拉雅造山带是地球上最大的板块俯冲增生和陆陆碰撞复合型造山带之一,其内部发育的长期岩浆热事件、沉积作用和变质变形构造记录了冈瓦纳大陆的多期次裂解、特提斯洋盆多阶段扩张和俯冲、地幔柱活动等一系列地球动力学过程(Yang et al., 2015; Dilek and Furnes, 2019;许志琴等, 2019; 吴福元等, 2020)。雅鲁藏布江缝合带(YZSZ)位于阿尔卑斯-喜马拉雅造山带东段,被认为是新特提斯洋消失、印度和亚洲陆块碰撞的界限(Xu et al., 2015b)。国内外学者在该缝合带的罗布莎、日喀则、普兰和东波等蛇绿岩地幔橄榄岩和铬铁矿中发现了金刚石等超高压和超还原性矿物以及具有特殊构造意义的碳化物、氧化物、硫化物和硅酸盐等矿物(Bai et al., 1993; Xu et al., 2009, 2015a; 杨经绥等, 2011a; 徐向珍等, 2015, 2018; Griffin et al., 2016; Xiong et al., 2016, 2019),这些发现不仅指示蛇绿岩并非传统认识上的形成于高温、低压(< 30km,P < 10kbar)的洋中脊、弧后或弧前扩张的浅部环境,而且也可形成于地幔过渡带或更深部位(>410km),表明深部地幔物质循环参与了蛇绿岩的形成(Lian and Yang, 2019; Yang et al., 2021)。这些认识对探讨深部地幔物质组成和地球深部物质循环具有重要意义,开启了蛇绿岩形成与壳幔物质循环动力学过程研究的一个新领域(Coleman, 2014; Yang et al., 2014; Rollinson, 2016; 杨经绥等, 2021)。地球物理和地球化学研究普遍显示洋壳俯冲进入地幔深部是地壳再循环的重要机制(Fukao et al., 2009; Zhao and Ohtani, 2009; Shirey et al., 2013),然而地壳物质俯冲进入地幔深部后与金刚石等超高压异常矿物进入地幔橄榄岩和铬铁矿的方式是否与不同蛇绿岩的构造背景和侵位差异有关还不清楚。
为查明YZSZ西段蛇绿岩的构造背景和侵位方式,作者对东波蛇绿岩开展了详细的野外地质填图并实施了一口深达1002.06m的科学钻探DSD-1(王云鹏等, 2019)。本文在地表填图和科钻岩芯岩相分析的基础上,探讨了东波蛇绿岩的岩石组成、成因和构造环境,厘定出东波蛇绿岩经历了早白垩世多期岩浆作用,此研究对精细刻画新特提斯洋构造演化过程具有重要限定意义。
1 区域地质背景青藏高原从北到南主要由东昆仑-柴达木地块、松潘甘孜地体、羌塘地体和拉萨地块和印度板块等地质单元组成,它们分别被阿尼玛卿、金沙江、班公湖-怒江缝合带和YZSZ分割(图 1)。YZSZ被普遍认为是拉萨地块和印度板块的界限(Xu et al., 2015b; Yang et al., 2015; Kapp and DeCelles, 2019)。按照蛇绿岩的空间分布,该缝合带一般被分为东段(曲水和墨脱)、中段(桑桑和仁布)和西段(萨嘎至中印边界)三部分。中、东段蛇绿岩在地形上以单一缝合带呈NEE向分布,其南侧为特提斯喜马拉雅地体,北部为白垩-古近纪日喀则弧前盆地和中新生代冈底斯岛弧(Liu et al., 2018; 刘飞等, 2020)。YZSZ东段蛇绿岩主要包括泽当(宽小于1km,面积约45km2)、罗布莎(宽 < 4km,~70km2)和朗县等蛇绿岩(图 1),以出露100~300m厚的堆晶纯橄榄、不发育席状岩墙群及产出中国最大的罗布莎铬铁矿为主要特征(Zhou et al., 2005; Bao et al., 2014; 刘飞等, 2018, 2020);中段蛇绿岩主要包括日喀则东(仁布、大竹卡、德吉、群让、冲堆和白朗等)、日喀则西(吉定、柳区、昂仁、白马让和曲美等)和桑桑蛇绿岩,以发育完整的彭罗斯型蛇绿岩层序、洋壳厚约3.0~3.5km、从中心到南北两侧呈宏观对称出露的穹窿状构造的白马让和冲堆蛇绿岩为代表(Pearce and Deng, 1988; Bao et al., 2013;李源等, 2016; Li et al., 2021)。中、东段蛇绿岩带出露两种基质不同的混杂岩,一种基质主要为火山-沉积岩,普遍发育与裂陷拉张过程中同沉积滑塌堆积有关的韧-脆性变形,时代为晚侏罗世或更早;另一种基质为基性岩,出露与俯冲碰撞相关的透入性韧性变形,时代为早白垩世(Liu et al., 2012)。该认识与中、东段蛇绿岩普遍出露147~191Ma和120~137Ma两期洋壳年龄(Wang et al., 2018; Xiong et al., 2020b及其文献),以及出露三叠、侏罗和白垩纪等多期放射虫时代相一致(Wu, 1993; Matsuoka et al., 2002; Wang et al., 2002; Ziabrev et al., 2004; 王天洋等, 2016; Li et al., 2017; Zhong et al., 2017)。
![]() |
图 1 青藏高原地质简图及研究区分布图(区域构造格架主要据Xu et al., 2015b) ALTF:阿尔金断裂;ANMQS-EKL:阿尼玛卿-东昆仑缝合带;BNSZ:班公湖-怒江缝合带;JSSZ:金沙江缝合带;KKF-喀喇昆仑断裂;LMF:洛巴堆-米拉山断裂;LSSZ:龙木错-双湖-澜沧江缝合带;MFT:主前锋逆冲断裂;NQLT:北祁连逆冲断裂;SNMZ:狮泉河-纳木错混杂岩带;SS:松多缝合带;WKLT:西昆仑逆冲断裂;YZSZ:雅鲁藏布江缝合带 Fig. 1 Simplified geological map of the Tibet Plateau showing the study area (Regional structures mainly modified after Xu et al., 2015b) ALTF: AltynTagh fault; ANMQS-EKL: East Kunlun-A'nyemaqen Suture; BNSZ: Bangong-Nujiang suture zone; JSSZ: Jinshajiang suture zone; KKF: Karakoram fault; LMF: Luobadui-Milashan fault; LSSZ: Longmu Co-Shuanghu-Lancangjiang suture zone; MFT: Main Frontal Thrust; NQLT: North Qilian Thrust; SNMZ: Shiquanhe-Nam Tso mélange zone; SS: Sumdo suture; WKLT: West Kunlun Thrust; YZSZ: YarlungZangbo suture zone |
西段自萨嘎以西被仲巴地体分隔为南带(达巴-休古嘎布)和北带(达机翁-萨嘎)(徐德明等, 2008; 刘飞等, 2020; 图 1)。南带呈NWW走向,长约400km,出露如东波、普兰、休古嘎布、当穷、扎嘎和仲巴等数个大型穹窿状的地幔橄榄岩块(图 1)。南带蛇绿岩主要由新鲜地幔橄榄岩和侵入其中的基性岩脉,以及少量堆晶杂岩(包括辉长岩、辉石岩和纯橄岩)组成(Chan et al., 2015; 刘飞等, 2018),以不发育枕状或块状正常洋中脊玄武岩(N-MORB)型熔岩和席状岩墙群为特征(刘飞等, 2018),蛇绿岩边部常被洋岛玄武岩(OIB)型的枕状玄武岩、泥岩、硅质岩和灰岩覆盖,该组合被认为代表残余海山(Dai et al., 2012; Liu et al., 2015)。南带地幔橄榄岩的岩性从西到东具有规律性变化,最西端的东波和普兰西的地幔橄榄岩成分整体较亏损,以亏损型(不含单斜辉石,Cpx)方辉橄榄岩和含Cpx方辉橄榄岩、纯橄岩和少量二辉橄榄岩为主(杨经绥等, 2011b; Niu et al., 2015;王云鹏等, 2019),二辉橄榄岩主要分布于岩体西北部,面积约10km2,宽约500m (Xiong et al., 2019);而普兰东-扎嘎地幔橄榄岩成分相对较富集,出露含Cpx方辉橄榄岩、二辉橄榄岩和少量纯橄岩为特征(周文达等, 2014;张利等, 2016),其中普兰东二辉橄榄岩分布于南北两侧,宽0.5~1.5km不等(周文达等, 2014)。普兰和东波蛇绿岩中发育多期岩浆作用,方辉橄榄岩上部局部出露129Ma均质辉长岩(刘飞等, 2018),侵入于地幔橄榄岩镁铁质岩脉的年龄主要集中在119~130Ma之间(Xia et al., 2011; 熊发挥等, 2011; Chan et al., 2015),而侵入普兰西地幔橄榄岩的OIB型辉绿岩的时代为138~139Ma (Zheng et al., 2019; Huang et al., 2021),该年龄与普兰西E-MORB型玄武岩的结晶锆石年龄137Ma (Liu et al., 2015)相一致,亦与侵入普兰西蛇绿岩北缘泥页岩和泥硅质岩中的OIB型辉长岩脉的年龄为144Ma (Xiong et al., 2020b)相吻合,该构造事件可能与Kerguelen地幔柱活动有关(Liu et al., 2020)。
北带蛇绿岩普遍呈不规则条带状断续出露,多以蛇绿混杂岩的形式产出(吴福元等, 2014;刘飞等, 2015a),主要包括达机翁、卡站、巴尔、错布扎、扎来、公珠错和萨嘎等蛇绿岩体(Liu et al., 2018)(图 1)。岩石组合主要由地幔橄榄岩、基性岩脉和少量堆晶辉长岩组成,其中地幔橄榄岩宽几米至几十米不等,最宽处(如卡站)达500m,普遍弱蛇纹石化,橄榄岩成分相比南带亏损,以方辉橄榄岩为主,含少量单斜辉石方辉橄榄岩和纯橄岩透镜体(Lian et al., 2016)以及块状和浸染状铬铁矿矿点(Zhao et al., 2020),二辉橄榄岩发育较少,仅在公主错北蛇绿混杂岩中零星出露(Lian et al., 2017)。地幔橄榄岩内部被辉长岩、辉绿岩和异剥钙榴岩透镜体或岩脉侵入,岩脉以NW走向为主,少量NE走向,宽0.5~3m不等,最宽(如错布扎)可达10m(刘飞等, 2015a)。基性岩脉的锆石U-Pb年龄为120~128Ma(刘飞等, 2015b; Zheng et al., 2017; Liu et al., 2018; Zhong et al., 2019),与南带类似产状的基性岩脉一致。地幔橄榄岩上部普遍可见早三叠、晚侏罗和早白垩世等多期海山沉积建造(刘飞等, 2015a; He et al., 2016; Liu et al., 2021b)。
2 东波蛇绿岩和样品描述东波蛇绿岩位于YZSZ南带最西端的札达县境内,地表呈北西向展布的梨形或近似等轴状岩块(图 2),地表被新近系-第四系沉积物覆盖,而航磁和地磁异常显示岩体下部连为一体,具有北陡南缓特征(杨经绥等, 2011b; 姜枚等, 2015)。岩块南缘逆冲至特提斯喜马拉雅地体侏罗-白垩系的浅海-半深海相碳酸盐岩和泥页岩之上,北缘逆冲到仲巴地体中下三叠统浅变质的浅海相碳酸盐岩和碎屑岩之上(刘飞等, 2018)。
![]() |
图 2 雅鲁藏布江缝合带西段南带东波蛇绿岩地质简图 作者采集的伟晶辉长岩样品16LY47(31°02′06.87″N、80°17′51.83″E,刘飞等, 2018)与L178、GCT329采自大致相同的位置;样品L190辉长岩和L178辉石岩熊发挥等(2011);GCT329粗粒辉长岩引自Chan et al. (2015) Fig. 2 Geological map of the Dongbo ophiolite in the southern belt of the western Yarlung Zangbo Suture Zone Sample 16LY47 of pegmatite gabbro (GPS: 31°02′06.87″N, 80°17′51.83″E, Liu et al., 2018) was collected almost at the same location with samples of L178 and GCT329. Samples of pyroxenite L178 and gabbro L190 after Xiong et al. (2011), and sample coarse-grained gabbro GCT329 after Chan et al. (2015) |
东波蛇绿岩具有“厚幔极薄壳”特征,主体为构造地幔橄榄岩和侵入其中的基性岩脉,堆晶镁铁-超镁铁岩零星分布在岩体西北缘,主要由辉长岩、纯橄岩和橄榄辉石岩组成,野外表现为纯橄岩与伟晶至粗粒辉长岩呈层状相间分布,或纯橄岩以不规则脉状分布于辉长岩中,纯橄岩单层厚2~5cm至20~25cm不等,最宽达1.5m,其边部发育宽几厘米至十几厘米不等的单斜辉石岩脉,走向近南北(刘飞等, 2018)。其中辉石岩脉的年龄为130±0.5Ma(样品L178,熊发挥等, 2011, 图 2),该时代与位置相近的粗粒辉长岩中单粒锆石U-Pb年龄(160±0.5Ma,样品GCT-239,Chan et al., 2015, 图 2)相差较大,而与东波西北缘均质辉长岩U-Pb年龄129Ma(命名为Ⅰ型,样品13YL45,刘飞等, 2018),以及与岩体北缘辉长岩脉的年龄(128Ma,命名为Ⅱ型,样品L190,熊发挥等,2011)一致。科钻DSD-1岩芯基性岩主要出露在581~793m之间,岩性包括斜方辉石岩、橄榄斜方辉石岩、异剥钙榴岩和辉绿岩等,其中辉石岩厚度<2m,辉绿岩最厚达18m(命名为Ⅲ型,下文简称为18m辉绿岩,图 3)(王云鹏等, 2019)。
![]() |
图 3 东波地幔橄榄岩科学钻探(DSD-1)1002.06m岩心柱状图(a)及橄榄石(Ol;b、c)、斜方辉石(Pl;d、e)、单斜辉石(Cpx;f、g)、铬尖晶石(Spl;h、i)等主要矿物成分图解 数据源自王云鹏等(2019);弧前地幔橄榄岩、弧后地幔橄榄岩和深海地幔橄榄岩引自Lian et al. (2016)及其文献 Fig. 3 The scientific drilling hole (DSD-1) of 1002.06m showing a continuous lithological profile (a) and compositional variations of olivine (Ol; b, c), orthopyroxene (Opx; d, e), clinopyroxene (Cpx; f, g) and spinel (Spl; h, i) in the depleted harzburgite and Cpx-bearing harzburgite from the DSD-1 Data from Wang et al. (2019);The data of abyssal, forearc and back-arc peridotites from Lian et al. (2016), and references therein |
