2. 东华理工大学地球科学学院, 南昌 330013
2. College of Earth Sciences, East China University of Technology, Nanchang 330013, China
斑岩型矿床又称“细脉浸染型”矿床,通常与中酸性侵入体有关,具有规模大、品位低、矿化均匀、埋藏浅、适于露天开采等特点(Melfos et al., 2002; Seedorff et al., 2005),它们主要分布在环太平洋成矿域、特提斯-喜马拉雅成矿域和中亚成矿域(申志超, 2015)。斑岩型矿床作为全球最重要的Cu、Mo、Au矿床类型之一,为世界提供了75% Cu、90% Mo和20% Au(Sillitoe, 2010)。同时,工业所需的铼亦主要来自该类矿床(图 1)(Sillitoe, 2010; John et al., 2017)。
|
图 1 全球含Re斑岩型Cu(Mo)和Mo(Cu)矿床分布简图 Fig. 1 Global distribution map of rhenium-bearing porphyry Cu (Mo) and Mo (Cu) deposits |
金属铼(Re)具有难熔、耐腐蚀的特点以及较高的机械强度、稳定性和良好的塑性等物理性能(刘红召等, 2014; 廖仁强等, 2020),在国防、航空航天和医疗器械等尖端技术领域应用十分广泛。据统计,全球超过80%的Re被用于制造喷射引擎的高温合金部件(如喷气式飞机燃烧室、涡轮叶片等),10%被应用于生产石油重整催化剂(如铂铼合金)(John, 2015)。优良的物理化学特性及其不可替代性,使Re成为支撑我国战略性新兴产业高质量发展的重要原材料。
针对辉钼矿中Re的研究,前人工作主要集中在Re-Os同位素年代学方面(赵一鸣等, 1997; Stein et al., 2001; 杨泽强, 2007),也有部分学者对辉钼矿的Re等微量元素组成开展了研究(Ciobanu et al., 2013; Voudouris et al., 2013; Pašava et al., 2016; Ren et al., 2018),但对于Re含量影响因素的研究相对较少(Newberry, 1979a, b; Mao et al., 1999; 杨宗锋等, 2011; 廖仁强等, 2020; Golden et al., 2013),且关于Mo品位、成矿时代、物质来源、辉钼矿多型等因素对Re含量变化的影响尚未达成一致。为深入探究Re的富集机制,本文系统收集了前人已发表的国内外斑岩型Cu(Mo)、Mo(Cu)矿床的辉钼矿Re含量、同位素年龄、辉钼矿多型(电子版附表 1-附表 4),以及成矿岩体的Sr-Nd同位素等数据(表 1),系统探讨了Re含量变化的控制因素,以期深化对Re成矿理论的认识,并为Re的找矿勘探提供理论支撑。
1 铼的地球化学性质及分布特征Re的原子序数为75,原子量为186.207,位于元素周期表第六周期第ⅦB族。Re作为稀散元素之一,主要富集在地核中,在地幔和地壳的丰度较低,分别为0.28×10-9(McDonough and Sun, 1995)和2×10-9(廖仁强等, 2020; Sun et al., 2003c)。自然界中的Re通常难以形成独立矿物,但含Re矿物较多,如磁黄铁矿、辉钼矿等(温汉捷等, 2019; 廖仁强等, 2020),其中辉钼矿是Re的主要载体矿物。Re的价态具有较宽的变化范围(-1~+7价),其中以+2、+4、+6和+7价最为常见(Liao et al., 2019),Re的变价性导致其对氧化还原过程比较敏感(Znamensky et al., 2005; 温汉捷等, 2019; 廖仁强等, 2020)。Re为中度不相容性的亲铁、亲铜元素,与大多数造岩矿物(如,橄榄石、辉石、斜长石等)都不相容(Righter and Hauri, 1998; Watson et al., 1987)。此外,在岩浆演化过程中,相比于硅酸盐熔体,Re优先富集在流体中(Li, 2014)。同时,Re还具有很强的挥发性,通常富集在火山喷出物中或者辉钼矿精矿焙烧冶炼产生的烟尘中(Fleischer, 1959; Korzhinsky et al., 1994; Znamensky et al., 2005; Liao et al., 2019)。
Re主要分布在斑岩型矿床、层控砂岩型铜矿床及砂岩型铀矿床中(温汉捷等, 2019; John et al., 2017)。斑岩型矿床中Re的平均品位较低,但其规模大,贡献了全球90%的Re(Sinclair, 2007)。同时,Re在不同矿床中的分布不均(Fleischer, 1959; Sinclair et al., 2009),如Fleischer (1959)统计全球82个矿床中辉钼矿的Re含量,发现其具有很大的变化范围(0~3250×10-6)。
不仅如此,Re在同一矿床不同样品或同一样品不同颗粒中的含量分布也极不均匀(Plotinskaya et al., 2018; Voudouris et al., 2009; Rathkopf et al., 2017; Ren et al., 2018)。例如,Bagdad矿床辉钼矿的Re含量从 < 15×10-6到4450×10-6不等(Rathkopf et al., 2017);同一辉钼矿晶体中Re含量变化幅度甚至可达3个数量级(Košler et al., 2003; Selby and Creaser, 2004),这种不均匀分布可能与Re在辉钼矿中以固溶体形式赋存有关(Voudouris et al., 2013)。
2 铼富集的控制因素尽管Re主要赋存在斑岩型矿床的辉钼矿中,但以Mo为主的斑岩矿床中的Re含量似乎普遍低于以Cu为主的斑岩矿床(Newberry, 1979b; Berzina et al., 2005),这通常被认为与矿床中Mo的品位有关(Stein et al., 2001)。除此之外,影响辉钼矿中Re含量的控制因素可能还包括成矿时代(Golden et al., 2013; 黄凡等, 2014, 2019)、物质来源(Mao et al., 1999; Stein et al., 2001)、岩浆过程(Shirey and Walker, 1998; Sun et al., 2003a)、成矿流体物理化学性质(Xiong and Wood, 2001, 2002; Xiong et al., 2006; Berzina et al., 2005)、辉钼矿多型(Newberry, 1979a, b)以及成矿后热液蚀变(Newberry, 1979b; Aminzadeh et al., 2011)和表生作用过程(Liao et al., 2019; McCandless et al., 1993)。
2.1 铼的富集与矿床类型不同类型矿床中Re含量存在较大差异。据统计,辉钼矿中Re的含量在火山沉积型矿床、斑岩型矿床、矽卡岩型矿床、石英脉型矿床依次降低(Terada et al., 1971)。而在斑岩型矿床中,Cu(Mo)矿床辉钼矿的Re含量普遍高于Mo(Cu)矿床,且Re的含量似乎与矿床中Mo的品位呈负相关(Newberry, 1979b; Stein et al., 2001; Berzina et al., 2005)。Stein et al. (2001)将这一现象归因于质量平衡,他们指出由于斑岩体系中的Re均赋存在辉钼矿之中,以Cu为主的矿床辉钼矿的体量较小,因此Re含量相对较高;而以Mo为主的矿床辉钼矿的体量较大,因此Re含量相对较低。但这一观点值得商榷,如McFall et al. (2019)发现Muratdere矿床晚期辉钼矿较早期辉钼矿更富Re,因而与质量平衡的解释相背。此外,Voudouris et al.(2010, 2013)指出Melitena斑岩型矿床中Mo品位很高,但辉钼矿的Re含量仍然高达7900×10-6,并据此认为Re含量与Mo品位无明显相关性。
本文统计了全球主要斑岩型Cu(Mo)、Mo(Cu)矿床的Mo品位及其平均Re含量(图 2;附表 1)。据此可知,斑岩型Cu(Mo)矿床中Re含量的确高于斑岩型Mo(Cu)矿床,且当Mo品位升高时,Re的含量降低,似乎暗示Mo品位是影响Re富集的因素之一。但是,同为低Mo品位的矿床,如斑岩型W矿,其Re含量通常也较低(Mao et al., 1999; 杨宗锋等, 2011),这表明Mo品位并不是控制Re富集的关键因素。该结果与Barton et al. (2020)的认识类似,他们依据Re和Mo含量的对数线性回归得到了m=-0.4(R2=0.29)的最佳拟合直线,指出这种质量平衡仅仅可以解释40%的Re的富集,其余部分则与Mo品位无关。
|
图 2 辉钼矿中Re的含量与矿床Mo品位数据协变图 Fig. 2 Correlation between Re concentrations in molybdenite and Mo grades of porphyry deposits |
前人研究认为辉钼矿中Re的含量与成矿时代有一定相关性(黄凡等, 2019; Golden et al., 2013),总体上表现为成矿时代越新,辉钼矿中Re含量越高。黄凡等(2014)将这种变化归因于Re的放射性衰变,但研究表明,Re在3.0Ga内因衰变而损失的量并不会超过其本身的5%(Barton et al., 2020)。Golden et al. (2013)则指出辉钼矿中Re的含量随着时间推移而逐渐增加的现象可能与地壳的逐渐氧化有关。
本文将主要斑岩型Cu(Mo)、Mo(Cu)矿床的辉钼矿Re-Os年龄与Re含量绘制成图 3(附表 2)。结果可知,斑岩型矿床主要形成于中生代-新生代,且也显示出与图 2类似的规律,Cu(Mo)矿床中Re含量普遍高于Mo(Cu)矿床,但不同时代之间并未显示出成矿时代越新,辉钼矿中Re含量越高的变化规律。
|
图 3 斑岩型矿床辉钼矿Re含量与成矿时代的关系 Fig. 3 Relationship between Re concentrations in molybdenite and ages of porphyry deposits |
有学者提出,在800~542Ma存在全球性大氧化事件,使得全球大气氧含量大幅上升(Holland, 2006; Planavsky et al., 2014; Reinhard et al., 2017),由于Re对氧化还原过程敏感,大气氧含量上升能够使其活化迁移加强(Znamensky et al., 2005; 温汉捷等, 2019; 廖仁强等, 2020),因此也有观点认为Re含量的变化或许与此次大氧化事件有关(廖仁强等, 2020)。然而,由于本文所统计的斑岩型矿床均形成于550Ma之后,因此,仅依据本文数据无法判断Re的富集是否与大氧化事件有关。
2.3 铼的富集与成矿物质来源毛景文等(1999)统计了磁铁矿系列花岗岩有关的Mo-Cu矿床以及与钛铁矿系列花岗岩有关的W-Sn矿床中辉钼矿的Re含量,提出自幔源、壳幔混源到壳源,Re含量依次降低一个数量级。孟祥金等(2007)也得到了相似结论。Stein et al. (2001)同样认为地幔底侵或交代作用伴生的辉钼矿中Re含量高于地壳来源的辉钼矿;但目前这些观点仍存在较大争议(杨宗锋等, 2011; Berzina et al., 2005),例如,Berzina et al. (2005)的研究显示Sora矿床的物质来源虽然为地幔,但是其Re含量仅为6×10-6~18×10-6,甚至低于地壳来源的Zhireken矿床(Re=12×10-6~57×10-6);杨宗锋等(2011)统计了全国744个辉钼矿的Re含量,指出Re的富集受多种因素控制,不能简单的运用Re含量判断成矿物质来源。
图 4中自亏损地幔沿主地幔趋势线向下,地壳混入组分逐渐增多,物质来源由幔源逐渐向壳源过渡,其Re含量却并未显示出较为一致的变化趋势(表 1),如物质来源为华北上地壳的千鹅冲矿床其铼含量为15.5×10-6~18.6×10-6,反而高于壳幔混源的石家湾矿床(Re=10.2×10-6);而成矿物质以幔源为主的纳日贡玛斑岩Cu(Mo)矿床其Re含量为35.5×10-6~75.0×10-6,甚至低于成矿物质来源于地壳的八里坡矿床(Re=38.4×10-6~155×10-6),这一结果与Berzina et al. (2005)类似,可能反映了地幔的不均一性,因此不能仅仅依据Re含量判别成矿物质来源。同时,图 4及表 1也显示所有Re含量在200×10-6以上的矿床,均有地幔物质的加入,这一结果可能指示地幔物质加入是形成高Re辉钼矿的必要条件。成矿物质单纯来源于地壳的矿床似乎很难形成高Re辉钼矿,希腊东北部所有低Re辉钼矿的成矿金属主要来自地壳(Voudouris et al., 2013)。尽管也有研究表明,在黑色页岩中检测到较高的Re含量,指示Re似乎在表生环境下也能富集形成较高Re含量的辉钼矿(Liao et al., 2019; 廖仁强等, 2020),如,华南黑色页岩Re含量为0.10×10-6~0.69×10-6(Jiang et al., 2007),但经过相同表生富集过程且后期存在地幔物质加入的Kurile-Kamchatka的火山沉积矿床(Liao et al., 2019),其Re含量可达74.5%(Znamensky et al., 2005),远远大于仅接受表生富集的华南黑色页岩,这也暗示地幔物质的加入对高Re辉钼矿的形成具有重要作用。
|
图 4 斑岩型Cu(Mo)和Mo(Cu)矿床成矿岩体(87Sr/86Sr)i-εNd(t)图解(底图据Jahn et al., 1999) ①~ ⑳为表 1中矿床编号 Fig. 4 (87Sr/86Sr)i vs. εNd(t) diagram for the ore-forming porphyries from some porphyry systems in China (base map modified after Jahn et al., 1999) ①~ ⑳ is the deposit number in Table 1 |
|
|
表 1 斑岩型Cu(Mo)和Mo(Cu)矿床Re含量与成矿岩体的(87Sr/86Sr)i和εNd(t)值 Table 1 Re concentrations in molybdenite, (87Sr/86Sr)i and εNd(t) values for ore-forming porphyries from some porphyry systems in China |
岩浆去气过程、岩浆分异过程均能对Re的富集产生影响。如前所述,Re是中度不相容元素(Sun et al., 2003a),在壳幔分异过程中,如果地幔源区部分熔融时没有石榴子石和硫化物的残留,Re倾向富集在熔体中(Shirey and Walker, 1998);否则,Re将残留在源区(Feng and Li, 2019)。火成岩的化学成分通常在岩浆去气过程会发生显著变化(Rollinson, 1993),Re具有较强的挥发性,在岩浆去气过程中,Re容易以铼酸(H2ReO4)的形式进入气相(Candela and Holland, 1986)。据报道,Kudeyavy火山喷气冷凝物中发现Re矿石晶体以及大量富Re的辉钼矿颗粒(Korzhinsky et al., 1994),而Sun et al.(2003a, b)指出夏威夷火山海底喷出的洋岛玄武岩Re含量高于近地表喷出的玄武岩,表明Re在岩浆去气过程中会发生损失。
火成岩的成分对Re的富集也有影响(Ishihara, 1988; Sun et al., 2004; Berzina et al., 2005; Barton et al., 2020),与中性岩共生的辉钼矿往往比与长英质岩共生的辉钼矿更富Re(Ishihara, 1988; Barton et al., 2020),而与高分异花岗岩有关的矿床Re含量通常较低(Berzina et al., 2005)。
与斑岩型Mo(Cu)矿床相比,斑岩型Cu(Mo)矿床Re含量普遍较高,且成矿岩体具有更低的SiO2含量,Re含量与成矿岩体的SiO2呈负相关(图 5a,附表 3),这一统计结果与前人的结论一致。斑岩型Mo(Cu)矿床相比于斑岩型Cu(Mo)矿床,其岩浆分异程度更高,Re含量随着岩浆分异程度的增加,呈现出降低的趋势,Re含量与岩浆分异程度呈负相关(图 5a, b)。Re作为中度不相容元素,在岩浆分异过程中,倾向于残留在熔体相,随着分异程度增加,Re含量理应更高,似乎与本文统计结果相矛盾。据图 5c-d,Fe、Ti含量随着岩浆分异程度增加而降低,这与Re的变化是完全耦合的,表明这一结果或许与钛磁铁矿的结晶有关(孙卫东等, 2007)。钛磁铁矿的结晶能够使得流体氧逸度降低,致使正六价的Re被还原为正四价的Re,增大Re在矿物/岩浆之间的分配系数(孙卫东等, 2007),因此,随着结晶分异程度增加,辉钼矿中Re含量降低。
|
图 5 辉钼矿Re含量与成矿岩体平均SiO2含量(a)和分异指数(b)协变关系图及TiO2 (c)和FeOT (d)与成矿岩体SiO2协变关系图 Fig. 5 Covariant diagrams of Re concentrations in molybdenite vs. SiO2 contents (a), vs. DI index (b) for ore-forming porphyries, and SiO2 vs. TiO2 (c), vs. FeOT (d) contents for ore-forming porphyries |
研究表明,早期形成的辉钼矿在遭受后期热液蚀变作用时,可能发生Re的丢失(Newberry, 1979b; McCandless et al., 1993)。美国Arizona州的Eagle矿床中发生硅化作用的辉钼矿中Re含量降低,而硅化带中与之共生的方解石中Re含量却高达5.45%;同样,Arizona州的Bagdad矿床中,发生蚀变的辉钼矿边缘相比核部具有较低的Re含量(0.4%~0.5%),而矿脉边缘以钾、铝和硅为主要成分,疑似伊利石的蚀变矿物却含有高达0.14%的Re(McCandless et al., 1993)。这些现象表明热液蚀变作用会引起Re进入到对应蚀变矿物中,并造成辉钼矿Re的含量降低。
也有研究指出辉钼矿中Re的含量似乎与蚀变类型、蚀变程度之间存在联系(Newberry, 1979b; Berzina et al., 2005)。钾化蚀变环境中,辉钼矿Re含量通常较低,如Climax矿床钾化阶段辉钼矿的Re含量很低(Newberry, 1979b),这可能是由于碱性热液形成的钾长石蚀变环境具有运移Re的能力(Berzina et al., 2005)。在Sar Cheshmeh斑岩型Cu(Mo)矿床中,辉钼矿中Re含量随硅化程度的减弱和绢云母化程度的增强而升高(Aminzadeh et al., 2011)。
2.5.2 与流体物理化学性质的关系流体的物理化学性质对Re的迁移和富集同样具有重要影响,主要体现在流体温度、氧逸度、pH值和卤素组成等方面,以下分别给予阐述。
(1) 温度
Terada et al. (1971)最早提出温度相对较低的矿床中辉钼矿相对更富Re,如低温浸染辉钼矿(Sanaeda、Sodagawa和Atsuho矿床)Re/Mo的平均原子比为73×10-6,而高温浸染型(Shiro、Sekigane、Kamioka和Climax矿床)是3.4×10-6。此后,大量研究证实了这一认识(Plotinskaya et al., 2018; Ren et al., 2018),如,Plotinskaya et al. (2018)利用与辉钼矿紧密共生的绿泥石成分计算其形成温度,发现Re含量较高的样品其形成温度低于Re含量低的样品,温度与Re含量之间呈显著负相关。
实验研究发现ReS2在400~500℃,升高温度,溶解度略微升高,意味着在较高温度时会有更多的ReS2溶解(Xiong and Wood, 2002),这可以解释为什么较低温度下形成的辉钼矿具有较高的Re含量。
温度与Re含量间的关系在空间上往往表现为:由矿体中心向外围,辉钼矿的Re含量可能逐渐升高(Austen and Ballantyne, 2010),因此部分矿床Re的含量与其辉钼矿沉淀高度会呈正相关(图 6)。
|
图 6 Sar Cheshmeh矿床辉钼矿沉淀高度与辉钼矿中Re含量关系图(据Aminzadeh et al., 2011) Fig. 6 Plot of elevation vs. Re concentrations in molybdenite from the Sar Cheshmeh (modified after Aminzadeh et al., 2011) |
但也有观点指出,Cu、Au为主和W、Sn为主的斑岩型、矽卡岩型或石英脉型矿床的成矿温度范围没有明显差异,温度或许对辉钼矿中Re含量有相关影响,但在不同矿床类型之间却并未像Re一样有着巨大变化,故温度不是控制Re含量的主要因素(Barton et al., 2020)。Re富集是由多种因素控制的,不同类型的矿床成矿条件存在较大差异,Barton et al. (2020)所列举的事例仅能表明不同矿床类型对铼富集也能产生较大影响,并不能否定温度对Re富集所起到的作用。
(2) 氧逸度
不同类型斑岩矿床中Re含量变化呈现出一定的规律性,Cu-Au矿床(n×10-4)>Cu-Mo矿床(n×10-5)>Mo-W矿床(n×10-6)(Mao et al., 1999; 李诺等, 2007; 杨宗锋等, 2011),这一现象与Thompson et al. (1999)提出的与岩浆热液有关的Cu-Au、Cu-Mo、Mo-W矿床氧逸度依次降低的结论高度重合,这表明Cu(Mo)矿床与Mo(Cu)矿床中的Re含量除了与Mo品位存在相关性,还可能与氧逸度有关。
Berzina et al. (2005)测定了多个矿床的(CO2/CH4)/CO2的比值,指出氧化性流体有利于Re的迁移富集。在不考虑pH的情况下,只有高氧逸度流体才可以运移大量的Re(Xiong et al., 2006);而还原性流体,携带Re的能力较弱(Xiong and Wood, 2001),很难形成较为富Re的矿床,如在希腊北部偏还原性的成矿系统中,辉钼矿Re含量通常较低(Voudouris et al., 2010)。在相似条件下,使用ReS2得到的Re浓度比使用Re-ReO2缓冲剂组合的实验得到的Re浓度大约低两个数量级,Re的氧化性流体和含还原硫的流体发生混合可能是Re的有效沉积机制之一(Xiong and Wood, 2002)。
氧逸度对Re含量的影响在不同成矿阶段也有体现,如Ren et al. (2018)通过对沙坪沟斑岩型Mo矿床中的辉钼矿开展LA-ICP-MS分析,发现成矿晚期相比于成矿早期,成矿流体的氧逸度升高,同时辉钼矿中Re含量从0.3×10-6~7×10-6增至3×10-6~120×10-6,类似的例子还有Muratdere矿床(McFall et al., 2019)及EI Teniente矿床(Spencer et al., 2015)等。
(3) 卤素组成
流体中卤素的组成似乎也能对Re的运移起到促进作用。实验表明,Re在400~500℃的弱酸性至中性流体中,主要以氯配合物ReCl40和ReCl3+的形式迁移,其稳定性与氯离子浓度有很强的依赖关系(Xiong and Wood, 2002)。如,在高Re辉钼矿的矿床中,流体的f(HCl)/f(HF)比值通常较高(Berzina et al., 2005),岩浆流体中较高的Cl和F含量降低了流体中的羟基含量,这可能减少了以羟基络合物形式输送的Mo含量,从而使得流体中的Re/Mo比值升高,有利于高Re辉钼矿的形成(Selby and Creaser, 2001)。
(4) pH值
pH值在热液过程中的影响主要体现在对Re溶解度的控制方面。在富氯流体中,随着pH值的升高,ReO2或ReS2的溶解度明显降低(Xiong and Wood, 2002);在无氯化物的流体中,Re的羟基络合物则更为重要(Xiong and Wood, 2001),在这种情况下,pH值的升高可能会导致Re的溶解度增加(Xiong and Wood, 2002)。
2.6 铼的富集与表生作用过程Re在表生环境通常会富集在黑色、深灰色沉积物中,这一富集过程通常与表生的氧化还原过程关系密切。表生条件下,随着辉钼矿等含Re矿物的化学分解,其中的Re4+经氧化作用将转化成水溶性的ReO4-,并随表生流体运移,在缺氧环境下,ReO4-将被有机质或硫化物等还原(Liao et al., 2019; 廖仁强等, 2020),从而导致Re富集于某些含碳沉积物中。这与王正其等(2006, 2007)提出的层间氧化带型Re富集机制类似:表生含氧水的不断补给会在合适的砂岩中形成层间承压水,层间承压水在砂岩中渗透、径流会使围岩的Re活化并将其运移至还原性的深灰色砂岩中沉淀。
表生过程除能够将Re富集至深色沉积物中,似乎也能将早期矿床中的Re重新分配。Newberry (1979b)研究证实表生环境下低pH流体能够将辉钼矿中Re浸出;McCandless et al. (1993)的实验结果也表明表生作用能够在不改变红外透射率的情况下,将辉钼矿中Re重新分配,造成Re的丢失。
前文提及,由于较低温度下形成的辉钼矿通常具有较高的Re含量,空间上远离矿化点处通常会具有较高Re含量,因此有时沉淀高度与Re含量之间会呈现出正相关。然而,更多的研究结果显示辉钼矿沉淀高度与Re含量之间并无这种相关性,如Voudouris et al. (2013)统计了希腊东北部多种矿床的数据,认为没有迹象表明辉钼矿的Re值在这些矿点中随深度或横向变化;Rathkopf et al. (2017)也指出Bagdad矿床和矿体周围辉钼矿Re浓度的分布是不稳定的,与矿床海拔、距矿石的距离以及其他空间特征无关。表生作用可能是导致这一现象的原因之一,越靠近地表(离矿化点越远),表生作用的影响越强。此外,不同矿床的地质特征、当地气候、蚀变等可以影响表生作用强度的因素,均可以对其造成很大影响,从而导致辉钼矿Re含量与其沉淀高度之间缺乏应有的相关性。
2.7 铼的富集与辉钼矿多型的关系辉钼矿在自然界中主要有2H和3R两种多型,其中2H多型较为常见,3R型较为少见(王翠芝和刘文元, 2013; 杨宜坪等, 2018)。3R多型通常含有较多的杂质,2H多型则较为纯净(Chukhrov et al., 1970)。研究指出杂质含量的增多,有利于3R多型晶体结构的形成(韩吟文, 1988; 黄凡等, 2012; 王翠芝和刘文元, 2013; Newberry, 1979a)。Newberry (1979a)认为3R多型的出现与晶体结构的螺旋位错机制有关。螺旋位错理论认为由于杂质元素(内应力)和热应力分布的不均匀,晶体内会产生特殊的定向内应力,在其达到极限时,元素离子间存在的内应力作用将产生“螺旋状力”,进而导致3R多型的形成(王翠芝和刘文元, 2013),并且Newberry (1979a)还指出,在无外力作用下,杂质含量大于500×10-6,一定会有3R多型的存在。
Frondel and Wickman (1970)首先提出辉钼矿中Re富集可能与辉钼矿的多型有关,随后引起了大量学者的关注(Newberry, 1979a, b; Ayres, 1974; 韩吟文, 1988; Aminzadeh et al., 2011; Voudouris et al., 2009),但辉钼矿多型是否与Re含量之间存在联系,目前尚未达成共识。
Re是辉钼矿中最主要的杂质元素(Newberry, 1979a),有学者指出Re含量与辉钼矿多型具有一定的规律性,即2H多型通常含Re量低,而3R多型含Re量高,因而Re的含量和辉钼矿中3R多型含量呈正相关(Newberry, 1979a, b; Ayres, 1974; Melfos et al., 1991; McCandles et al., 1993),如,Melfos et al. (1991)得出Maronia矿床中富Re辉钼矿和贫Re辉钼矿分别为3R多型和2H多型的结论;McCandles et al. (1993)对Copper Creek角砾岩筒中的原生结晶辉钼矿的研究也显示辉钼矿中3R多型含量越高,其Re含量越高。
然而,更多的证据表明多型和Re含量之间或许并无相关性(黄典豪, 1992; Pašava et al., 2016)。黄典豪(1992)通过对东秦岭地区不同类型钼矿床中辉钼矿多型及Re含量的研究认为辉钼矿多型的发育与其Re含量之间并无相关性;Pašava et al. (2016)统计了4种不同矿化类型的矿床,发现这些矿床中的辉钼矿均为2H多型,且部分样品超过500×10-6;Aminzadeh et al. (2011)发现伊朗Sar Cheshmeh矿床存在早世代贫Re辉钼矿和晚世代富Re辉钼矿,但二者均为2H多型;Voudouris et al. (2009)对4个自然界Re含量最高的辉钼矿晶体的结构分析,证实它们的结晶类型均为2H多型,而不是先前假设的3R多型。同时朱砂红及小狐狸山等矿床中的具较低Re含量的3R多型(曲焕春等, 2015; 位鸥祥, 2019),似乎也显示Re的含量与特定多型之间并无相关性。
图 7的统计结果显示Re含量与某一多型之间不存在特定的相关性(附表 4)。不过,仅据这一结果无法排除辉钼矿两种多型相互间转变的影响(Newberry, 1979b)。表生环境下低pH的流体以及蚀变作用能够将已形成辉钼矿中的Re重新运移分配,这一过程或许是低铼3R多型形成的原因之一(Newberry, 1979b; McCandless et al., 1993),而高铼2H多型则被认为是高铼3R多型在遭受后期较高温热液蚀变重结晶形成的(Newberry, 1979a),但这一转变需要较多的能量供应,因此低温的表生作用下难以发生这种重结晶过程,而在能量充足的情况下,转变后的高铼2H多型在高杂质含量的作用下,又会重新形成高铼3R多型,故此过程必须损失一部分Re含量才能进行(Newberry, 1979a)。而McCandless et al. (1993)指出高温流体发生Re损失的过程几乎没有或者不存在多型的转变,同时前人所测的自然界4个Re含量最高的辉钼矿均为2H多型,但却缺乏含相同层次Re含量的3R多型的报道,这或许表明部分高铼2H多型的形成未受到后期的多型转变的影响,仅与辉钼矿的生长机制有关。
|
图 7 Re含量与辉钼矿多型直方图 Fig. 7 Histogram of Re concentrations and molybdenite polytypes |
前已述及,2H多型在流体存在较高Re含量时或许会转变成3R多型,但Drábek et al. (2010)由钼粉(纯度99.99%)、Re粉(纯度99.95%)和硫在400~1200℃的温度范围内进行了120次实验,在产物中并未检测到辉钼矿的3R多型,仅有2H多型,这表明高Re含量并不一定能引起多型的转变,辉钼矿的多型更有可能受其他因素的制约。因此,未受转变机制影响的高铼2H多型完全是有可能存在的,结合图 7的统计结果,本文认为辉钼矿中Re的富集与辉钼矿特定多型之间无相关性,或者说多型并不是控制Re富集的关键因素。
此外,大量研究表明Re含量、辉钼矿的多型与Mo同位素的分馏之间存在联系。Mathur et al. (2010)提出辉钼矿中Re含量与Mo同位素组成具有微弱相关关系,即Mo同位素值随Re含量降低而升高。Segato (2018)在统计分析了不同类型矿床的Mo同位素组成后,也得出相似的结论,即辉钼矿的Mo同位素组成与Re含量存在负相关关系。Shafiei et al. (2015)利用分子振动理论解释了辉钼矿多型与Mo同位素组成的关系,即较重的Mo同位素优先分配进入较致密的原生2H型辉钼矿晶格中。因此,开展Mo同位素相关工作或许能进一步论证辉钼矿的Re含量与多型之间关系。
3 结论Re的富集与矿床Mo的平均品位、成矿物质来源、岩浆去气过程、岩浆分异过程、流体的物理化学性质(如:温度、氧逸度、卤素组成、pH值等)以及表生过程密切相关,而与辉钼矿成矿时代、沉淀的位置以及辉钼矿多型之间无明显相关性。
|
|
附表 1 辉钼矿中Re的含量与矿床Mo品位数据 Appendix Table 1 Re concentrations in molybdenite and Mo grades of porphyry deposits |
|
|
附表 2 斑岩型矿床辉钼矿Re含量与成矿时代数据 Appendix Table 2 Re concentrations in molybdenite and ages of porphyry deposits |
|
|
附表 3 辉钼矿Re含量与成矿岩体平均SiO2含量、分异指数及TiO2和FeOT含量 Appendix Table 3 Re concentrations in molybdenite and SiO2 content, DI, TiO2 and FeOT contents for ore-forming porphyries |
|
|
附表 4 Re含量与辉钼矿多型关系 Appendix Table 4 Re concentrations and molybdenite polytypes |
Aminzadeh B, Shahabpour J and Maghami M. 2011. Variation of rhenium contents in molybdenites from the Sar Cheshmeh porphyry Cu-Mo deposit in Iran. Resource Geology, 61(3): 290-295 DOI:10.1111/j.1751-3928.2011.00165.x
|
Austen G and Ballantyne G. 2010. Geology and geochemistry of deep molybdenum mineralization at the Bingham Canyon mine, Utah, USA. In: Krahulec K and Schroeder K (eds.). Tops and Bottoms of Porphyry Copper Deposits: The Bingham and Southwest Tintic Districts, Utah. Society of Economic Geologists Guidebook Series, 41: 35-49
|
Ayres D. 1974. Distribution and occurrence of some naturally-ccurring polytypes of molybdenite in Australia and Papua New Guinea. Journal of the Geological Society of Australia, 21(3): 273-278 DOI:10.1080/00167617408728850
|
Barton IF, Rathkopf CA and Barton MD. 2020. Rhenium in molybdenite: A database approach to identifying geochemical controls on the distribution of a critical element. Mining, Metallurgy & Exploration, 37(1): 21-37 DOI:10.1007/s42461-019-00145-0
|