东波地幔橄榄岩主要由亏损型和含Cpx方辉橄榄岩和纯橄岩组成,含少量二辉橄榄岩透镜体(杨经绥等,2011b; Liu et al., 2015; Niu et al., 2015, 图 2)。纯橄岩在地表呈透镜状或不规则脉状产出,宽度从数十厘米至数十米不等,以长2~4m,宽约1m为主;DSD-1科钻岩芯出露多处薄层纯橄岩,最厚达14m(图 3a, 王云鹏等, 2019)。地幔橄榄岩中出露多个高铝和高铬型块状和浸染状铬铁矿矿化点,规模较小,呈透镜状分布于方辉橄榄岩中,局部发育纯橄岩薄壳(Xiong et al., 2017)。透镜状纯橄岩走向为NW,该产状与方辉橄榄岩中尖晶石和辉石的拉伸线理方向、以及辉长岩和辉绿岩脉的走向一致,亦与稠密浸染状和块状铬铁矿体(一般长4~6m,宽1~3m)长轴的产出方向一致(杨经绥等, 2011b; 刘飞等, 2013, 2015a; 徐向珍等, 2015;王云鹏等, 2019)。地幔橄榄岩南、北缘普遍被火山-沉积盖层覆盖,其主要由硅质灰岩、晚侏罗世至早白垩世含放射虫硅质岩、泥页岩夹杂砂岩以及OIB型玄武岩、玄武质碎屑岩和凝灰岩等组成,该组合为海山残余(Liu et al., 2015, 2020; Zheng et al., 2019)。
本文研究的基性岩样品分布在DSD-1周围几千米的区域(图 2)。地表基性岩主要为辉绿岩脉和辉石岩脉,具有NW和NE两组走向,以前者为主,宽几厘米至几米不等,最宽达十余米。本文报道了在岩体东北部发现的两组走向的辉绿岩脉(命名为Ⅳ型),其中NW(315°)走向的辉绿岩脉宽约1~2m(样品16YL48,GPS: 31°02′17.21″N、80°16′59.97″E,4504m),脉间宽度较窄约2~4m不等(图 4a),中细粒似斑状结构和辉长辉绿结构,块状构造和似层状构造(图 4b),斑晶为斜长石,基质主要为斜长石和辉石组成,矿物定向排列明显。NE(10°~20°)走向的多条辉绿岩脉近于平行侵入方辉橄榄岩中(样品16YL49,GPS: 31°01′57.97″N、80°17′21.19″E,4572m)。我们沿着SE方向测量了5条岩脉的产状并系统采样:岩脉1,样品16YL49-1~3,走向21°,宽1.2~1.5m;岩脉2,样品16YL49-4~6,走向18°,宽1.7~2.0m,距脉1约25m;岩脉3,样品16YL49-7~12,走向25°,宽0.6~1.0m,距脉2约15m;岩脉4,样品16YL49-13~15,采大样16YL49-16,走向30°,宽0.6~0.8m,距脉3约30m;岩脉5,走向25°,宽0.5~0.6m,距离脉4约30m(图 4c)。该组岩脉的间距总体约15~30m,脉宽0.6~2.0m不等,与普遍310°~320°走向的基性岩脉相差约60°~70°。局部可见辉绿岩脉(样品16YL46,GPS: 31°02′06.53″N、80°17′58.28″E)与方辉橄榄岩直接接触,接触面走向约355°,其围岩为弱蛇纹石化的纯橄岩,岩脉产状275°∠80°左右,可能发生了后期变形改造(图 4e)。这些辉绿岩整体颗粒较小,矿物定向排列明显(图 4d, f)。
![]() |
图 4 东波方辉橄榄岩中辉绿岩脉的野外地质特征 (a、b)走向NW的16YL48辉绿岩脉; (c、d) 走向NE的16YL49辉绿岩脉; (e、f)走向NNE的16YL46辉绿岩脉 Fig. 4 Field photographs of the Dongbo dolerite dikes intruding into harzburgite in the southern subbelt of the western Yarlung Zangbo suture zone, Tibet (a, b) NW-trending dolerite dike of Sample 16YL48; (c, d) NE-trending dolerite dike of Sample 16YL49; (e, f) NNE-trending dolerite dike of Sample 16YL46 |
显微镜下观察所有Ⅳ辉绿岩样品普遍具有辉绿结构、似斑状结构、包含结构等,斑晶主要为斜长石,呈他形板状或长柱状(图 5a, b)。样品主要由斜长石、斜方辉石和单斜辉石组成,含少量橄榄石,矿物定向排列明显(图 5c, d),颗粒较大的斜长石组成矿物格架被粒状单斜辉石和斜方辉石等充填,普遍发生绿片岩化,可见角闪石和绿泥石呈他形分布于其它矿物粒间(图 5e, f),少量新鲜样品几乎不含角闪石。
![]() |
图 5 东波辉绿岩脉的显微特征 Am-角闪石;Chl-绿泥石;Cpx-单斜辉石;Pl-斜长石.(+)为正交偏光; (-)为单偏光 Fig. 5 Microphotographs of dolerite dikes showing mineral assemblage and doleritic texture in the Dongbo ophiolite Am-amphibole; Chl-chlorite; Cpx-clinopyroxene; Pl-plagioclase. (+) and (-) the photographs are taken under orthogonal polarized light and single polarized light, respectively |
选择相对新鲜的Ⅳ辉绿岩样品进行主、微量元素分析和锆石U-Pb测年。主、微量元素测试在国家地质实验测试中心完成。主量元素用无水四硼酸锂和硝酸铵为氧化剂,于1200℃左右熔融制成玻璃片,用X射线荧光光谱仪(XRF-PW4400)测试,分析精度小于2%~8%;FeO采样重铬酸钾标准溶液滴定法测量,分析精度小于10%;稀土微量元素采用等离子质谱仪(ICPMS-PE300D)测试,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素的分析精度为10%。测试结果见表 1。
![]() |
表 1 东波蛇绿岩中辉绿岩脉主量元素(wt%)和微量元素(×10-6)含量 Table 1 Compositions of major (wt%) and trace (×10-6) elements of the dolerite dikes in the Dongbo ophiolite |
辉绿岩脉样品16YL46-14和16YL48-12的锆石分选在廊坊市宇恒矿岩技术服务有限公司完成,分别获得86粒和80粒锆石。采用常规粉碎、重液浮选和电磁选方法筛选出锆石精样,在双目镜下挑选锆石颗粒。锆石环氧树脂制靶和锆石阴极发光(CL)图像拍摄在中国地质科学院地质研究所大陆构造与动力学实验室进行。样品16YL46-14和16YL48-12的锆石U-Pb测年在北京离子探针中心SHRIMPⅡ型离子探针完成,测试结果见表 2。为了进一步验证实验数据,我们对16YL46辉绿岩余样(即16YL46-1)在首钢地质勘察院地质研究所重新分选了锆石,获得了29粒,并在核工业北京地质研究所SIMS实验室CAMECA IMS-1280HR开展CL图像拍摄和原位锆石U-Pb定年,测试结果见表 3。
![]() |
表 2 东波蛇绿岩中辉绿岩脉SHRIMP锆石U-Pb定年结果 Table 2 SHRIMP zircon U-Pb dating result of dolerite dikes in the Dongbo ophiolite |
![]() |
表 3 东波蛇绿岩中辉绿岩脉SIMS锆石U-Pb定年结果 Table 3 SIMS zircon U-Pb dating result of dolerite dikes in the Dongbo ophiolite |
SHRIMPⅡ型离子流束斑直径约30μm,样品点清洗时间为180s,标准锆石M257(561.3Ma、U含量为840×10-6)测定待测锆石的U含量,标准锆石TEM(417Ma)校正样品年龄,每测3个未知点测试一次TEM标样,单点分析的同位素比值及年龄误差为1σ,加权平均年龄误差为95%置信度,测点年龄值采用普通铅204Pb校正的206Pb/238U年龄。数据处理采用Squid软件和ISOPLOT软件。详细实验原理和流程见(宋彪等,2002)。CAMECA IMS-1280HR的一次离子光路系统采用科勒模式,一次离子束强度约为10nA,主要质量过滤光阑大小为200μm,样品表面采集斑束直径为10μm×15μm,采用氧驱法将样品室内O2-压力提高至~2.0×10-3Pa,提高Pb+的敏感性。这种对Pb+灵敏度的极大提高对提高锆石测量精度至关重要。O2-一次离子束在-13kV加速,提取二次离子的电压为10kV。实验过程中用91500锆石(测试年龄为157.7±1.5Ma)为主标样,Qinghu锆石(测试年龄为1069±7.2Ma)为质量监控标样。单点测试点采集7个循环,单点测试时间约为11分钟。采用标准比对法,计算真实值进行普通铅校正。采样CAMECA可定制离子探针软件(CIPS)和ISOPLOT软件制图。
4 数据结果 4.1 岩石成分特征东波辉绿岩脉(Ⅳ型)的主量元素成分去除烧失量100%均一化以后再进行岩石分类,并与东波西北缘129Ma均质辉长岩(Ⅰ型,样品13YL45,刘飞等,2018)、128Ma辉长岩脉(Ⅱ型,熊发挥等,2011)和科钻岩芯中厚18m的辉绿岩层(Ⅲ型,王云鹏等,2019)的成分作对比。在不活泼元素Nb/Y-Zr/Ti图解中,四类基性岩样品均落入玄武岩范围内(图 6a);而在Co-Th判别图解中,Ⅰ型均质辉长岩分布于玄武岩和玄武安山岩区域(图 6b),结合其较低SiO2(47.21%)和K2O(0.09%)成分,判断其具有低钾拉斑玄武岩特征,而Ⅳ型辉绿岩脉样品完全不同于其它三类岩石而散布于玄武岩下方区域,同样含有较低的K2O(0.05%),指示强烈亏损Th、K等壳源元素,说明辉绿岩脉亦具有低钾拉斑玄武岩特征(图 6b)。
![]() |
图 6 东波蛇绿岩中不同类型基性岩的分类判别图解(a) Zr/Ti-Nb/Y岩石分类图解(Pearce, 1996);(b) Co-Th图解(Hastie et al., 2007). 均质辉长岩(Ⅰ型,刘飞等,2018);辉长岩脉(Ⅱ型,熊发挥等,2011);18m辉绿岩(Ⅲ型,王云鹏等,2019). 图 7、11、12的文献数据同此图 Fig. 6 Geochemical classification of the various mafic rocks in the Dongbo ophiolite (a) Zr/Ti vs. Nb/Y diagram (Pearce, 1996); (b) Co vs. Th diagram (Hastie et al., 2007). Isotropic gabbro (type Ⅰ, Liu et al., 2018); dolerite dike (type Ⅱ, Xiong et al., 2011); 18m thick dolerite (type Ⅲ) in the DSD-1drill core (Wang et al., 2019). Reference data in Fig. 7, Fig. 11 and Fig. 12 are the same with this figure |
东波Ⅳ型辉绿岩脉的SiO2含量平均为47.81%,TiO2平均为0.87%(0.65%~1.65%),K2O平均为0.05%,P2O5平均为0.03%,与SiO2含量(平均含量47.23%)类似,但比Ⅰ型均质辉长岩的TiO2、K2O和P2O5含量(分别为1.10%、0.09%、0.09%)低,TiO2含量比典型N-MORB(1.27%,Sun and McDonough, 1989)含量低。相比Ⅰ型均质辉长岩的Al2O3(平均14.36%)、Na2O(平均0.56%)、MgO(平均8.75%)、FeO(平均6.83%)和全铁(FeOT=7.84%)含量,Ⅳ型辉绿岩具有与其对应的较高平均含量(16.20%、1.36%、9.39%、8.94%和9.41%);而对比Ⅰ型均质辉长岩的Fe2O3(平均1.40%)、CaO(平均18.72%)含量和Mg#值(平均70.31),Ⅳ型辉绿岩脉对应的Fe2O3、CaO和Mg#值的平均含量(0.53%、13.60%和64.88)较低。相比全球N-MORB和弧后玄武岩(BABB)平均值,Ⅳ型辉绿岩的SiO2、FeOT、TiO2等含量较低而Al2O3含量明显较高,并且随着MgO含量的增高,FeOT、TiO2逐渐降低,而SiO2(样品16YL49-13除外)、Al2O3、Cr和Ni元素逐渐升高(图 7)。
![]() |
图 7 东波蛇绿岩中多种类型基性岩的哈克图解 数据来源:西南印度洋洋中脊Seg 27玄武岩和高铝玄武岩(Yang et al., 2017);All-N-MORB和BABB平均值(Gale et al., 2013) Fig. 7 Selected chemical variation diagrams of gabbro and dolerite samples from the Dongbo ophiolite Data sources: The Seg 27 basalt and high-aluminium basalt in the Southwest Indian Ridge after Yang et al. (2017); the mean values of All-N-MORB and BABB after Gale et al. (2013) |