Berzina AN, Sotnikov VI, Economou-Eliopoulos M and Eliopoulos DG. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1-2): 91-113 DOI:10.1016/j.oregeorev.2004.12.002
|
Candela PA and Holland HD. 1986. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Economic Geology, 81(1): 1-19 DOI:10.2113/gsecongeo.81.1.1
|
Cao J, Ye HS, Chen XD, Li ZY, Zhang XK and He W. 2016. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of granite porphyry in Leimengou Mo deposit, western Henan Province. Mineral Deposits, 35(4): 677-695 (in Chinese with English abstract)
|
Chen W. 2013. The genesis of Early Cretaceous granites and molybdenite deposits in and around Xinxian County, Henan Province. Ph. D. Dissertation. Nanjing: Nanjing University, 1-143 (in Chinese with English summary)
|
Chen W, Zhou WP, Chen KX, Liu MW, Wang T and Zhou RJ. 2014. Re-Os isotopic dating on molybdenite and its geological signficance from the Baiyashan molybdenum deposit in Machen City, Hubei Province. Resources Environment & Engineering, 28(6): 781-785 (in Chinese with English abstract)
|
Chukhrov FV, Zvyzgfu BB, Yermilova LP, Soboleva SV and Khitrov VG. 1970. Polytypes of molybdenite and their occurences in ores. International Geology Review, 12(1): 74-86 DOI:10.1080/00206817009475210
|
Ciobanu CL, Cook NJ, Kelson CR, Guerin R, Kalleske N and Danyushevsky L. 2013. Trace element heterogeneity in molybdenite fingerprints stages of mineralization. Chemical Geology, 347: 175-189 DOI:10.1016/j.chemgeo.2013.03.011
|
Dai JZ. 2008. The metallogeneses and geodynamic settings of molybdenum (copper) deposits in Yan-Liao metallogenic belt. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-119 (in Chinese with English summary)
|
Dao Y, Yang F, Li F and Zhao XY. 2014. A comparative study of stable isotopes of superimposed metallogenic systems in the Laochang polymetallic deposit, Yunnan Province. Acta Petrologica et Mineralogica, 33(4): 693-706 (in Chinese with English abstract)
|
Drábek M, Rieder M and Böhmová V. 2010. The Re-Mo-S system: New data on phase relations between 400 and 1200℃. European Journal of Mineralogy, 22(4): 479-484 DOI:10.1127/0935-1221/2010/0022-2044
|
Feng L and Li Y. 2019. Comparative partitioning of Re and Mo between sulfide phases and silicate melt and implications for the behavior of Re during magmatic processes. Earth and Planetary Science Letters, 517: 14-25 DOI:10.1016/j.epsl.2019.04.010
|
Fleischer M. 1959. The geochemistry of rhenium, with special reference to its occurrence in molybdenite. Economic Geology, 54(8): 1406-1413 DOI:10.2113/gsecongeo.54.8.1406
|
Frondel JW and Wickman FE. 1970. Molybdenite polytypes in theory and occurrence. Ⅱ. Some naturally-occurring polytypes of molybdenite. The American Mineralogist, 55(11-12): 1857-1875
|
Gao Y. 2014. Geology, geochemistry and genesis of the Qian'echong and Tangjiaping porphyry Mo deposits, Dabie orogen. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-171 (in Chinese with English summary)
|
Golden J, Mcmillan M, Downs RT, Hystad G, Goldstein I, Stein HJ, Zimmerman A, Sverjensky DA, Armstrong JT and Hazen RM. 2013. Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth and Planetary Science Letters, 366: 1-5 DOI:10.1016/j.epsl.2013.01.034
|
Han YW. 1988. Molybdenite polytypes and the mechanism of polytype formation. Earth Science, 13(4): 385-394 (in Chinese with English abstract)
|
Holland HD. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915 DOI:10.1098/rstb.2006.1838
|
Huang DH. 1992. Rhenium content and polytype characteristics of molybdenite from molybdenum deposits in East Qinling. Acta Petrologica et Mineralogica, 11(1): 74-83 (in Chinese with English abstract)
|
Huang DH, Wu CY, Du AD and He HL. 1994. Re-Os isotope ages of molybdenum deposits in East Qinling and their significance. Mineral Deposits, 13(3): 221-230 (in Chinese with English abstract)
|
Huang F, Wang DH, Zeng ZL, Zhang YZ, Zeng Y and Wen ZL. 2012. Petro-geochemical characteristics and isotope chronology study on the Yuanlingzhai porphyry Mo deposit in southern Jiangxi Province. Geotectonica et Metallogenia, 36(3): 363-376 (in Chinese with English abstract)
|
Huang F, Wang DH, Chen YC, Wang CH, Tang JX, Chen ZH, Wang LQ, Liu SB, Li JK, Zhang CQ, Ying LJ, Wang YL, Li LX and Li C. 2014. Trace elements characteristics of molybdenites from endogenous molybdenum deposits in China. Mineral Deposits, 33(6): 1193-1212 (in Chinese with English abstract)
|
Huang F, Wang DH, Wang Y, Jiang B, Li C and Zhao H. 2019. Study on metallogenic regularity rhenium deposits in China and their prospecting direction. Acta Geologica Sinica, 93(6): 1252-1269 (in Chinese with English abstract)
|
Huang Y, Ding J, Li GM, Dong SL, Huang HX, Cui XL, Dai J and Yan GQ. 2015. Petrogenesis of intrusions in Tinggong copper deposit, Gangdese, Xizang (Tibet): Evidence from LA-ICP-MS zircon U-Pb dating, petrogeochemical, and Sr-Nd-Pb isotopic composition. Geological Review, 61(3): 664-680 (in Chinese with English abstract)
|
Ishihara S. 1988. Rhenium contents of molybdenites in granitoid-series rocks in Japan. Economic Geology, 83(5): 1047-1051 DOI:10.2113/gsecongeo.83.5.1047
|
Jahn BM, Wu FY, Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology, 157(1-2): 119-146 DOI:10.1016/S0009-2541(98)00197-1
|
Jiang SP, Li F, Xiao JS, Meng FQ and Liu ZK. 2011. Rhenium resource in the porphyry molybdenum deposit at Laochang in Langchang and its significance. Yunnan Metallurgy, 40(4): 7-12, 56 (in Chinese with English abstract)
|
Jiang SY, Yang JH, Ling HF, Chen YQ, Feng HZ, Zhao KD and Ni P. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 217-228 DOI:10.1016/j.palaeo.2007.03.024
|
Jiao JG, Yuan HC, He K, Sun T, Xu G and Liu RP. 2009. Zircon U-Pb and molybdenite Re-Os dating for the Balipo porphyry Mo deposit in East Qinling, China, and its geological implication. Acta Geologica Sinica, 83(8): 1159-1166 (in Chinese with English abstract)
|
John D. 2015. Rhenium: A rare metal critical to modern transportation. U.S. Geological Survey Fact Sheet 2014-3101
|
John DA, Seal RR II and Polyak DE. 2017. Rhenium. In: Schulz KJ, DeYoung JH Jr, Seal RR II and Bradley DC (eds.). Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey, 575-623
|
Korzhinsky MA, Tkachenko SI, Shmulovich KI, Taran YA and Steinberg GS. 1994. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature, 369(6475): 51-52 DOI:10.1038/369051a0
|
Košler J, Simonetti A, Sylvester PJ, Cox RA, Tubrett MN and Wilton DHC. 2003. Laser-ablation ICP-MS measurements of Re/Os in molybdenite and implications for Re-Os geochronology. Canadian Mineralogist, 41(2): 307-320 DOI:10.2113/gscanmin.41.2.307
|
Li GM, Liu B, Qu WJ, Lin FC, She HQ and Feng CY. 2005. The porphyry-skarn ore-forming system in gangdese metallogenic belt, southern Xizang: Evidence from molybdenite Re-Os age of porphyry-type copper deposits and skarn-type copper polymetallic deposits. Geotectonica et Metallogenia, 29(4): 482-490 (in Chinese with English abstract)
|
Li GY, Li ZD, Wang JY, Li XG, Li C, Tu JR, Xie Y and Ding N. 2020. Zircon U-Pb and molybdenite Re-Os ages and geological significance of the Chaganhua molybdenum deposit, Urad Rear Banner, Inner Mongolia. Geoscience, 34(3): 494-503 (in Chinese with English abstract)
|
Li HY, Mao JW, Wang XX, Ye HS and Yang L. 2011. Sr, Nd, Pb isotopic characteristics of granite in Jinduicheng area and their geological significance. Geology in China, 38(6): 1536-1550 (in Chinese with English abstract)
|
Li N, Chen YJ, Zhang H, Zhao TP, Deng XH, Wang Y and Ni ZY. 2007. Molybdenum deposits in East Qinling. Earth Science Frontiers, 14(5): 186-198 (in Chinese with English abstract)
|
Li SX, Chen ML, Yang DS and Wang YH. 2014. The molybdenite Re-Os age and analysis of geodynamic background in Hainan island. Geology and Mineral Resources of South China, 30(3): 272-279 (in Chinese with English abstract)