Ⅳ型辉绿岩脉的稀土元素(REE)含量在16.16×10-6~24.95×10-6之间(平均18.30×10-6),(La/Yb)N比值在0.16~0.28之间(平均0.21),分别低于Ⅰ型均质辉长岩的REE含量(30.55×10-6~35.51×10-6,平均33.41×10-6)和(La/Yb)N比值(0.60~0.69,平均0.65),轻/重稀土元素(L/HREE)分异程度前者低于后者。球粒陨石标准化REE图解中,Ⅳ型辉绿岩脉的LREE相比典型的N-MORB、全球BABB和全球N-MORB平均值极度亏损(图 8a),明显低于Ⅰ型均质辉长岩、Ⅱ型辉长岩脉和辉石岩脉以及西太平洋Lau岛弧拉斑玄武岩(IAT)(图 8a),也低于科钻DSD-1中Ⅲ型18m辉绿岩层(图 8b),LREE含量明显比Mariana弧前玄武岩(FAB,Reagan et al., 2010)低(图 8c),而与Albanide-Hellenide造山带中阿尔巴尼亚Rehove (Hoeck et al., 2002)、Rubik (Saccani and Photiades, 2005)和Mirdita蛇绿岩(Monjoie et al., 2008),以及希腊Agoriani蛇绿岩(Saccani and Photiades, 2005)的MORB和IAT过渡岩石中钛玄武岩(MTB)类似(图 8c),后者为贫Cpx二辉橄榄岩或含Cpx的方辉橄榄岩等亏损地幔再次熔融的产物,以极度亏损Th、Nb和LREE为特征(Saccani, 2015, 图 8a, c)。相比N-MORB (Sun and McDonough, 1989)、全球N-MORB和BABB (Gale et al., 2013)以及Lau IAT (Hergt and Woodhead, 2007),129Ma Ⅰ型均质辉长岩(刘飞等, 2018)、128MaⅡ型辉长岩脉(熊发挥等, 2011)以及科钻Ⅲ型18m辉绿岩(王云鹏等, 2019)的HREE含量稍低(图 8b),而与西南印度洋扩张脊玄武岩(Gao et al., 2016; Yang et al., 2017) 类似(图 8a, d)。
![]() |
图 8 东波蛇绿岩中多种基性岩的球粒陨石标准化稀土元素配分图和N-MORB标准化微量元素蛛网图 数据来源:东波Ⅰ型均质辉长岩(刘飞等, 2018);辉石岩脉和Ⅱ型辉长岩脉(熊发挥等, 2011);Ⅲ型18m厚的辉绿岩(王云鹏等, 2019);MTB(中钛玄武岩Saccani, 2015): 引自阿尔巴尼亚Rehove (Hoeck et al., 2002)、Rubik (Saccani and Photiades, 2005)和Mirdita蛇绿岩(Monjoie et al., 2008),以及希腊Agoriani蛇绿岩(Saccani and Photiades, 2005);全球BABB-全球弧后玄武岩平均值;全球N-MORB-全球洋中脊玄武岩平均值(包括MORB, N-MORB, MORB+BAB三条线)(Gale et al., 2013);Mariana FAB-D: 马里亚纳弧前玄武质岩脉(Reagan et al., 2010);Lau-IAT: Lau洋脊岛弧拉斑玄武岩(Hergt and Woodhead, 2007);西南印度洋洋中脊Seg 27玄武岩和高铝玄武岩(Yang et al., 2017);西南印度洋洋中脊龙骨玄武岩(Gao, 2016);N-MORB和球粒陨石(Sun and McDonough, 1989) Fig. 8 Chondrite-normalized REE patterns and N-MORB-normalized spider diagrams for different-types mafic rocks in the Dongbo ophiolite Data sources: Isotropic gabbro (type Ⅰ, Liu et al., 2018); pyroxenite and dolerite dike (type Ⅱ, Xiong et al., 2011); 18m thick dolerite (type Ⅲ) in the DSD-1drill core (Wang et al., 2019). All medium-Ti basalts (MTB, Saccani, 2015) compositions from Rehove (Hoeck et al., 2002), Rubik (Saccani and Photiades, 2005) and Mirdita ophiolites (Monjoie et al., 2008) in Albania, and from Agoriani ophiolite in Greece (Saccani and Photiades, 2005). The mean values of global backarc basalt (BAB), global N-MORB and all MORB including MORB, N-MORB, MORB+BAB (Gale et al., 2013); Forearc basalt-type dolerite dike (FAB-D) in Mariana (Reagan et al., 2010); island arc basalt (IAT) in the Lau ridge (Hergt and Woodhead, 2007); Seg 27 basalts and high-aluminum basalts (Yang et al., 2017), and baslats from Dragon Bone amagmatic segment in the Southwest Indian Ridge (Gao et al., 2016). Normalizing values of N-MORB and chondrite after (Sun and McDonough, 1989) |
N-MORB标准化微量元素蛛网图中,Ⅳ型辉绿岩脉相比Ⅰ型均质辉长岩、N-MORB、全球BABB和全球N-MORB平均值(Gale et al., 2013),不仅亏损REE、Ta、Ti等元素,具有Ba、Sr、Pb元素正异常,而且还显示极明显的Th、Nb、La、Ce、Zr和Hf等元素的负异常,与MTB类似(图 8e)。Ⅰ型均质辉长岩曲线位于全球BABB和全球N-MORB平均值之下,相比N-MORB明显亏损HFES和HREE元素,富集Ba元素,具有显著的Nb负异常和Sr、Pb正异常,无Zr、Hf和Ti异常,这些特征明显区别于Lau的IAT(图 8e),而与具有Nb负异常和Sr无异常至正异常的西南印度洋中脊玄武岩可类比(图 8f)。Ⅲ型18m辉绿岩与129MaⅠ型均质辉长岩以及128MaⅡ型辉长岩脉具有类似的配分曲线样式并显示Pb、Nb负异常(图 8f)。与Mariana FAB相比,Ⅳ型辉绿岩脉发育明显的Th、Nb、La、Ce、Zr和Hf负异常以及Sr和Ba正异常与之不同(图 8g),Ⅰ、Ⅱ、Ⅲ型基性岩均具有明显的Ba正异常、Nb负异常和Th的亏损,与具有Th弱正异常的FAB稍不同(图 8h)。总的来说,辉绿岩脉与MTB相似,而Ⅰ型均质辉长岩、128MaⅡ型辉长岩脉和Ⅲ型18m辉绿岩与西南印度洋洋脊玄武岩类似。
4.2 锆石U-Pb年龄分别从重约20kg两个辉绿岩脉样品(16YL46-14、16YL48-12)中挑选出86和30粒锆石。它们呈半自形-他形粒状和自形-半自形柱状,整体近于无色,少量为浅棕色,包裹体较少。锆石粒径主要位于60~150μm之间,个别可达350μm(图 9)。
![]() |
图 9 东波辉绿岩脉(样品16YL46-14、16YL48-12和16YL46-1)锆石阴极发光特征、原位U-Pb测年位置和年龄结果(单位:Ma) Fig. 9 CL images of zircon grains from the dolerite dikes showing the texture and corresponding spots and data analyzed by SHRIMP Ⅱ and SIMS (Unit: Ma) |
样品16YL46-14的CL图像比较复杂,既有明显平直对称的韵律环带(如图 9a-13点),也有弱分带(图 9a-1, -2, -5, -6, -10点)、无分带(图 9a-20点)、面状分带(图 9a-8, -9点)、柱状或扇状分带(图 9a-19点)、流动状分带(图 9a-16点)和双漏斗状(图 9a-21点)等。锆石晶体菱角圆化局部呈港湾状结构,普遍可见明暗不同的核边结构,核部环带明显,边部无明显分带,Th/U比值变化较大(0.19~1.45),指示其具有岩浆和变质成因特征并经历了后期热液溶蚀作用,且热液蚀变作用越强,蚀变边越宽(吴元保和郑永飞, 2004)。20粒被测锆石的U-Pb年龄分布在2692~84.7Ma之间,包括2692~530Ma和125.6~84.7Ma两组。第一组为继承锆石,包括核部年龄和边部的面状部位年龄;第二组共7粒锆石(图 9a),其中84.7Ma来自面状锆石(图 9a-15点)的边部,可能受到后期热液蚀变的影响,91.4±1.7Ma和118.0±2.7Ma分别来自核边结构锆石(图 9a-12点, 4点)的核部,其Th、U含量明显高于其它四粒岩浆锆石,测点4锆石的普通206Pb含量相对过高(10.95×10-6),结合辉绿岩脉的全岩地球化学极度亏损Th和U元素,推测两者可能发生强烈的放射性Pb丢失和U获得。118.2±3.2Ma锆石(图 9a-20点)的CL图像无分带,U含量相对较高(140.0×10-6),Th/U比值(0.23)较低,指示其可能经历了放射性Pb在锆石晶体中发生扩散作用导致放射性206Pb降低和U含量升高,进而致使测试年龄低于实际结晶年龄。125.6±4.5、123.2±2.9和121.0±4.9Ma三粒锆石颗粒较大,粒径在200~300μm之间,Th/U比值为0.33~0.48,为典型岩浆锆石,三者平均年龄123.3±4.2Ma代表辉绿岩脉的结晶年龄(图 10a, b)。
![]() |
图 10 东波辉绿岩脉的SHRIMP和SIMS锆石U-Pb年龄协和图、加权平均年龄图和协和年龄谱图 Fig. 10 Concordia diagrams showing zircons U-Pb valuesanalyzed by SHRIMP Ⅱ and SIMS, weighted average of ages and their histograms for dolerite dykes in the Dongbo ophiolite |
样品16YL48-12的锆石颗粒相对较小,粒径多在60~120m之间,呈半自形-他形粒状和柱状,长宽比为1∶1~1∶3不等。CL图像与16YL46-14类似,包含直立状环带、弱分带和无分带,普遍发育热液交代引起的增生环带白色边(图 9b)。由于颗粒较小,仅测试8粒锆石。虽然55.1±1.0Ma的锆石弱环带发育,Th/U比值(0.65)位于岩浆锆石的范围内(一般>0.4, 吴元保和郑永飞, 2004),然而其异常高的Th(2397×10-6)和U(38067×10-6)含量,与极度亏损Th和U元素的全岩地球化学含量不一致,该数值不代表此样品的结晶年龄(图 9b)。87.7±4.2Ma、102.6±3.2Ma和115±3.6Ma的锆石分别具有较高的普遍铅含量(26.12×10-6、33.25×10-6和13.02×10-6),而放射性铅含量相对较低(3.90×10-6、26.50×10-6和4.93×10-6),发育弱分带或无分带,边部增生白色环带,指示锆石晶体可能发生蜕晶化作用和扩散重结晶作用,致使放射成因铅丢失,进而测试年龄低于实际结晶年龄(图 10c, d)。其它259.7Ma、264.8Ma、310Ma和904Ma锆石的Th/U比值和CL图像特征彼此差异很大,均为继承锆石。总之,辉绿岩样品16YL46-14和16YL48-12均含有不同时代、不同成因的继承锆石,然而两者具有一致的野外产状和主微量地球化学特征,说明具有相同成因和地幔源区特征,因此推断123.3±4.2Ma为辉绿岩脉的结晶年龄。
样品16YL46-1锆石颗粒粒径多在60~100m之间,大多数呈他形粒状至半自形柱状,CL图像显示锆石种类多样,表现为颜色深浅不一、核边结构、宽面分带和无分带等(图 9c)。15个锆石测点的年龄主要分为四类,包括:2380~1091Ma、595~403Ma、234~213Ma和121Ma。前三类的锆石结构明显不同于基性岩的面状或扇状结构,为继承锆石。年龄为121Ma的锆石具有弱的宽缓环带,Th/U比值为2.18,与样品16YL46-14中118.2±3.2Ma锆石(图 9a-4点)类似,也与16YL46-14的结晶年龄123.3±4.2Ma相吻合。因此将121.0±3.4Ma解释为样品16YL46-1的结晶年龄(图 10e, f)。
5 讨论 5.1 地幔源区和部分熔融程度东波Ⅳ型辉绿岩具有典型的辉绿结构和似斑状结构(图 5a-d),普遍可见斜长石斑晶(图 5a-d),斜长石的结晶顺序早于辉石,少量角闪石、绿泥石等他形蚀变矿物存在于斜长石颗粒之间(图 5c, d),指示基性岩浆具有较低的水含量(Hirose and Kawamoto, 1995; 刘传周, 2015)。其MgO含量平均为9.39%,Mg#值平均为64.88,略低于最原始MORB熔体含量(MgO约为10.5%,Mg#>72;Niu, 2016)(图 7),但大于全球N-MORB平均值(分别为7.66%和57.50)和BABB平均值(分别为6.68%和54.89)(Gale et al., 2013),暗示Ⅳ型辉绿岩基性岩浆的初始成分可能经历了分离结晶过程或为亏损地幔橄榄岩的部分熔融的产物。哈克图解显示辉绿岩脉的全岩TiO2、FeOT和Na2O含量随MgO的升高而降低,而SiO2、Al2O3、CaO、Cr和Ni元素含量随MgO的升高而升高(图 7),暗示原始基性岩浆可能经历了富钙镁矿物(如单斜辉石)和硅铝矿物(如钙长石)的分离结晶,然而该推论不能解释其球粒陨石标准化REE图解普遍不显示Eu负异常(图 8a),因为Eu负异常通常指示演化的岩浆发生斜长石分离结晶的信息(Wilkinson, 1982)。这些特征说明演化的基性岩浆不是石榴石和/或尖晶石二辉橄榄岩部分熔融形成的原始岩浆发生分离结晶的结果,而可能为较亏损的方辉橄榄岩部分熔融的产物。相比Ⅳ型辉绿岩,Ⅲ型18m辉绿岩具有不同的变化规律,其MgO含量相对较低,平均为8.86%(n=6),Mg#值平均为63.69,FeOT、TiO2、Cr和Ni元素含量随MgO的升高而升高,而Al2O3、CaO含量随MgO的升高而降低,Na2O含量不随MgO的变化而变化(图 7),暗示原始岩浆经历了富镁铁矿物(如斜方辉石和橄榄石)和钛铁矿物(如尖晶石)分离结晶,结合具有较高的TiO2含量(1.14%~1.41%)以及REE图解普遍显示Eu负异常(图 8b),反映了不同的地幔源区岩浆演化特征。相比Ⅳ型辉绿岩脉,Ⅰ型均质辉长岩除Al2O3含量随MgO的升高而降低外,其它元素随MgO的升高均没有明显变化(图 7);REE稀土配分曲线与N-MORB近于一致(图 8b),HREE和HFSE含量明显低于N-MORB(图 8f),这些特征与西南印度洋中脊玄武岩和高铝玄武岩(Yang et al., 2017)类似,指示其初始岩浆可能为亏损地幔部分熔融的初始岩浆。
一般情况下,SiO2和MgO受二辉橄榄岩源区成分的影响很小,SiO2受部分熔融程度影响很小但受压力影响较大,MgO主要由温度来控制,而FeOT、Al2O3和CaO和不相容元素受部分熔融程度和源区地幔的成分控制(Hirose and Kushiro, 1993)。Ⅳ型辉绿岩脉、Ⅰ型均质辉长岩和Ⅲ型18m辉绿岩的SiO2平均含量分别为47.81%、45.67%和44.80%,低于全球N-MORB(50.47%)和BABB(51.67%)的平均值(Hirose and Kushiro, 1993)。Ⅳ型辉绿岩脉、均质辉长岩和18m辉绿岩的SiO2平均含量分别为47.81%、45.67%和44.80%,低于全球N-MORB(50.47%)和BABB(51.67%)的平均值(Gale et al., 2013, 图 7)。形成于10kbar的全球BABB和全球N-MORB的CaO/Al2O3平均比值分别为0.72和0.77,FeOT平均含量分别为9.88%和10.19%(Gale et al., 2013)。相比之下,Ⅳ型辉绿岩脉和Ⅲ型18m辉绿岩层的CaO/Al2O3比值(分别为0.79~0.87,平均0.84,和0.71~0.91,平均0.84)较高,而FeOT含量(平均值分别为9.09%、9.50%)稍低,Ⅰ型均质辉长岩具有更高的CaO/Al2O3比值(1.29~1.40,平均1.31),但FeOT含量(平均7.47%)较低。以上特征暗示东波Ⅳ型辉绿岩脉、Ⅰ型均质辉长岩和Ⅲ型18m辉绿岩层均形成于相对较高的压力环境下,源自于较亏损的地幔源区。
地幔岩石发生部分熔融时,源区中不相容性的元素比值相对恒定,可以用于示踪地幔源区性质(Condie, 2013)。重稀土元素(HREE)在部分熔融过程中相容于石榴石,因此源自石榴石相源区的基性岩浆相比N-MORB常常亏损HREE,该类玄武岩被命名为来自石榴石源区相的洋中脊玄武岩(G-MORB, Saccani, 2015)。在球粒陨石标准化(Ce/Yb)N-(Dy/Yb)N图解中,东波辉绿岩脉、均质辉长岩和18m辉绿岩层样品均落入N-MORB区域(图 11a),指示源区为非石榴石相地幔橄榄岩。在La/Sm-Sm/Yb图解中,所有样品落在由亏损地幔和初始地幔定义的近水平的地幔趋势线和延长线上(图 11b),说明东波多种类型基性岩均源自尖晶石二辉橄榄岩部分熔融。其中辉绿岩脉经历了大于25%的部分熔融(图 11b),该结果与异常亏损HFSE和REE元素一致(图 8a, e);18m辉绿岩样品分布在地幔趋势线的上部,亦经历了大于25%的部分熔融;而均质辉长岩样品接近于N-MORB,经历了约12%~20%部分熔融(图 11b)。
![]() |
图 11 东波蛇绿岩中多种基性岩的(Ce/Yb)N-(Dy/Yb)N图解(a, 底图据Saccani, 2015)和La/Sm-Sm/Yb图解(b,底图据Aldanmaz et al., 2020) N-MORB: 正常洋中脊玄武岩; G-MORB: 源自石榴石相的洋中脊玄武岩; E-MORB:富集洋中脊玄武岩;PM:初始地幔; N为球粒陨石(Sun and McDonough, 1989). 曲线和数字分别为非模式熔融模拟曲线和熔融程度 Fig. 11 (Dy/Yb)N vs. (Ce/Yb)N diagram used for discriminating between G-MORB and N-MORB (a, Saccani, 2015) and La/Sm vs. Sm/Yb diagram used for modelling degrees of partial melting for a given mantle source (b, Aldanmaz et al., 2020) for different-types mafic rocks in the Dongbo ophiolite Data sources: N/G/E-MORB: Normal/Garnet signature/enriched mid-ocean basalt; N means chondrite normalization (Sun and McDonough, 1989) |
蛇绿岩的洋壳岩石和构造地幔橄榄岩均可用于追溯古洋盆构造演化过程(Pearce, 2014)。基性岩的地球化学成分被广泛用于判别蛇绿岩的构造环境,近期国内外学者对玄武岩类构造环境判别图解的可行性进行重新评估,强调判别图解的选择需依据岩石学、矿物学及区域地质构造背景等综合遴选(Li et al., 2015; 邓晋福等, 2015),认为微量元素蛛网图中Nb-Ta负异常可以有效判别MORB和岛弧玄武岩(Li et al., 2015),Th、Nb、Ta、Ti元素能较好的判别岛弧和非岛弧玄武岩(杨婧等, 2016),N-MORB标准化的NbN-ThN图解可以示踪Th元素通过俯冲或地壳混染等方式的富集,进而较好的区分各种俯冲相关的玄武岩与俯冲不相关玄武岩(Saccani, 2015)。因此我们采用Th、Nb、Ti和HREE探讨东波不同基性岩的构造环境。此外,地幔橄榄岩的矿物成分特征对判别蛇绿岩的构造环境具有重要的限定意义(Griffin et al., 2016; Yang et al., 2021),地幔橄榄岩的橄榄石、单斜辉石、斜方辉石、尖晶石的矿物化学和全岩地球化学成分是示踪部分熔融程度有效指示剂(Dick and Bullen, 1984)。一般认为,橄榄石的Fo值[=100×Mg/(Mg+Fe2+)]、铬尖晶石的Cr#值[=100×Cr/(Cr+Al)],辉石的Mg#值[=100×Mg/(Mg+Fe2+)]越大,指示其形成深度和熔融程度越高(Arai and Miura, 2016; Dick and Bullen, 1984; Hellebrand et al., 2001; Lian et al., 2016, 2017)。
东波蛇绿岩的洋壳岩石中,121~123Ma Ⅳ型辉绿岩脉在球粒陨石标准化REE图解和N-MORB标准化微量元素图解中具有低的REE和HFSE含量,尤其亏损LREE,并发育显著的Th、Nb、Zr、Hf负异常,几乎没有壳源物质的加入,说明为亏损的地幔橄榄岩再次熔融的产物(图 8a, b),该特征与Albanide-Hellenide造山带中形成于初始洋内俯冲的MTB类似(图 8f),指示一种初始洋内弧环境。在Ta/Yb-Th/Yb图解中,辉绿岩脉样品落入MORB地幔域及以下区域(图 12a),而在Ti-V图解中,所有样品落入IAT和俯冲板片近端弧前或弧后玄武岩区域(图 12b),与N-MORB标准化蛛网图的岛弧玄武岩特征一致。在N-MORB标准化的Nb-Th图解中辉绿岩脉样品落入MBT和(SSZ)亏损洋中脊玄武岩(D-MORB)范围内(图 12c),形成于初始洋内岛弧环境(图 12d)。
![]() |
图 12 东波蛇绿岩中多种基性岩的构造判别图解(a, 据Pearce, 2003; b, 据Pearce, 2014; c-d, 据Saccani, 2015) Fig. 12 Tectonic discrimination diagrams for the various mafic rocks in the Dongbo ophiolite (a, after Pearce, 2003; b, after Pearce, 2014; c, d, after Saccani, 2015) |
相比Ⅳ型辉绿岩脉,Ⅰ型均质辉长岩、Ⅱ型辉长岩脉和Ⅲ型18m辉绿岩在球粒陨石标准化REE图解中具有N-MORB型配分模式(图 8a),在N-MORB标准化微量元素图解中明显亏损HFSE和HREE元素,无Zr、Hf和Ti异常,富集Ba元素,同时具有Nb、Sr、Pb负异常,指示无壳源物质加入,不同于受俯冲流体显著影响的洋内岛弧拉斑玄武岩(图 8d),而与同样具有Nb负异常的西南印度洋N-MORB相似(图 8e),后者代表了早期地幔柱作用大洋上地幔或洋内岛弧地幔熔体抽取后的地幔残余(Gao et al., 2016; Zhou and Dick, 2013)。结合东波地幔橄榄岩中发育大量拆离和韧性剪切断层、糜棱岩和糜棱岩化蛇纹岩和蛇绿角砾岩(刘飞等,2018),Ⅰ型均质辉长岩、Ⅱ型辉长岩脉和Ⅲ型18m辉绿岩可能均为洋盆在慢速-超慢速扩张阶段形成大洋核杂岩过程中形成的。从地表填图的结果看,东波蛇绿岩发育极薄洋壳和厚层地幔橄榄岩(图 2),厚层地幔橄榄岩以方辉橄榄岩为主含少量纯橄岩和二辉橄榄岩,其中方辉橄榄岩经历了高达35%的部分熔融(Liu et al., 2015; Niu et al., 2015; 杨经绥等, 2011b),该特征亦与慢速和超慢速扩张的西南印度洋的洋中脊岩石组合及高亏损地幔橄榄岩类似(Mallick et al., 2015; Zhou and Dick, 2013)。尤其重要的是,王云鹏等(2019)详细总结了东波科钻DSD-1岩心的地幔橄榄岩岩相和矿物化学特征:长达1002m地幔橄榄岩岩心被分为两个带,即上带(23.1~317.07m)较破碎、普遍蛇纹石化含Cpx方辉橄榄岩和下带(317.07~1002.06m)不含Cpx方辉橄榄岩夹多条纯橄岩、辉石岩、辉绿岩和异剥钙榴岩等薄层(图 3a)。橄榄石均具有较高的Fo值(89.98~91.34),属镁橄榄石,斜方辉石的En值分布在83.32~90.63,Mg#值介于89.57~90.93,为顽火辉石,单鞋辉石Mg#值集中在91.08~92.89,均为透辉石。含Cpx方辉橄榄岩中铬尖晶石的Cr#值普遍较低(11.1~23.0),而亏损方辉橄榄岩中铬尖晶石的Cr#值为49.7~63.2,纯橄岩中铬尖晶石的Cr#值为63.6~81.6 (王云鹏等, 2019)。总的来说,从上层含Cpx方辉橄榄岩,到下层亏损方辉橄榄岩和橄榄斜方辉石岩、薄层状纯橄岩,再到透镜状纯橄岩,矿物的Fo值、Mg#值和Cr#值逐渐增大,指示其部分熔融程度越来越高。矿物化学成分显示,橄榄石的成分与弧前、弧后和深海地幔橄榄岩相重叠(图 3b, c),然而斜方辉石(Opx,图 3d, e)、Cpx(图 3f, g)和铬尖晶石(Spl,图 3h, i)的矿物成分显示上层含Cpx方辉橄榄岩和下层亏损方辉橄榄岩分别与深海地幔橄榄岩和弧前地幔橄榄岩相吻合,指示两者可能分别代表了两次熔体抽取后的地幔残余。
5.3 从地幔柱影响的洋盆扩张至洋内初始俯冲过程东波地幔橄榄岩上部及其边部蛇绿混杂岩中普遍发育OIB型玄武岩和玄武质角砾岩、泥页岩、放射虫硅质岩和灰岩等海山组合,OIB型玄武岩的时代为早白垩世(Liu et al., 2015; 刘飞等, 2013),该期岩浆事件与夹持于硅质岩的~137Ma E-MORB型玄武岩(Liu et al., 2015)、与侵入到普兰半深海沉积岩(硅质岩和泥页岩)的144Ma OIB型辉长岩(Xiong et al., 2020b),以及与侵入于普兰地幔橄榄岩的138~139Ma OIB型辉绿岩(Zheng et al., 2019; Huang et al., 2021)一致,它们均被解释为与洋盆扩张阶段地幔柱活动的产物(Zheng et al., 2019; Liu et al., 2015, 2020; Lian et al., 2021)(图 13a)。该地幔柱可能与从145Ma断续活动至今的Kerguelen地幔柱有关(Liu et al., 2020; Lian et al., 2021)。该推断与普兰方辉橄榄岩中普遍可见Opx和Cpx互溶体的形成深度(约75km,Xiong et al., 2020a),以及与普兰蛇绿岩北部识别出具有后生交生结构的尖晶石二辉橄榄岩源自85~100km石榴石二辉橄榄岩(Gong et al., 2016, 2020)的认识相吻合,后者被认为代表了巨厚大洋岩石圈的底部或来自受地幔柱活动影响的岩石圈地幔(Gong et al., 2020)。这些成果与东波和普兰等YZSZ蛇绿岩地幔橄榄岩中发现了微粒金刚石、碳硅石等异常地幔矿物(杨经绥等, 2011a; 徐向珍等, 2015; Xiong et al., 2019)相一致,结合东波亏损型方辉橄榄岩经历了大于35%的部分熔融(Niu et al., 2015),上述证据均指示东波蛇绿岩反映的新特提斯古洋盆在早白垩世早期受到地幔柱活动的影响(图 13a)。
![]() |
图 13 东波蛇绿岩的构造演化简图 Fig. 13 Schematic models showing the tectonic evolution of Early Cretaceous Dongbo ophiolite from ultra-slow spreading enfluenced by a mantle plume to inicial intra-ocean subduction |
东波蛇绿岩西北缘出露129Ma Ⅰ型均质辉长岩体覆盖在蛇纹石化地幔橄榄岩之上,以及128Ma Ⅱ型辉长岩脉侵入地幔橄榄岩中,它们均是在洋盆慢速-超慢速扩张过程中,沿着拆离断层形成大洋核杂岩(OCC)过程中形成的(刘飞等, 2018; Liu et al., 2021a)(图 13b)。OCC形成后,大洋岩石圈发生初始洋内俯冲,形成具有MTB型121~123Ma辉绿岩脉(图 10),代表了新特提斯大洋岩石圈经历了洋内初始俯冲过程(图 13c)。
6 结论东波蛇绿岩具有“厚幔极薄壳”特征,其岩石组成可与西南印度洋和大西洋等慢速-超慢速扩张洋中脊附近的大洋核杂岩对比。东波蛇绿岩记录了雅鲁藏布新特提斯洋西段洋盆在早白垩世经历了地幔柱影响的超慢速伸展和初始洋内俯冲过程:
(1) 侵入于方辉橄榄岩的辉绿岩脉SIMS和SHRIMP锆石U-Pb年龄为121~123Ma,全岩地球化学具有异常亏损的REE、HFSE含量及明显的Th、Nb、Zr、Hf负异常,类似于Albanide-Hellenide造山带蛇绿岩中的无壳源物质混染的MTB,指示其形成于洋内初始俯冲环境。
(2) 129Ma均质辉长岩(Ⅰ型)、128Ma辉长岩脉(Ⅱ型)和DSD-1岩芯中18m辉绿岩(Ⅲ型)的地球化学成分均与西南印度洋洋中脊玄武岩类似,它们是在慢速-超慢速扩张脊附近的大洋核杂岩侵位过程中形成的。
(3) 东波蛇绿岩及其相距几十千米的普兰蛇绿岩中发育大量137~144Ma的OIB型玄武岩和辉绿岩,普遍出露熔融程度达30%以上的亏损型方辉橄榄岩,反映了早白垩世初期古洋盆中地幔柱活动的信息。
致谢 野外和室内工作得到了许志琴老师的指导。武勇高级工程师给予SIMS锆石U-Pb测年帮助,张超凡硕士协助绘制图件。感谢何碧竹研究员组织《青藏高原及邻区研究新进展》专辑。中国地质科学院地质研究所孟繁聪研究员和付长垒副研究员以及南京大学连东洋副教授认真审阅全文并给予宝贵的修改意见,《岩石学报》编辑部主任俞良军认真细致的审查并给予了非常好的修改建议。在此一并表示真挚地感谢。