|
Li Y. 2014. Comparative geochemistry of rhenium in oxidized arc magmas and MORB and rhenium partitioning during magmatic differentiation. Chemical Geology, 386: 101-114 DOI:10.1016/j.chemgeo.2014.08.013
|
Li YF, Mao JW, Liu DY, Wang YB, Wang ZL, Wang YT, Li XF, Zhang ZH and Guo BJ. 2006. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry molybdenum deposit, western Henan and its geological implication. Geological Review, 52(1): 122-131 (in Chinese with English abstract)
|
Liao RQ, Li CY, Liu H, Chen Q and Sun WD. 2019. Rhenium enrichment in the Northwest Pacific arc. Ore Geology Reviews, 115: 103176 DOI:10.1016/j.oregeorev.2019.103176
|
Liao RQ, Liu H, Li CY and Sun WD. 2020. Rhenium resource exploration prospects in China based on its geochemical properties. Acta Petrologica Sinica, 36(1): 55-67 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.01.07
|
Liu HZ, Wang W, Cao YH and Gao ZG. 2014. World rhenium resources and market situation. Conservation and Utilization of Mineral Resources, (5): 55-58 (in Chinese with English abstract)
|
Liu YF. 2013. Metallogenic study of Chaganhua porphyry Mo deposit in Inner Mongolia: Contribution of subduction-modified fertile magma source and post-collision extensional tectonic setting. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-152 (in Chinese with English summary)
|
Lu ZQ. 2017. Geology, geochemistry and genesis of Daheishan molybdenum deposit in the central Jilin Province. Master Degree Thesis. Changchun: Jilin University, 1-96 (in Chinese with English summary)
|
Mao JW, Zhang ZC, Zhang ZH and Du AD. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818 DOI:10.1016/S0016-7037(99)00165-9
|
Mao JW, Zhang ZH, Zhang ZC, Yang JM, Wang ZL and Du AD. 1999. Re-Os age dating of molybdenites in the Xiaoliugou Tungsten deposit in the Northern Qilian Mountains and its significance. Geological Review, 45(4): 412-417 (in Chinese with English abstract)
|
Mao JW, Xie GQ, Bierlein F, Qü WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626 DOI:10.1016/j.gca.2008.06.027
|
Mathur R, Brantley S, Anbar A, Munizaga F, Maksaev V, Newberry R, Vervoort J and Hart G. 2010. Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Mineralium Deposita, 45(1): 43-50 DOI:10.1007/s00126-009-0257-z
|
McCandless TE, Ruiz J and Campbell AR. 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments: Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57(4): 889-905 DOI:10.1016/0016-7037(93)90176-W
|
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
|
McFall K, Roberts S, McDonald I, Boyce AJ, Naden J and Teagle D. 2019. Rhenium enrichment in the muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides. Economic Geology, 114(7): 1443-1466 DOI:10.5382/econgeo.4638
|
Melfos V, Vavelidis M, Filippidis A, Christofides G and Evangelou E. 1991. Re-rich and Re-poor molybdenite in the Maronia rhyolitic intrusion, Northeastern Greece. In: 25 Years SGA Anniversary Meeting. Balkema, Rotterdam, 775-777
|
Melfos V, Vavelidis M, Christofides G and Seidel E. 2002. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece. Mineralium Deposita, 37(6-7): 648-668 DOI:10.1007/s00126-002-0277-4
|
Meng XJ, Hou ZQ, Dong GY, Liu JG, Qu WJ, Yang ZS, Zuo LY, Wan LJ and Xiao MZ. 2007. The geological characteristics and Re-Os isotope age of molybdenite of the Xiongjiashan molybdenum deposit, Jiangxi Province. Acta Geologica Sinica, 81(7): 946-951 (in Chinese with English abstract)
|
Newberry RJJ. 1979a. Polytypism in molybdenite (Ⅰ): A non-equilibrium impurity-induced phenomenon. American Mineralogist, 64: 758-767
|
Newberry RJJ. 1979b. Polytypism in molybdenite (Ⅱ): Relationships between polytypism, ore deposition/alteration stages and rhenium contents. American Mineralogist, 64: 768-775
|
Pašava J, Svojtka M, Veselovsky F, Ďurišová J, Ackerman L, Pour O, Drábek M, Halodová P and Haluzová E. 2016. Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM): An important tool for identification of different types of mineralization. Ore Geology Reviews, 72: 874-895 DOI:10.1016/j.oregeorev.2015.09.007
|
Planavsky NJ, Reinhard CT, Wang XL, Thomson D, Mcgoldrick P, Rainbird RH, Johnson T, Fischer WW and Lyons TW. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638 DOI:10.1126/science.1258410
|
Plotinskaya OY, Abramova VD, Groznova EO, Tessalina SG, Seltmann R and Spratt J. 2018. Trace-element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia). Mineralogical Magazine, 82(S1): S281-S306 DOI:10.1180/minmag.2017.081.106
|
Qu HC, Zhou LM and Yang ZM. 2015. Dating of molybdenite-bearing rock in the Zhushahong deposit of Dexing and its geological significance. Acta Petrologica et Mineralogica, 34(4): 517-525 (in Chinese with English abstract)
|
Rathkopf C, Mazdab F, Barton I and Barton MD. 2017. Grain-scale and deposit-scale heterogeneity of Re distribution in molybdenite at the Bagdad porphyry Cu-Mo deposit, Arizona. Journal of Geochemical Exploration, 178: 45-54 DOI:10.1016/j.gexplo.2017.03.011
|
Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ, Lyons TW, Fischer WW, Wang CJ, Cole DB and Konhauser KO. 2017. Evolution of the global phosphorus cycle. Nature, 541(7637): 386-389 DOI:10.1038/nature20772
|
Ren Z, Zhou TF, Hollings P, White NC, Wang FY and Yuan F. 2018. Trace element geochemistry of molybdenite from the Shapinggou super-large porphyry Mo deposit, China. Ore Geology Reviews, 95: 1049-1065 DOI:10.1016/j.oregeorev.2018.02.011
|
Righter K and Hauri EH. 1998. Compatibility of rhenium in garnet during mantle melting and magma genesis. Science, 280(5370): 1737-1741 DOI:10.1126/science.280.5370.1737
|
Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Publishing Group: 1-352
|
Rui ZY, Wang LS, Wang YT and Liu YL. 2002. Discussion on metallogenic epoch of Tuwu and Yandong porphyry copper deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 21(1): 16-22 (in Chinese with English abstract)
|
Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD. 2005. Porphyry deposits characteristics and origin of hypogene features. In: Hedenquist JW et al. (eds.). Economic Geology: One Hundredth Anniversary Volume, 251-298
|
Segato A. 2018. Mo isotope variations in molybdenites at single-crystal, ore deposit, and global scales: Implications for Mo source fluid, transport, fractionation mechanisms, and molybdenite mineralization. Master Degree Thesis. Waterloo, Ontario, Canada: University of Waterloo, 1-82
|
Selby D and Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96(1): 197-204 DOI:10.2113/gsecongeo.96.1.197
|
Selby D and Creaser RA. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908 DOI:10.1016/j.gca.2004.03.022
|
Shafiei B, Shamanian GH, Mathur R and Mirnejad H. 2015. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems. Mineralium Deposita, 50(3): 281-291 DOI:10.1007/s00126-014-0537-0
|
She HQ, Li JW, Ma DF, Li GM, Zhang DQ, Feng CY, Qu WJ and Pan GT. 2009. Molybdenite Re-Os and SHRIMP zircon U-Pb dating of Duobuza porphyry copper deposit in Tibet and its geological implications. Mineral Deposits, 28(6): 737-746 (in Chinese with English abstract)
|
Shen ZC. 2015. Petrogenesis and metallogeny for the Mujicun porphyry copper deposits. Ph. D. Dissertation. Beijing: China Uniersity of Geosciences, 1-28 (in Chinese with English summary)
|
Shirey SB and Walker RJ. 1998. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth & Planetary Sciences, 26(1): 423-500
|
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41 DOI:10.2113/gsecongeo.105.1.3
|
Sinclair WD. 2007. Porphyry deposits. In: Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 223-243
|
Sinclair WD, Jonasson IR, Kirkham RV and Soregaroli AE. 2009. Rhenium and other platinum-group metals in porphyry deposits. Geological Survey of Canada, Open File: 6181
|
Spencer ET, Wilkinson JJ, Creaser RA and seguel J. 2015. The distribution and timing of molybdenite mineralization at the El teniente Cu-Mo porphyry deposit, Chile. Economic Geology, 110(2): 387-421 DOI:10.2113/econgeo.110.2.387
|
Stein HJ, Markey RJ, Morgan JW, Hannah JL and Scherstén A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13(6): 479-486 DOI:10.1046/j.1365-3121.2001.00395.x
|
Sun WD, Arculus RJ, Bennett VC, Eggins SM and Binns RA. 2003a. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea). Geology, 31(10): 845-848 DOI:10.1130/G19832.1
|
Sun WD, Bennett VC, Eggins SM, Arculus RJ and Perfit MR. 2003b. Rhenium systematics in submarine MORB and Back-arc basin glasses: Laser ablation ICP-MS results. Chemical Geology, 196(1-4): 259-281 DOI:10.1016/S0009-2541(02)00416-3
|
Sun WD, Bennett VC, Eggins SM, Kamenetsky VS and Arculus RJ. 2003c. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas. Nature, 422(6929): 294-297 DOI:10.1038/nature01482
|
Sun WD, Bennett VC and Kamenetsky VS. 2004. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions. Earth and Planetary Science Letters, 222(1): 101-114 DOI:10.1016/j.epsl.2004.02.011
|
Sun WD, Hu YH, Ding X, Fan AC and Liang HY. 2007. The geochemical behaviors of some metals and chlorine during the evolution of convergent margin magmas. Earth Science Frontiers, 14(2): 139-148 (in Chinese with English abstract)
|
Tan G, Chang GX, She HQ, Li JW, Zhang DQ, Yang YC, Zhang B, Xiang AP and Dong YJ. 2010. Re-Os isotopic dating of molybdenite from the Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia and its geological significance. Mineral Deposits, 29(Suppl.): 506-508 (in Chinese)
|
Terada K, Osaki S, Ishihara S and Kiba T. 1971. Distribution of rhenium in molybdenites from Japan. Geochemical Journal, 4(3): 123-141 DOI:10.2343/geochemj.4.123
|
Thompson JFH, Sillitoe RH, Baker T, Lang JR and Mortensen JK. 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, 34(4): 323-334 DOI:10.1007/s001260050207
|
Voudouris P, Melfos V, Moritz R, Spry PG, Ortelli M and Kartal T. 2010. Molybdenite occurrences in Greece: Mineralogy, geochemistry and depositional environment. Scientific Annals, School of Geology, Aristotle University of Thessaloniki Proceedings of the XIX CBGA Congress, Thessaloniki, Greece, 100: 369-378
|
Voudouris P, Melfos V, Spry PG, Bindi L, Moritz R, Ortelli M and Kartal T. 2013. Extremely Re-rich molybdenite from porphyry Cu-Mo-Au prospects in Northeastern Greece: Mode of occurrence, causes of enrichment, and implications for gold exploration. Minerals, 3(2): 165-191 DOI:10.3390/min3020165
|
Voudouris PC, Melfos V, Spry PG, Bindi L, Kartal T, Arikas K, Moritz R and Ortelli M. 2009. Rhenium-rich molybdenite and rheniite in the Pagoni Rachi Mo-Cu-Te-Ag-Au prospect, Northern Greece: Implications for the Re geochemistry of porphyry-style Cu-Mo and Mo mineralization. The Canadian Mineralogist, 47(5): 1013-1036 DOI:10.3749/canmin.47.5.1013
|
Wang CH, Song QH, Wang DH, Li LX, Yu G, Wang ZG, Qu WJ, Du AD and Ying LJ. 2009. Re-Os isotopic dating of molybdenite from the Daheishan molybdenum deposit of Jilin Province and its geological significance. Rock and Mineral Analysis, 28(3): 269-273 (in Chinese with English abstract)
|
Wang CZ and Liu WY. 2013. Mineralogical characterstics of molybdenite of mesozoic molybdenum in Fujian Province. Earth Science (Journal of China Univeristy of Geosciences), 38(6): 1240-1252 (in Chinese with English abstract) DOI:10.3799/dqkx.2013.121
|
Wang DH, Qu WJ, Li ZW, Ying HL and Chen YC. 2004. Concentration period of porphyry copper-molybdenum deposits in Jinshajiang-Honghe metallogenic belt: Re-Os isotopic dating. Science in China (Series D), 34(4): 345-349 (in Chinese)
|
Wang ZL, Yang ZM, Yang ZS, Tian SH, Liu YC, Ma YQ, Wang GR and Qu WJ. 2008. Narigongma porphery molybdenite copper deposit, northern extension of Yulong copper belt: Evidence from the age of Re-Os isotope. Acta Petrologica Sinica, 24(3): 503-510 (in Chinese with English abstract)
|
Wang ZQ, Pan JY, Cao SL, Guan TY and Zhang GY. 2006. Super-enriching mechanism of disperse-elements Re and Se in interlayer oxidation: A case study of the Zhajistan interlayer oxidation zone sandstone-type uranium deposit, Ili Basin, Xinjiang. Geological Review, 52(3): 358-362 (in Chinese with English abstract)
|
Wang ZQ, Li ZY and Guan TY. 2007. Interlayer oxidation: A new mineralization mechanism for dispersed elements (Re, Se). Uranium Geology, 23(6): 328-334 (in Chinese with English abstract)
|
Watson EB, Othman DB, Luck JM and Hofmann AW. 1987. Partitioning of U, Pb, Cs, Yb, Hf, Re and Os between chromian diopsidic pyroxene and haplobasaltic liquid. Chemical Geology, 62(3-4): 191-208 DOI:10.1016/0009-2541(87)90085-4
|
Wei OX. 2019. Research on the genesis of Xiaohulishan molybdenum polymetallic deposit in eastern Tianshan-Beishan area. Master Degree Thesis. Hefei: Hefei University of Technology, 1-147 (in Chinese with English summary)
|
Wen HJ, Zhou ZB, Zhu CW, Luo CG, Wang DZ, Du SJ, Li XF, Chen MH and Li HY. 2019. Critical scientific issues of super-enrichment of dispersed metals. Acta Petrologica Sinica, 35(11): 3271-3291 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.11.01
|
Xiong FH, Ma CQ, Chen L, Liu B and Wang LX. 2010. Petrogenesis of mafic microgranular enclaves from Baiyashan A-type granites in Dabie orogeni belt and its geological implications. Journal of Mineralogy and Petrology, 30(1): 31-40 (in Chinese with English abstract)
|
Xiong YL and Wood SA. 2001. Hydrothermal transport and deposition of rhenium under subcritical conditions (up to 200℃) in light of experimental studies. Economic Geology, 96(6): 1429-1444
|
Xiong YL and Wood SA. 2002. Experimental determination of the hydrothermal solubility of ReS2 and the Re-ReO2 buffer assemblage and transport of rhenium under supercritical conditions. Geochemical Transactions, 3(1): 1-10 DOI:10.1186/1467-4866-3-1
|
Xiong YL, Wood SA and Keuszewski J. 2006. Hydrothermal transport and deposition of rhenium under subcritical conditions revisited. Economic Geology, 101(2): 471-478 DOI:10.2113/gsecongeo.101.2.471
|
Xu LL, Bi XW, Su WC, Qi YQ, Li L, Chen YW, Dong SH and Tang YY. 2011. Geochemical characteristics and petrogenesis of the quartz syenite porphyry from Tongchang porphyry Cu(Mo-Au) deposit in Jinping County, Yunan Province. Acta Petrologica Sinica, 27(10): 3109-3122 (in Chinese with English abstract)
|
Yang MZ, Zeng JN, Qin YJ, Li FL and Wan SQ. 2010. LA-ICP-MS zircon U-Pb and molybdenite Re-Os dating for Qian'echong porphyry-type Mo deposit in Northern Dabie, China, and its geological significance. Geological Science and Technology Information, 29(5): 35-45 (in Chinese with English abstract)
|
Yang YP, Chen AQ, Tao Q, Zhu JX and He HP. 2018. Study on microstructure of 2H1 polytype molybdenite Acta Mineralogica Sinica, 38(Suppl.): 3 (in Chinese)
|
Yang ZF, Luo ZH, Lu XX, Cheng LL and Huang F. 2011. Discussion on significance of Re content of molybdenite in tracing source of metallogenic materials. Mineral Deposits, 30(4): 654-674 (in Chinese with English abstract)
|
Yang ZL. 2015. Petrogenesis of granitic plutons associated with rare and polymetallic mineralization in the eastern segment of the Qin-Hang metallogenic belt, and their constraints on metallogenesis: Case studies of the Yashan and the Xiongjiashan plutons. Master Degree Thesis. Nanjing: Nanjing University, 1-90 (in Chinese with English summary)
|