Aldanmaz E, van Hinsbergen DJJ, Yıldız-Yüksekol Ö, Schmidt MW, McPhee PJ, Meisel T, Güçtekin A and Mason PRD. 2020. Effects of reactive dissolution of orthopyroxene in producing incompatible element depleted melts and refractory mantle residues during early fore-arc spreading: Constraints from ophiolites in eastern Mediterranean. Lithos, 360-361: 105438 DOI:10.1016/j.lithos.2020.105438
|
Arai S and Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277-295 DOI:10.1016/j.lithos.2016.08.039
|
Bai WJ, Zhou MF and Robinson PT. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650-1659 DOI:10.1139/e93-143
|
Bao PS, Su L, Wang J and Zhai QG. 2013. Study on the tectonic setting for the ophiolites in Xigaze, Tibet. Acta Geologica Sinica, 87(2): 395-425 DOI:10.1111/1755-6724.12058
|
Bao PS, Su L, Wang J and Zhai QG. 2014. Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geologica Sinica, 88(2): 669-698 DOI:10.1111/1755-6724.12222
|
Chan GHN, Aitchison JC, Crowley QG, Horstwood MSA, Searle MP, Parrish RR and Chan JSL. 2015. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications. Gondwana Research, 27(2): 719-732 DOI:10.1016/j.gr.2013.06.016
|
Coleman RG. 2014. The ophiolite concept evolves. Elements, 10(2): 82-84 DOI:10.2113/gselements.10.2.82
|
Condie KC. 2013. Incompatible element ratios in oceanic basalts and komatiites: Tracking deep mantle sources and continental growth rates with time. Geochemistry, Geophysics, Geosystems, 4(1): 1-28
|
Dai JG, Wang CS and Li YL. 2012. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 53: 25-37 DOI:10.1016/j.jseaes.2011.12.024
|
Deng JF, Liu C, Feng YF, Xiao QH, Di YJ, Su SG, Zhao GC, Duan PX and Dai M. 2015. On the correct application in the common igneous petrological diagrams: Discussion and suggestion. Geological Review, 61(4): 717-734 (in Chinese with English abstract)
|
Dick HJ and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76 DOI:10.1007/BF00373711
|
Dilek Y and Furnes H. 2019. Tethyan ophiolites and Tethyan seaways. Journal of the Geological Society, 176(5): 899-912 DOI:10.1144/jgs2019-129
|
Fukao Y, Obayashi M, Nakakuki T and The Deep Slab Project Group. 2009. Stagnant slab: A review. Annual Review of Earth and Planetary Sciences, 37: 19-46 DOI:10.1146/annurev.earth.36.031207.124224
|
Gale A, Dalton CA, Langmuir CH, Su YJ and Schilling JG. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489-518 DOI:10.1029/2012GC004334
|
Gao CG, Dick HJB, Liu Y and Zhou HY. 2016. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise. Lithos, 246-247: 48-60 DOI:10.1016/j.lithos.2015.12.007
|
Gong XH, Shi RD, Griffin WL, Huang QS, Xiong Q, Chen SS, Zhang M and O'Reilly SY. 2016. Recycling of ancient subduction-modified mantle domains in the Purang ophiolite (southwestern Tibet). Lithos, 262: 11-26 DOI:10.1016/j.lithos.2016.06.025
|
Gong XH, Shi RD, Xu JF, Huang QS, Huang XX and Su BX. 2020. "Garnet" lherzolites in the Purang ophiolite, Tibet: Evidence for exhumation of deep oceanic lithospheric mantle. Geophysical Research Letters, 47(1): e2019GL086101
|
Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong XH, González-Jiménez JM, Howell D, Huang JX, McGowan N, Pearson NJ, Satsukawa T, Shi R, Williams P, Xiong Q, Yang JS, Zhang M and O'reilly SY. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655-684 DOI:10.1093/petrology/egw011
|
Hastie AR, Kerr AC, Pearce JA and Mitchell SF. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341-2357 DOI:10.1093/petrology/egm062
|
He J, Li YL, Wang CS, Dilek Y, Wei YS, Chen X, Hou YL and Zhou A. 2016. Plume-proximal mid-ocean ridge origin of Zhongba mafic rocks in the western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 121: 34-55 DOI:10.1016/j.jseaes.2016.01.022
|
Hellebrand E, Snow JE, Dick HJB and Hofmann AW. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410(6829): 677-681 DOI:10.1038/35070546
|
Hergt JM and Woodhead JD. 2007. A critical evaluation of recent models for Lau-Tonga arc-backarc basin magmatic evolution. Chemical Geology, 245(1-2): 9-44 DOI:10.1016/j.chemgeo.2007.07.022
|
Hirose K and Kushiro I. 1993. Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters, 114(4): 477-489 DOI:10.1016/0012-821X(93)90077-M
|
Hirose K and Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3-4): 463-473 DOI:10.1016/0012-821X(95)00096-U
|
Hoeck V, Koller F, Meisel T, Onuzi K and Kneringer E. 2002. The Jurassic South Albanian ophiolites: MOR- vs.SSZ-type ophiolites. Lithos, 65(1-2): 143-164
|
Huang QT, Zheng H, Sun XJ, Yang QK, Cai ZR and Xia B. 2021. Compositional signatures of dolerite dykes from the Purang ultramafic massif, Tibet: Implications for garnet-bearing components in the Neo-Tethyan mantle. Lithos, 392-393: 106157 DOI:10.1016/j.lithos.2021.106157
|
Jiang M, Yang JS, Tan HD, Qian RY, Zhang YW, Peng M, Xu LH, Zhang LS, Li QQ, Guo S and Song HX. 2015. Geophysical characteristics and prospecting significance of deep structures in Dongpo ophiolitebody, Tibet. Geology in China, 42(5): 1179-1187 (in Chinese with English abstract)
|
Kapp P and DeCelles PG. 2019. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. American Journal of Science, 319(3): 159-254 DOI:10.2475/03.2019.01
|
Li C, Arndt NT, Tang QY and Riple EM. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76-83 DOI:10.1016/j.lithos.2015.06.022
|
Li X, Matsuoka A, Li YL and Wang CS. 2017. Phyletic evolution of the mid-Cretaceous radiolarian genus Turbocapsula from southern Tibet and its applications in zonation. Marine Micropaleontology, 130: 29-42 DOI:10.1016/j.marmicro.2016.11.002
|
Li Y, Li RB, Dong TC, Yang SB and Pei L. 2016. Structure of the Baimarang massif in the Xigaze ophiolite, Yarlung Zangbo Suture Zone, southern Tibet, China. Chinese Science Bulletin, 61(25): 2823-2833 (in Chinese) DOI:10.1360/N972016-00203
|
Li Y, Li RB, Robinson PT, Yang SB, Zhang J and Yang JS. 2021. Detachment faulting in the Xigaze ophiolite southern Tibet: New constraints on its origin and implications. Gondwana Research, 94: 44-55 DOI:10.1016/j.gr.2021.02.006
|
Lian DY, Yang JS, Robinson PT, Liu F, Xiong FH, Zhang L, Gao J and Wu WW. 2016. Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the petrology, mineralogy, and geochemistry of the peridotites. The Journal of Geology, 124(3): 353-376 DOI:10.1086/685510