Yang ZM, Hou ZQ, Yang ZS, Wang SX, Wang GR, Tian SH, Wen DY, Wang ZL and Liu YC. 2008. Genesis of porphyries and tectonic controls on the Narigongma porphyry Mo(-Cu) deposit, southern Qinghai. Acta Petrologica Sinica, 24(3): 489-502 (in Chinese with English abstract)
|
Yang ZQ. 2007. Re-Os isotopic ages of Tangjiaping molybdenum deposit in Shangcheng County, Henan and their geological significance. Mineral Deposits, 26(3): 289-295 (in Chinese with English abstract)
|
Zhang GN. 2016. Origin of ore-forming granite porphyry and metallogenic mechanism of the Machangqing deposit, Northwest Yunnan, China. Master Degree Thesis. Beijing: China Uniersity of Geosciences, 1-79 (in Chinese with English summary)
|
Zhang LL, Jiang SH, Li HM, Wu D and Kang H. 2019. Metallogenic and petrogenic geochronology and geochemical features of the ore-related granite in the Sadaigoumen Mo deposit, Fengning, Hebei Province. Acta Geoscientica Sinica, 40(5): 75-91 (in Chinese with English abstract)
|
Zhao HJ, Mao JW, Ye HS, Hou KJ and Liang HS. 2010. Chronology and petrogenesis of Shijiawan granite porphyry in Shannxi Province: Constrains from zircon U-Pb geochronology and Hf isotopic compositions. Mineral Deposits, 29(1): 143-157 (in Chinese with English abstract)
|
Zhao YM, Bi CS, Zou XQ, Sun YL, Du AD and Zhao YM. 1997. The Re-Os isotopic age of molybdenite from Duobaoshan and Tongshan porphyry copper (molybdenum) deposits. Acta Geoscientica Sinica, 18(1): 61-67 (in Chinese with English abstract)
|
Zhu YH, Shan Q, Wang LX, Zhao ZX, Chen GW, Xu DR, Ye TW, Yu DS and Huang QY. 2018. Age of host-rocks and mineralization from the Luokuidong molybdenum ore deposit in Hainan Island: Implication for deposit genesis. Geochimica, 47(3): 268-287 (in Chinese with English abstract)
|
Znamensky VS, Korzhinsky MA, Steinberg GS, Tkachenko SI, Yakushev AI, Laputina IP, Bryzgalov IA, Samotoin ND, Magazina LO, Kuzmina OV, Organova NI, Rassulov VA and Chaplygin IV. 2005. Rheniite, ReS2-prirodnyi disulfide reniya iz fumarol vulkana Kudryavy (o. Iturup, Kurilskie ostrova). Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 134(5): 32-39
|
曹晶, 叶会寿, 陈小丹, 李正远, 张兴康, 贺文. 2016. 豫西雷门沟钼矿区花岗斑岩年代学、地球化学和Sr-Nd-Hf同位素研究. 矿床地质, 35(4): 677-695. |
陈伟. 2013. 河南新县及周边地区早白垩世花岗岩及钼矿成因研究. 博士学位论文. 南京: 南京大学, 1-143
|
陈炜, 周文平, 陈开旭, 刘明文, 王彤, 周仁君, 方明, 贺慧艳, 李随云. 2014. 湖北麻城白鸭山钼矿床辉钼矿Re-Os同位素年龄测定及其地质意义. 资源环境与工程, 28(6): 781-785. DOI:10.3969/j.issn.1671-1211.2014.06.003 |
代军治. 2008. 燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景. 博士学位论文. 北京: 中国地质科学院, 1-119
|
刀艳, 杨帆, 李峰, 赵晓勇. 2014. 澜沧老厂多金属矿床叠加成矿系统稳定同位素对比研究. 岩石矿物学杂志, 33(4): 693-706. DOI:10.3969/j.issn.1000-6524.2014.04.008 |
高阳. 2014. 大别山千鹅冲和汤家坪斑岩钼矿地质地球化学及成因研究. 博士学位论文. 北京: 中国地质科学院, 1-171
|
韩吟文. 1988. 辉钼矿的多型及其成因初探. 地球科学, 13(4): 385-394. |
黄典豪. 1992. 东秦岭地区钼矿床中辉钼矿的铼含量及多型特征. 岩石矿物学杂志, 11(1): 74-83. |
黄典豪, 吴澄宇, 杜安道, 何红蓼. 1994. 东秦岭地区钼矿床的铼-锇同位素年龄及其意义. 矿床地质, 13(3): 221-230. |
黄凡, 王登红, 曾载淋, 张永忠, 曾跃, 温珍连. 2012. 赣南园岭寨大型钼矿岩石地球化学、成岩成矿年代学及其地质意义. 大地构造与成矿学, 36(3): 363-376. DOI:10.3969/j.issn.1001-1552.2012.03.008 |
黄凡, 王登红, 陈毓川, 王成辉, 唐菊兴, 陈郑辉, 王立强, 刘善宝, 李建康, 张长青, 应立娟, 王永磊, 李立兴, 李超. 2014. 中国内生钼矿床辉钼矿的微量元素特征研究. 矿床地质, 33(6): 1193-1212. DOI:10.3969/j.issn.0258-7106.2014.06.004 |
黄凡, 王登红, 王岩, 江彪, 李超, 赵鸿. 2019. 中国铼矿成矿规律和找矿方向研究. 地质学报, 93(6): 1252-1269. DOI:10.3969/j.issn.0001-5717.2019.06.007 |
黄勇, 丁俊, 李光明, 董随亮, 黄瀚霄, 崔晓亮, 戴婕, 闫国强. 2015. 西藏冈底斯厅宫铜矿侵入岩成因: LA-ICP-MS锆石U-Pb年龄、地球化学及Sr-Nd-Pb同位素证据. 地质论评, 61(3): 664-680. |
蒋绍平, 李峰, 肖静珊, 蒙福清, 刘志葵. 2011. 澜沧老厂斑岩钼矿中的铼及其资源意义. 云南冶金, 40(4): 7-12, 56. DOI:10.3969/j.issn.1006-0308.2011.04.002 |
焦建刚, 袁海潮, 何克, 孙涛, 徐刚, 刘瑞平. 2009. 陕西华县八里坡钼矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 地质学报, 83(8): 1159-1166. DOI:10.3321/j.issn:0001-5717.2009.08.014 |
李光明, 刘波, 屈文俊, 林方成, 佘宏全, 丰成友. 2005. 西藏冈底斯成矿带的斑岩-矽卡岩成矿系统——来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据. 大地构造与成矿学, 29(4): 482-490. DOI:10.3969/j.issn.1001-1552.2005.04.008 |
李光耀, 李志丹, 王佳营, 李效广, 李超, 涂家润, 谢瑜, 丁宁. 2020. 内蒙古乌拉特后旗查干花钼矿锆石U-Pb和辉钼矿Re-Os同位素年龄及其地质意义. 现代地质, 34(3): 494-503. |
李洪英, 毛景文, 王晓霞, 叶会寿, 杨磊. 2011. 陕西金堆城钼矿区花岗岩Sr、Nd、Pb同位素特征及其地质意义. 中国地质, 38(6): 1536-1550. DOI:10.3969/j.issn.1000-3657.2011.06.013 |
李诺, 陈衍景, 张辉, 赵太平, 邓小华, 王运, 倪智勇. 2007. 东秦岭斑岩钼矿带的地质特征和成矿构造背景. 地学前缘, 14(5): 186-198. DOI:10.3321/j.issn:1005-2321.2007.05.019 |
李孙雄, 陈沐龙, 杨东生, 汪焰华. 2014. 海南岛钼矿床Re-Os年龄及其成矿地球动力学背景探讨. 华南地质与矿产, 30(3): 272-279. DOI:10.3969/j.issn.1007-3701.2014.03.010 |
李永峰, 毛景文, 刘敦一, 王彦斌, 王志良, 王义天, 李晓峰, 张作衡, 郭保健. 2006. 豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义. 地质论评, 52(1): 122-131. DOI:10.3321/j.issn:0371-5736.2006.01.016 |
廖仁强, 刘鹤, 李聪颖, 孙卫东. 2020. 从铼的地球化学性质看我国铼找矿前景. 岩石学报, 36(1): 55-67. |
刘红召, 王威, 曹耀华, 高照国. 2014. 世界铼资源及市场现状. 矿产保护与利用, (5): 55-58. |
刘翼飞. 2013. 内蒙古查干花斑岩钼矿床: 俯冲改造的富集型源区及碰撞后伸展环境对成矿的贡献. 博士学位论文. 北京: 中国地质科学院, 1-152
|
卢志强. 2017. 吉林中部大黑山钼矿床地质地球化学特征及其成因. 硕士学位论文. 长春: 吉林大学, 1-96
|
毛景文, 张作衡, 张招崇, 杨建民, 王志良, 杜安道. 1999. 北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义. 地质论评, 45(4): 412-417. DOI:10.3321/j.issn:0371-5736.1999.04.012 |
孟祥金, 侯增谦, 董光裕, 刘建光, 屈文俊, 杨竹森, 左力艳, 万禄进, 肖茂章. 2007. 江西金溪熊家山钼矿床特征及其Re-Os年龄. 地质学报, 81(7): 946-951. DOI:10.3321/j.issn:0001-5717.2007.07.010 |
曲焕春, 周利敏, 杨志明. 2015. 德兴朱砂红矿床含辉钼矿岩石样品Re-Os定年及地质意义. 岩石矿物学杂志, 34(4): 517-525. DOI:10.3969/j.issn.1000-6524.2015.04.006 |
芮宗瑶, 王龙生, 王义天, 刘玉琳. 2002. 东天山土屋和延东斑岩铜矿床时代讨论. 矿床地质, 21(1): 16-22. DOI:10.3969/j.issn.0258-7106.2002.01.003 |
佘宏全, 李进文, 马东方, 李光明, 张德全, 丰成友, 屈文俊, 潘桂棠. 2009. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义. 矿床地质, 28(6): 737-746. DOI:10.3969/j.issn.0258-7106.2009.06.003 |
申志超. 2015. 河北木吉村斑岩铜矿成岩与成矿机制研究. 博士学位论文. 北京: 中国地质大学, 1-128
|
孙卫东, 胡艳华, 丁兴, 范安川, 梁华英. 2007. 汇聚板块边缘岩浆中金属和氯的地球化学性质研究. 地学前缘, 14(2): 139-148. DOI:10.3321/j.issn:1005-2321.2007.02.011 |
谭钢, 常国雄, 佘宏全, 李进文, 张德全, 杨郧城, 张斌, 向安平, 董英君. 2010. 内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼-锇同位素定年及其地质意义. 矿床地质, 29(增): 506-508. |
王成辉, 松权衡, 王登红, 李立兴, 于城, 汪志刚, 屈文俊, 杜安道, 应立娟. 2009. 吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义. 岩矿测试, 28(3): 269-273. DOI:10.3969/j.issn.0254-5357.2009.03.015 |
王翠芝, 刘文元. 2013. 福建中生代钼矿的辉钼矿矿物学特征. 地球科学(中国地质大学学报), 38(6): 1240-1252. |
王登红, 屈文俊, 李志伟, 应汉龙, 陈毓川. 2004. 金沙江-红河成矿带斑岩铜钼矿的成矿集中期: Re-Os同位素定年. 中国科学(D辑), 34(4): 345-349. |
王召林, 杨志明, 杨竹森, 田世洪, 刘英超, 马彦青, 王贵仁, 屈文俊. 2008. 纳日贡玛斑岩钼铜矿床: 玉龙铜矿带的北延——来自辉钼矿Re-Os同位素年龄的证据. 岩石学报, 24(3): 503-510. |
王正其, 潘家永, 曹双林, 管太阳, 张国玉. 2006. 层间氧化带分散元素铼与硒的超常富集机制探讨——以伊犁盆地扎吉斯坦层间氧化带砂岩型铀矿床为例. 地质论评, 52(3): 358-362. DOI:10.3321/j.issn:0371-5736.2006.03.017 |
王正其, 李子颖, 管太阳. 2007. 层间氧化作用: 一种分散元素(Re、Se)新的富集成矿机制. 铀矿地质, 23(6): 328-334. DOI:10.3969/j.issn.1000-0658.2007.06.002 |
位鸥祥. 2019. 东天山-北山地区小狐狸山钼多金属矿床的成因研究. 硕士学位论文. 合肥: 合肥工业大学, 1-147
|
温汉捷, 周正兵, 朱传威, 罗重光, 王大钊, 杜胜江, 李晓峰, 陈懋弘, 李红谊. 2019. 稀散金属超常富集的主要科学问题. 岩石学报, 35(11): 4-24. |
熊富浩, 马昌前, 陈玲, 刘彬, 王连训. 2010. 大别造山带白鸭山A型花岗岩中镁铁质微粒包体成因及其地质意义. 矿物岩石, 30(1): 31-40. |
胥磊落, 毕献武, 苏文超, 齐有强, 李亮, 陈佑纬, 董少花, 唐永永. 2011. 云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨. 岩石学报, 27(10): 3109-3122. |
杨梅珍, 曾键年, 覃永军, 李法岭, 万守权. 2010. 大别山北缘千鹅冲斑岩型钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地质科技情报, 29(5): 35-45. DOI:10.3969/j.issn.1000-7849.2010.05.006 |
杨宜坪, 陈爱清, 陶奇, 朱建喜, 何宏平. 2018. 2H1型辉钼矿微结构研究. 矿物学报, 38(增): 3. |
杨宗锋, 罗照华, 卢欣祥, 程黎鹿, 黄凡. 2011. 关于辉钼矿中Re含量示踪来源的讨论. 矿床地质, 30(4): 654-674. DOI:10.3969/j.issn.0258-7106.2011.04.006 |
杨泽黎. 2015. 钦杭成矿带东段与稀有多金属矿化有关花岗岩体成因及其对成矿的制约——以雅山和熊家山岩体为例. 硕士学位论文. 南京: 南京大学, 1-90
|
杨志明, 侯增谦, 杨竹森, 王淑贤, 王贵仁, 田世洪, 温德银, 王召林, 刘英超. 2008. 青海纳日贡玛斑岩钼(铜)矿床: 岩石成因及构造控制. 岩石学报, 24(3): 489-502. |
杨泽强. 2007. 河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 26(3): 289-295. DOI:10.3969/j.issn.0258-7106.2007.03.005 |
张广宁. 2016. 滇西马厂箐铜钼金矿床花岗斑岩成因及成矿模式. 硕士学位论文. 北京: 中国地质大学, 1-79
|
张莉莉, 江思宏, 李红梅, 吴迪, 康欢. 2019. 河北丰宁撒岱沟门钼矿床成岩成矿年代学及成矿岩体地球化学特征. 地球学报, 40(5): 708-724. |
赵海杰, 毛景文, 叶会寿, 侯可军, 梁慧山. 2010. 陕西洛南县石家湾钼矿相关花岗斑岩的年代学及岩石成因: 锆石U-Pb年龄及Hf同位素制约. 矿床地质, 29(1): 143-157. DOI:10.3969/j.issn.0258-7106.2010.01.013 |