|
Lian DY, Yang JS, Liu F, Wu WW, Zhang L, Zhao H and Huang J. 2017. Geochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet. Mineralogy and Petrology, 111(5): 729-746 DOI:10.1007/s00710-017-0491-5
|
Lian DY and Yang JS. 2019. Ophiolite-hosted diamond: A new window for probing carbon cycling in the deep mantle. Engineering, 5(3): 406-420 DOI:10.1016/j.eng.2019.02.006
|
Lian DY, Liu F, Yang JS, Xu ZQ and Wu WW. 2021. Fingerprints of the Kerguelen mantle plume in southern Tibet: Evidence from Early Cretaceous magmatism in the Tethyan Himalaya. The Journal of Geology, 129(2): 207-231 DOI:10.1086/714173
|
Liu CZ. 2015. Genesis of gabbronorites in ophiolites. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 481-490 (in Chinese with English abstract)
|
Liu CZ, Wu FY, Liu T, Zhang C, Zhang WQ, Zhang ZY, Zhang Z, Wei W and Lin YZ. 2021a. An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundamental Research, doi: 10.1016/j.fmre.2021.07.002
|
Liu F, Yang JS, Chen SY, Liang FH, Niu XL, Li ZL and Lian DY. 2013. Ascertainment and environment of the OIB-type basalts from the Dongbo ophiolite in the western part of Yarlung Zangbo Suture Zone. Acta Petrologica Sinica, 29(6): 1909-1932 (in Chinese with English abstract)
|
Liu F, Yang JS, Dilek Y, Xu ZQ, Xu XZ, Liang FH, Chen SY and Lian DY. 2015. Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Research, 27(2): 701-718 DOI:10.1016/j.gr.2014.08.002
|
Liu F, Yang JS, Lian DY, Zhao H, Zhang L, Zhang L and Huang J. 2015a. Genesis and characteristics of the western part of the Yarlung Zangbo ophiolites, Tibet. Acta Petrologica Sinica, 31(12): 3609-3628 (in Chinese with English abstract)
|
Liu F, Yang JS, Lian DY, Zhao H, Zhao YJ and Zhang L. 2015b. The genesis and tectonic significance of mafic dikes in the western part of the Yarlung Zangbo Suture Zone, Tibet. Acta Geoscientica Sinica, 36(4): 441-454 (in Chinese with English abstract)
|
Liu F, Dilek Y, Xie Y, Yang J and Lian DY. 2018. Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo suture zone (southern Tibet). Lithosphere, 10(1): 109-132 DOI:10.1130/L689.1
|
Liu F, Lian DY, Niu XL, Zhao H, Feng GY and Yang JS. 2018. Dongbo MORB-type isotropic gabbro emplaced as an oceanic core complex in Western Yarlung Zangbo Suture Zone, Tibet. Earth Science, 43(4): 952-974 (in Chinese with English abstract)
|
Liu F, Lian DY, Feng GY, Li ZL, Niu XL and Yang JS. 2020. Radiolarian biochronology, detrital zircon geochronological and geochemical constraints on provenance and depositional environment of cherts in the southern belt of the western Yarlung Zangbo suture zone, Tibet. The Journal of Geology, 128(6): 535-562 DOI:10.1086/712185
|
Liu F, Yang JS, Lian DY and Li GL. 2020. Geological features of Neothyan ophiolites in Tibetan Plateau and its tectonic evolution. Acta Petrologica Sinica, 36(10): 2913-2945 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.10.01
|
Liu F, Dilek Y, Yang JS, Lian DY, Li GL and Wu Y. 2021b. A Middle Triassic seamount within the western Yarlung Zangbo suture zone, Tibet: The earliest seafloor spreading record of Neotethys to the North of East Gondwana. Lithos, 388-389: 106062 DOI:10.1016/j.lithos.2021.106062
|
Liu XH, Hsu KJ, Ju YT, Li GW, Liu XB, Wei LJ, Zhou XJ and Zhang XG. 2012. New interpretation of tectonic model in south Tibet. Journal of Asian Earth Sciences, 56: 147-159 DOI:10.1016/j.jseaes.2012.05.005
|
Mallick S, Standish JJ and Bizimis M. 2015. Constraints on the mantle mineralogy of an ultra-slow ridge: Hafnium isotopes in abyssal peridotites and basalts from the 9°~25°E Southwest Indian Ridge. Earth and Planetary Science Letters, 410: 42-53 DOI:10.1016/j.epsl.2014.10.048
|
Matsuoka A, Yang Q, Kobayashi K, Takei M, Nagahashi T, Zeng QG and Wang YJ. 2002. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: Records from the Xialu Chert in the Yarlung-Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 20(3): 277-287 DOI:10.1016/S1367-9120(01)00044-X
|
Monjoie P, Lapierre H, Tashko A, Mascle GH, Dechamp A, Muceku B and Brunet P. 2008. Nature and origin of the Triassic volcanism in Albania and Othrys: A key to understanding the Neotethys opening?. Bulletin de la Société Géologique de France, 179(4): 411-425 DOI:10.2113/gssgfbull.179.4.411
|
Niu XL, Yang JS, Dilek Y, Xu JF, Li J, Chen SY, Feng GY, Liu F, Xiong FH and Liu Z. 2015. Petrological and Os isotopic constraints on the origin of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, Western Tibet. Journal of Asian Earth Sciences, 110: 72-84 DOI:10.1016/j.jseaes.2014.09.036
|
Niu YL. 2016. The meaning of global ocean ridge basalt major element compositions. Journal of Petrology, 57(11-12): 2081-2103 DOI:10.1093/petrology/egw073
|
Pearce JA and Deng WM. 1988. The ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A, 327(1594): 215-238
|
Pearce JA. 1996. A user's guide to basalt discrimination diagrams. In: Wyman AD (ed.). Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes: 79-113
|
Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Special Papers-Geological Society of America, 373: 269-294
|
Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108 DOI:10.2113/gselements.10.2.101
|
Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura JI, Peate DW, Rowe MC and Woods M. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12
|
Rollinson H. 2016. Surprises from the top of the mantle transition zone. Geology Today, 32(2): 58-64 DOI:10.1111/gto.12130
|
Saccani E and Photiades A. 2005. Petrogenesis and tectonomagmatic significance of volcanic and subvolcanic rocks in the Albanide-Hellenide ophiolitic mélanges. Island Arc, 14(4): 494-516 DOI:10.1111/j.1440-1738.2005.00480.x
|
Saccani E. 2015. A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics. Geoscience Frontiers, 6(4): 481-501 DOI:10.1016/j.gsf.2014.03.006
|
Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson DG, Sobolev NV and Walter MJ. 2013. Diamonds and the geology of mantle carbon. Reviews in Mineralogy & Geochemistry, 75(1): 355-421
|
Song B, Zhang YH and Liu DY. 2002. Introductiong to the Naissance of SHRIMP and its contribution to isotope geology. Journal of Chinese Mass Spectrometry Society, 23(1): 58-62 (in Chinese with English abstract)
|