赵一鸣, 毕承思, 邹晓秋, 孙亚莉, 杜安道, 赵玉明. 1997. 黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄. 地球学报, 18(1): 61-67. |
朱昱桦, 单强, 王历星, 赵朝霞, 陈根文, 许德如, 叶挺威, 于得水, 黄沁怡. 2018. 海南岛罗葵洞钼矿床成岩成矿时代及矿床成因探讨. 地球化学, 47(3): 268-287. |
Bai J and Zhang K. 2013. Re-Os isotopic dating of molybdenite from the Wurinitu molybdenum-copper deposit in Sonid Zuoqi, Inner Mongolia and its geological significance. Mineral Exploration, 4(6): 671-677 (in Chinese with English abstract)
|
Cai MH, Peng ZA, Qu WJ, He ZY, Feng G, Zhang SQ, Xu M and Chen Y. 2011. Geological characteristics and Re-Os dating of molybdenites in Chagandeersi molybdenum deposit, western Inner Mongolia. Mineral Deposits, 30(3): 377-384 (in Chinese with English abstract)
|
Cai WY. 2020. Metallogenesis of copper-molybdenum-gold polymetallic in the Duobaoshan orefield, Heilongjiang Province. Ph. D. Dissertation. Changchun: Jilin University, 1-238 (in Chinese with English summary)
|
Chen H. 2010. Petrology, chronology and genesis of concealed granite porphyry in Laochang, Lancang, Yunnan. Master Degree Thesis. Kunming: Kunming University of Science and Technology, 1-78 (in Chinese with English summary)
|
Chen ML, Lv ZY, Ma CQ and Yun P. 2015. Re-Os isotopic dating and geological implications of Shimenshan Mo polymetallic deposit in Hainan Island. Geologic Review, 29(4): 285-286 (in Chinese with English abstract)
|
Chen WJ, Liu JM, Liu HT, Sun XG, Zhang RB, Zhang ZL and Qin F. 2010. Geochronology and fluid inclusion study of the Jiguanshan porphyry Mo deposit, Inner Mongolia. Acta Petrologica Sinica, 26(5): 1423-1436 (in Chinese with English abstract)
|
Chen ZG, Zhang LC, Wan B, Zhang YT and Wu HY. 2008. Geochemistry and geological significances of ore forming porphyry with low Sr and Yb value in Wunugetushan copper-molybdenum deposit, Inner Mongolia. Acta Petrologica Sinica, 24(1): 115-128 (in Chinese with English abstract)
|
Dai BZ, Jiang SY and Wang XL. 2009. Petrogensis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan Province, China: Constrains from petrogeochemistry, zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinca, 25(11): 2889-2901 (in Chinese with English abstract)
|
Dai CC, Huang C, Jiao Z and Wang XL. 2017. Geochemistry and geochronology of west Shadegai granites in Wulashan of Inner Mongolia and its geological significance. Geoscience, 31(4): 662-671 (in Chinese with English abstract)
|
Dai JZ, Mao JW, Zhao CS, Li FR, Wang RT, Xie GQ and Yang FQ. 2008. Zircon SHRIMP U-Pb age and petrogeochemical features of the Lanjiagou granite in western Liaoning Province. Acta Geologica Sinica, 82(11): 1555-1564 (in Chinese with English abstract)
|
Dai P, Wu SH and Ding CW. 2018. Zircon U-Pb dating of granite porphyry and Re-Os isotopic dating of molybdenite from Wangwu porphyry Mo-Cu deposit, Jiangxi Province, and their geological significance. Acta Petrologica Sinica, 34(9): 2598-2614 (in Chinese with English abstract)
|
Ding HY. 2014. The analysis of geochemical characteristics, mineral fluid and material source of the Dawan Mo deposit in the northern Taihang Mountain. Master Degree Thesis. Beijing: China University of Geosciences, 1-62 (in Chinese with English summary)
|
Duan XX, Zeng QD, Yang YH, Liu JM, Chu SX, Sun Y and Zhang ZL. 2015. Triassic magmatism and Mo mineralization in Northeast China: Geochronological and isotopic constraints from the Laojiagou porphyry Mo deposit. International Geology Review, 57(1): 55-75 DOI:10.1080/00206814.2014.989546
|
Fan FP, Xiao F, Xiang HL, Chen SZ, Li C, Zhou Y, Chen K and Cao MX. 2020. Molybdenite Re-Os isotopic age of Qiucheng molybdenum deposit in Dehua of central Fujian Province. Geology in China, 1-15, http://kns.cnki.net/kcms/detail/11.1167.P.20200219.2316.007.html (in Chinese with English abstract)
|
Feng XX, Yao SZ, Duan M, Qu K, Wang JY, Feng XB, Li C and Zhou LM. 2015. Re-Os isotopic dating of molydenite from the Bainaimiao Cu(Mo) deposit in Inner Mongolia and its geological significance. Journal of Jilin University (Earth Science Edition), 45(1): 132-141 (in Chinese with English abstract)
|
Gao YL, Zhang JM, Ye HS, Meng F, Zhou K and Gao Y. 2010. Geologiacal characteristics and molydenite Re-Os isotopic dating of Shiyaogou porphyry molybdeum deposit in the East Qinling. Acta Petrologica Sinca, 26(3): 729-739 (in Chinese with English abstract)
|
Gong FZ, Zhen YY, Zhang GY and Qu WJ. 2008. The first discovery of porphyry copper deposits formed during the main Indian-Tibetan collision in Gangdisi, Tibet: Constraints from Re-Os ages for molybdenite from the Jyiru porphyry copper deposit. Acta Geologica Sichuan, 28(4): 296-299 (in Chinese with English abstract)
|
Guo S, Zhao Y, Qu H, Wu D and Xu H. 2012. Geological characteristics and ore-forming time of the Dexing porphyry copper ore mine in Jiangxi Province. Acta Geologica Sinica, 86(3): 691-699 DOI:10.1111/j.1755-6724.2012.00696.x
|
He SY, Li DS, Li LL, Qi LY and He SF. 2009. Re-Os age of molybdenite from the Yazigou copper (molybdenum) mineralized area in Eastern Kunlun of Qinghai Province and its geological significance. Geotectonica et Metallogenia, 33(2): 236-242 (in Chinese with English abstract)
|
Hou WR, Nie FJ, Du AD, Li C, Jiang SH, Bai DM and Liu Y. 2010. Re-Os isotopic dating of molybdenite from Xishadegai molybdenum deposit in Urad Front Banner of Inner Mongolia and its geological significance. Mineral Deposits, 29(6): 1043-1053 (in Chinese with English abstract)
|
Hou XG. 2017. Mesozoic metallogenetic granitoids in the eastern Jilin-Heilongjiang provinces: Petrogenesis and molybdenum mineralization. Ph. D. Dissertation. Changchun: Jilin University, 1-179 (in Chinese with English summary)
|
Hu QH, Huang DZ, Li B, Yang LM and Yin GH. 2010. A study on the inclusion, isotope and metallogenesis age of Pulang porphyry Cu deposit. Yunnan Geology, 29(3): 351-357 (in Chinese with English abstract)
|
Hu SQ, Zhu Q, Zhang XJ, Yi SH, Peng SB, Zhou GF, Wu LB and Chen HH. 2013. Geochronology, geochemistry and zircon Hf isotope of granite porphyry in Yuanzhuding Cu-Mo deposit, Guangdong Province. Mineral Deposits, 32(6): 1139-1158 (in Chinese with English abstract)
|
Jia LQ, Xu WY, Yang D, Yang ZS and Wang L. 2015. Zircon U-Pb and molybdenite Re-Os dating of Baoshan porphyry Cu polymetallic deposit in Jiujiang-Ruichang ore concentration area of Jiangxi Province and its geological significance. Mineral Deposits, 34(1): 63-80 (in Chinese with English abstract)
|
Jiang JM, Sha YC, Li YM and Hu ZH. 2015. Lithogeochemical characteristics of granodiorite in the Baoshan copper polymetallic deposit, Ruichang and its geological implications. Journal of East China University of Technology (Natural Science), 38(2): 176-182 (in Chinese with English abstract)
|
Ju N. 2020. Metallogenic regularity and prospective prediction of porphyry molybdenum deposits in central Jilin Province, NE China. Ph. D. Dissertation. Changchun: Jilin University, 1-132 (in Chinese with English summary)
|
Kang YJ. 2015. The ore-forming processes and mineralization of Badaguan porphyry Cu-Mo deposit, Inner Mongolia. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-110 (in Chinese with English summary)
|
La P, Gesang DJ, A W and Cidan ZG. 2017. Tibet lakang-e area geological characteristics and genesis of copper molybdenum ore. World Nonferrous Metals, (13): 168, 170 (in Chinese with English abstract)
|
Leng QF, Tang JX, Zheng WB, Zhang JS, Tang P, Yan G and Dong Y. 2015. Re-Os dating of molybdenite from the Lakange porphyry Cu-Mo deposit in Tibet and its geological significance. Geology in China, 42(2): 570-584 (in Chinese with English abstract)
|