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds. ). Magmatism in Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
|
Wang TY, Li GB, Li XF, Niu XL, Zhang JB and Xue S. 2016. Radiolarian assemblage from the mélange in the southern Margin to Yarlung-Zangbo Suture and its geological significance. Geoscience, 30(2): 445-454 (in Chinese with English abstract)
|
Wang XC, Liu WL, Zhong Y, Hu XC, Xia B and Huang W. 2018. Geochemical and zircon U-Pb age constraints on the origin of the Mesozoic Xigaze ophiolite, Yarlung Zangbo suture zone, SW China. International Geology Review, 60(10): 1267-1289 DOI:10.1080/00206814.2017.1385034
|
Wang YJ, Yang Q, Matsuoka A, Kobayashi K, Nagahashi T and Zeng QG. 2002. Triassic radiolarians from the Yarlung Zangbo suture zone in the Jinlu area, Zetang County, Southern Tibet. Acta Micropalaeontologica Sinica, 19(3): 215-227
|
Wang YP, Niu XL, Yang JS, Li Y, Xu XZ, Feng GY, Xiong FH, Liu F, Liu Z, Tian YZ, Guo GL, Lian DY and Zhao YJ. 2019. The drilling core (DSD-1) study of the Dongbo peridotite massif, Yarlung Zangbo Suture Zone, western Tibet. Acta Geologica Sinica, 93(10): 2486-2508 (in Chinese with English abstract)
|
Wilkinson JFG. 1982. The genesis of mid-ocean ridge basalt. Earth-Science Reviews, 18(1): 1-57 DOI:10.1016/0012-8252(82)90002-2
|
Wu FY, Liu CZ, Zhang LL, Zhang C, Wang JG, Ji WQ and Liu XC. 2014. Yarlung Zangbo ophiolite: A critical updated view. Acta Petrologica Sinica, 30(2): 293-325 (in Chinese with English abstract)
|
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.01
|
Wu H. 1993. Upper Jurassic and Lower Cretaceous radiolarians of Xialu chert, Yarlung Zangbo ophiolite belt, southern Tibet. Micropaleontology Special Publication, 6: 115-136
|
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122
|
Xia B, Li JF, Xu LF, Wang R and Yang ZQ. 2011. Sensitive high resolution ion micro-probe U-Pb zircon geochronology and geochemistry of mafic rocks from the Pulan-Xiangquanhe ophiolite, Tibet: Constraints on the evolution of the Neo-Tethys. Acta Geologica Sinica, 85(4): 840-853 DOI:10.1111/j.1755-6724.2011.00489.x
|
Xiong FH, Yang JS, Liang FH, Ba DZ, Zhang J, Xu XZ, Li Y and Liu Z. 2011. Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance. Acta Petrologica Sinica, 27(11): 3223-3238 (in Chinese with English abstract)
|
Xiong FH, Yang JS, Robinson PT, Xu XZ, Ba DZ, Li Y, Zhang ZM and Rong H. 2016. Diamonds and other exotic minerals recovered from peridotites of the Dangqiong ophiolite, western Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 90(2): 425-439 DOI:10.1111/1755-6724.12681
|
Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Zhou WD, Feng GY, Xu JF, Li J and Niu XL. 2017. High-Al and high-Cr podiform chromitites from the western Yarlung-Zangbo suture zone, Tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements. Ore Geology Reviews, 80: 1020-1041 DOI:10.1016/j.oregeorev.2016.09.009
|
Xiong FH, Liu Z, Kapsiotis A, Yang JS, Davide L and Robinson PT. 2019. Petrogenesis of lherzolites from the Purang ophiolite, Yarlung-Zangbo suture zone, Tibet: Origin and significance of ultra-high pressure and other 'unusual' minerals in the Neo-Tethyan lithospheric mantle. International Geology Review, 61(17): 2184-2210 DOI:10.1080/00206814.2019.1584771
|
Xiong FH, Dilek Y, Wirth R, Xu XZ and Yang JS. 2020a. Opx-Cpx exsolution textures in lherzolites of the Cretaceous Purang Ophiolite (S.Tibet, China), and the deep mantle origin of Neotethyan abyssal peridotites. International Geology Review, 62(6): 665-682
|
Xiong FH, Meng YK, Yang JS, Liu Z, Xu XZ, Eslami A and Zhang R. 2020b. Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite: Implications for evolution of the western Yarlung-Tsangpo suture zone, southwestern Tibet. Geoscience Frontiers, 11(1): 277-292 DOI:10.1016/j.gsf.2019.05.006
|
Xu DM, Huang GC and Lei YJ. 2008. Geochemistry and tectonic significance of mantle peridotites from the Laangcuo ophiolite massif, Southwest Tibet. Acta Petrologica et Mineralogica, 27(1): 1-13 (in Chinese with English abstract)
|
Xu XZ, Yang JS, Chen SY, Fang QS, Bai WJ and Ba DZ. 2009. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. Journal of Earth Science, 20(2): 284-302 DOI:10.1007/s12583-009-0026-z
|
Xu XZ, Yang JS, Ba DZ, Zhang ZM, Xiong FH and Li Y. 2015. Diamond discovered from the Dongbo mantle peridotite in the Yarlung Zangbo suture zone, Tibet. Geology in China, 42(5): 1471-1482 (in Chinese with English abstract)
|
Xu XZ, Yang JS, Robinson PT, Xiong FH, Ba DZ and Guo GL. 2015a. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 686-700 DOI:10.1016/j.gr.2014.05.010
|
Xu XZ, Yang JS, Xiong FH, Ba DZ, Zhang ZM and Li Y. 2018. Diamond and other exotic minerals discovered from the Xigaze mantle peridotite in the Yarlung-Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 92(7): 1389-1400 (in Chinese with English abstract)
|
Xu ZQ, Dilek Y, Yang JS, Liang FH, Liu F, Ba DZ, Cai ZH, Li GW, Dong HW and Ji SC. 2015b. Crustal structure of the Indus-Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Research, 27(2): 507-524 DOI:10.1016/j.gr.2014.08.001
|
Xu ZQ, Zhao ZB, Ma XX, Chen XJ and Ma Y. 2019. From Andean orogen to Gangdese orogeny: From ocean continent subduction to continent-continent collision. Acta Geologica Sinica, 93(1): 1-11 (in Chinese with English abstract) DOI:10.1111/1755-6724.13757
|
Yang AY, Zhao TP, Zhou MF and Deng XG. 2017. Isotopically enriched N-MORB: A new geochemical signature of off-axis plume-ridge interaction: A case study at 50°28'E, Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth, 122(1): 191-213 DOI:10.1002/2016JB013284
|
Yang J, Wang JR, Zhang Q, Chen WF, Pan ZJ, Du XL, Jiao ST and Wang SH. 2016. Global IAB data excavation: The performance in basalt discrimination diagrams and preliminary interpretation. Geological Bulletin of China, 35(12): 1937-1949 (in Chinese with English abstract)
|
Yang JS, Xu XZ, Li Y, Li JY, Ba DZ, Rong H and Zhang ZM. 2011a. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence. Acta Petrologica Sinica, 27(11): 3171-3178 (in Chinese with English abstract)
|
Yang JS, Xiong FH, Guo GL, Liu F, Liang FH, Chen SY, Li ZL and Zhang LW. 2011b. The Dongbo ultramafic massif: A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit. Acta Petrologica Sinica, 27(11): 3207-3222 (in Chinese with English abstract)
|
Yang JS, Robinson PT and Dilek Y. 2014. Diamonds in ophiolites. Elements, 10(2): 127-130 DOI:10.2113/gselements.10.2.127
|
Yang JS, Robinson PT and Dilek Y. 2015. Diamond-bearing ophiolites and their geological occurrence. Episodes, 38(4): 344-364 DOI:10.18814/epiiugs/2015/v38i4/82430
|
Yang JS, Wu WW, Lian DY and Rui HC. 2021. Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2(3): 198-212
|
Yang JS, Lian DY, Wu WW and Rui HC. 2021. Recycling of subducted crust in deep mantle: A new research orientation to earth dynamics. Acta Geologica Sinica, 95(1): 42-63 (in Chinese with English abstract)
|
Zhang L, Yang JS, Liu F, Lian DY, Huang J, Zhao H and Yang Y. 2016. The South Gongzhucuo peridotite massif: A typical MOR type peridotite in the western Yarlung Zangbo suture zone. Acta Petrologica Sinica, 32(12): 3649-3672 (in Chinese with English abstract)
|
Zhao DP and Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Research, 16(3-4): 401-413 DOI:10.1016/j.gr.2009.01.005
|
Zhao H, Yang JS, Liu F, Xiong FH, Lian DY and Yao H. 2020. Mineralogy and geochemistry of the high-Cr podiform chromitite from the Cuobuzha ophiolite, Yarlung Zangbo Suture Zone, western Tibet, China: Implication for its origin. Acta Geologica Sinica, 94(1): 75-89 DOI:10.1111/1755-6724.14342
|
Zheng H, Huang QT, Kapsiotis A, Xia B, Yin ZX, Zhong Y, Lu Y and Shi XL. 2017. Early Cretaceous ophiolites of the Yarlung Zangbo Suture Zone: Insights from dolerites and peridotites from the Baer upper mantle suite, SW Tibet (China). International Geology Review, 59(11): 1471-1489 DOI:10.1080/00206814.2016.1276867
|
Zheng H, Huang QT, Kapsiotis A, Lenaz D, Velicogna M, Xu C, Cheng C, Xia B, Liu WL, Xiao Y and Yang P. 2019. Co-existence of MORB- and OIB-like dolerite intrusions in the Purang ultramafic massif, SW Tibet: A paradigm of plume-influenced MOR-type magmatism prior to subduction initiation in the Neo-Tethyan lithospheric mantle. Geological Society of America Bulletin, 131(7-8): 1276-1294 DOI:10.1130/B35005.1
|
Zhong HT, Dai JG, Wang CS, Li YL and Wei YS. 2017. Middle Jurassic-Early Cretaceous radiolarian assemblages of the western Yarlung Zangbo Suture Zone: Implications for the evolution of the Neo-Tethys. Geoscience Frontiers, 8(5): 989-997 DOI:10.1016/j.gsf.2016.09.006
|
Zhong Y, Liu WL, Tang GJ, Liu NN, Liu HF, Zeng QG and Xia B. 2019. Origin of Mesozoic ophiolitic mélanges in the western Yarlung Zangbo suture zone, SW Tibet. Gondwana Research, 76: 204-223 DOI:10.1016/j.gr.2019.06.008
|
Zhou HY and Dick HJB. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436): 195-200 DOI:10.1038/nature11842
|
Zhou MF, Robinson PT, Malpas J, Edwards SJ and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615-639
|
Zhou WD, Yang JS, Zhao JH, Xiong FH, Ma CQ, Xu XZ, Liang FH and Liu F. 2014. Mineralogical study and the origin discussion of Purang ophiolite peridotites, western part of Yarlung-Zangbo Suture Zone (YZSZ), Southern Tibet. Acta Petrologica Sinica, 30(8): 2185-2203 (in Chinese with English abstract)
|
Ziabrev SV, Aitchison JC, Abrajevitch AV, Badengzhu, Davis AM and Luo H. 2004. Bainang Terrane, Yarlung-Tsangpo suture, southern Tibet (Xizang, China): A record of intra-Neotethyan subduction-accretion processes preserved on the roof of the world. Journal of the Geological Society, 161(3): 523-539 DOI:10.1144/0016-764903-099
|
邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717-734. |
姜枚, 杨经绥, 谭捍东, 钱荣毅, 张聿文, 彭淼, 许乐红, 张立树, 李庆庆, 郭帅, 宋昊翔. 2015. 西藏东坡蛇绿岩体深部结构的地球物理特征及其找矿意义. 中国地质, 42(5): 1179-1187. DOI:10.3969/j.issn.1000-3657.2015.05.001 |
李源, 李瑞保, 董天赐, 杨胜标, 裴磊. 2016. 日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义. 科学通报, 61(25): 2823-2833. |
刘传周. 2015. 蛇绿岩中辉长苏长岩的成因. 矿物岩石地球化学通报, 34(3): 481-490. DOI:10.3969/j.issn.1007-2802.2015.03.004 |
刘飞, 杨经绥, 陈松永, 梁凤华, 牛晓露, 李兆丽, 连东洋. 2013. 雅鲁藏布江缝合带西段东波蛇绿岩OIB型玄武岩的厘定及其形成环境. 岩石学报, 29(6): 1909-1932. |
刘飞, 杨经绥, 连东洋, 赵慧, 张岚, 张利, 黄健. 2015a. 西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨. 岩石学报, 31(12): 3609-3628. |
刘飞, 杨经绥, 连东洋, 赵慧, 赵一珏, 张岚. 2015b. 雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义. 地球学报, 36(4): 441-454. |
刘飞, 连东洋, 牛晓露, 赵慧, 冯光英, 杨经绥. 2018. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因. 地球科学, 43(4): 952-974. |
刘飞, 杨经绥, 连东洋, 李观龙. 2020. 青藏高原新特提斯蛇绿岩的地质特征及其构造演化. 岩石学报, 36(10): 2913-2945. |
宋彪, 张玉海, 刘敦一. 2002. 微理原位分析仪器SHRIMP的产生与锆石同位素地质年代学. 质谱学报, 23(1): 58-62. DOI:10.3969/j.issn.1004-2997.2002.01.011 |
王天洋, 李国彪, 李新发, 牛晓路, 张金彪, 薛嵩. 2016. 雅鲁藏布江缝合带南缘混杂岩放射虫组合及其地质意义. 现代地质, 30(2): 445-454. DOI:10.3969/j.issn.1000-8527.2016.02.021 |
王云鹏, 牛晓露, 杨经绥, 李源, 徐向珍, 冯光英, 熊发挥, 刘飞, 刘钊, 田亚洲, 郭国林, 连东洋, 赵一珏. 2019. 雅鲁藏布江缝合带西段东波地幔橄榄岩体钻孔岩心研究. 地质学报, 93(10): 2486-2508. DOI:10.3969/j.issn.0001-5717.2019.10.008 |
吴福元, 刘传周, 张亮亮, 张畅, 王建刚, 纪伟强, 刘小驰. 2014. 雅鲁藏布蛇绿岩——事实与臆想. 岩石学报, 30(2): 293-325. |
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674. |
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002 |
熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义. 岩石学报, 27(11): 3223-3238. |
徐德明, 黄圭成, 雷义均. 2008. 西藏西南部拉昂错地幔橄榄岩的地球化学特征及其构造意义. 岩石矿物学杂志, 27(1): 1-13. DOI:10.3969/j.issn.1000-6524.2008.01.001 |
徐向珍, 杨经绥, 巴登珠, 张仲明, 熊发挥, 李源. 2015. 西藏雅鲁藏布江缝合带东波地幔橄榄岩中金刚石的发现及地质意义. 中国地质, 42(5): 1471-1482. DOI:10.3969/j.issn.1000-3657.2015.05.019 |
徐向珍, 杨经绥, 熊发挥, 巴登珠, 张仲明, 李源. 2018. 西藏雅鲁藏布江缝合带中段日喀则地幔橄榄岩中发现金刚石等异常矿物. 地质学报, 92(7): 1389-1400. DOI:10.3969/j.issn.0001-5717.2018.07.004 |
许志琴, 赵中宝, 马绪宣, 陈希节, 马元. 2019. 从安第斯到冈底斯: 从洋-陆俯冲到陆-陆碰撞. 地质学报, 93(1): 1-11. DOI:10.3969/j.issn.0001-5717.2019.01.002 |
杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 杜雪亮, 焦守涛, 王淑华. 2016. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释. 地质通报, 35(12): 1937-1949. DOI:10.3969/j.issn.1671-2552.2016.12.001 |
杨经绥, 徐向珍, 李源, 李金阳, 巴登珠, 戎合, 张仲明. 2011a. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出. 岩石学报, 27(11): 3171-3178. |
杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011b. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207-3222. |
杨经绥, 连东洋, 吴魏伟, 芮会超. 2021. 俯冲物质深地幔循环——地球动力学研究的一个新方向. 地质学报, 95(1): 42-63. |
张利, 杨经绥, 刘飞, 连东洋, 黄健, 赵慧, 杨艳. 2016. 南公珠错地幔橄榄岩: 雅鲁藏布江缝合带西段一个典型的大洋地幔橄榄岩. 岩石学报, 32(12): 3649-3672. |
周文达, 杨经绥, 赵军红, 熊发挥, 马昌前, 徐向珍, 梁凤华, 刘飞. 2014. 西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨. 岩石学报, 30(8): 2185-2203. |