Li JJ, Tang WL, Fu C, Li C, Qu WJ, Zhang T, Wang SG, Dang ZC, Zhou Y and Zhao LJ. 2016. Re-Os isotopic dating of molybdenites from the Bilugangan porphyry Mo deposit in Abag Banner, Inner Mongolia, and its geological significance. Geological Bulletin of China, 35(4): 519-52 (in Chinese with English abstract)
|
Li LX, Song QH, Wang DH, Wang CH, Qu WJ, Wang ZG, Bi SY and Yu Y. 2009. Re-Os isotopic dating of molybdenite from the Fu'anpu molybdenum deposit of Jilin Province and discussion on its metallogenesis. Rock and Mineral Analysis, 28(3): 283-287 (in Chinese with English abstract)
|
Li YZ, Kong HL, Nan Ka EW, Li JC, Jia QZ, Du YL, Chen XY, Song ZB, Zhang YL and Quan SC. 2015. Analysis of matter source and metallogenic setting of metallgenic rock of Narigongma porphyry copper molybdenum deposit in Qinhai Province. Geological Science and Technology Information, 34(1): 1-9 (in Chinese with English abstract)
|
Liang QL, Wang SH, Wang SH, Li C and Zeng FG. 2012. Re-Os dating molybdenite from the Luoboling porphyry Cu-Mo deposit in the Zijinshan ore field of Fujian Province and its geological significance. Acta Geologica Sinica, 86(7): 1113-1118 (in Chinese with English abstract)
|
Liu B. 2015. Geology, geochemistry and genesis of the Baishan molybdenum deposit in eastern Tianshan, NW China. Master Degree Thesis. Beijing: China University of Geosciences, 1-70 (in Chinese with English summary)
|
Liu QN. 2013. Relationship between porphyry molybdenum deposit and magmatic rocks from Shapinggou in Jinzhai region, Anhui province. Master Degree Thesis. Hefei: Hefei University of Technology, 1-87 (in Chinese with English summary)
|
Liu RB. 2016. Geology, geochemistry and formation mechanism of the Huzhagaitu porphyry molybdenum deposit in Inner Mongolia, NE China. Master Degree Thesis. Beijing: China University of Geosciences, 1-112(in Chinese with English summary)
|
Liu SB, Li C, Jin K and Qu WJ. 2012. Re-Os dating for molybdenite-bearing rock samples: Application in Dazhuangke molybdenum deposit in Beijing. Geoscience, 26(2): 254-260 (in Chinese with English abstract)
|
Lu SM, Li JS, Ruan LS, Zhao LL, Huang F, Wang BH and Zhang HD. 2019. The characteristics of stable isotope geochemistry of Shapinggou molybdenum deposit, Anhui Province. Geoscience, 33(2): 262-270 (in Chinese with English abstract)
|
Luo ZX, Wu YZ and Wang HZ. 2011. Discussion on genesis of Xiongjiashan molybdenum deposit in Jinxi, Jiangxi Province. Science and Technology of West China, 10(3): 1-4, 52 (in Chinese with English abstract)
|
Luo ZZ, Li YF, Li JP, Wei MJ, Li Y and Gao Y. 2013. Molybdenite Re-Os age of the Yaochong molybdenum deposit in the northern margin of the Dabie Mountain and its geological significance. Acta Geologica Sinica, 87(9): 1359-1369 (in Chinese with English abstract)
|
Ma G, Shen P, Pan HD, Cao C, Feng HX and Zhou MH. 2019. Zircon U-Pb geochronology, trace element composition and geochemistry of ore-bearing porphyry in Bainaimiao Cu-Au deposit, Inner Mongolia, and the implications for mineralization. Acta Geologica Sinica, 93(12): 3144-3165 (in Chinese with English abstract)
|
Ma XH, Chen B, Lai Y and Lu BH. 2009. Petrogenesis and mineralization chronology study on the Aolunhua porphyry Mo deposit, Inner Mongolia, and its geological implications. Acta Petrologica Sinica, 25(11): 2939-2950 (in Chinese with English abstract)
|
Marinov D. 2011. Re-Os dating of molybdenite mineralisation from Michiquillay and Galeno porphyry copper deposits, Cajamarca, Perú. In: 11th Biennial Meeting, SGA 2011. Antofagasta, Chile
|
Meng S, Yan C, Lai Y, Shu QH and Sun Y. 2013. Study on the mineralization chronology and characteristics of mineralization fluid from the Chehugou porphyry Mo-Cu deposit, Inner Mongolia. Acta Petrologica Sinica, 29(1): 255-269 (in Chinese with English abstract)
|
Meng XJ, Hou ZQ, Gao YF, Huang W, Qu XM and Qu WJ. 2003. Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese metallogenic belt, Xizang and its metallogenic significance. Geologic Review, 49(6): 660-666 (in Chinese with English abstract)
|
Meng XJ, Xu WY, LV QT, Qu WJ, Li XC, Shi DF and Wen CH. 2012. Zircon U-Pb dating of ore-bearing rocks and molybdenite Re-Os age in Shapinggou porphyry molybdenum deposit, Anhui Province. Acta Geologica Sinica, 86(3): 486-494 (in Chinese with English abstract)
|
Nie FJ, Qu WJ, Liu Y, Du AD and Jiang SH. 2005. Re-Os isotopic age dating of molybdenite separates from Elegen porphyry Mo(Cu) mineralized area, northwestern Alxa, western Inner Mongolia. Mineral Deposits, 24(6): 638-646 (in Chinese with English abstract)
|
Nie FJ, Zhang WY, Du AD, Jiang SH and Liu Y. 2007. Re-Os isotopic dating on molybdenite separates from the Xiaodonggou porphyry Mo deposit, Hexigten Qi, Inner Mongolia. Acta Geologica Sinica, 81(7): 898-905 (in Chinese with English abstract)
|
Nie FJ, Sun ZJ, Li C, Liu YF, Lv KP, Zhang K and Liu Y. 2011. Re-Os isotopic dating of molybdenite separates from Chalukou porphyry Mo polymetallic deposit in Heilongjiang Province. Mineral Deposits, 30(5): 828-836 (in Chinese with English abstract)
|
Nie FJ, Li XZ, Li C, Zhao YA and Liu YF. 2013. Re-Os isotopic age dating of the molybdenite separated from the Caosiyao giant molybdenum deposit, Xinghe County, Inner Mongolia, and its geological significances. Geologic Review, 59(1): 175-181 (in Chinese with English abstract)
|
Niu ZY, Feng JL, Xiang XH, Zhang C and Lv XZ. 2017. The Re-Os isotope age of Huangjiagou molybdenum deposits and its geological significance in Suixian, Hubei Province. Resources Environment & Engineering, 31(6): 683-687 (in Chinese with English abstract)
|
Peng ZA, Li HH, Qu WJ, Zhang SQ, Ding HJ, Chen XR, Zhang B, Zhang YZ, Xu M and Cai MH. 2010. Molybdenite Re-Os age of Xiaohulishan molybdenum deposit in Beishan area, Inner Mongolia. Mineral Deposits, 29(3): 510-516 (in Chinese with English abstract)
|
Qing M, Ge LS, Tang MG, Qu WJ, Yuan SS and Zhao YS. 2011. Molybdnite Re-Os isotope age of Bilihe large-size porphyry gold deposit in Sunid Right Banner of Inner Mongolia and its geological significance. Mineral Deposits, 30(1): 11-20 (in Chinese with English abstract)
|
Shao JB, Wang HT, Chen DY and Pan YD. 2016. Re-Os isotopic dating of molybdenites from Jidetun and Shimadong large molybdenum deposits in central-eastern Jilin and its geological significance. Global Geology, 35(3): 717-728 (in Chinese with English abstract)
|
Shen ZC, Hou ZQ, Chen ZK, Li QY, Zhou YM and Wang ZM. 2015. Molybdenite Re-Os isotopic dating and zircon SHRIMP U-Pb and Hf isotopic compositions of the Mujicun porphyry deposit. Acta Petrologica et Mineralogica, 34(4): 526-538 (in Chinese with English abstract)
|
Song QH, Xing SW, Zhang Y, Li C, Wang Y and Yu C. 2016. Origin and geochronology of Chang'anpu Mo-Cu deposit in Jilin Province: Constraints from molybdenite Re-Os isotope systematics. Rock and Mineral Analysis, 35(5): 550-557 (in Chinese with English abstract)
|
Song SG, Ding ZJ, Yao SZ, Zhou ZG, Zhang SX and Du AD. 2008. Re-Os isotopic dating of molybdenite and its implication for molybdenum mineralization of Wenquan porphyry, Wushan, Gansu Province. Northwestern Geology, 41(1): 67-73 (in Chinese with English abstract)
|
Sun QL, Sun JG, Zhao KQ, Tang C, Zhang Y, Hang SJ and Yang F. 2014. Re-Os isotopic dating and geological significance of Luming porphyry molybdenum deposit in Heilongjiang. Global Geology, 33(2): 418-425
|
Sun Y, Liu JM, Zeng QD, Chu SX, Zhou L, Wu GB, Gao YY and Shen WJ. 2013. Geological characteristics and molybdenite Re-Os ages of the Baituyingzi Mo-Cu field, eastern Inner Mongolia and their geological implications. Acta Petrologica Sinica, 29(1): 241-254 (in Chinese with English abstract)
|
Sun YD. 2017. Jinduicheng granite porphyry molybdenum deposit mineralogical and geochemical characteristics, Shanxi Province. Master Degree Thesis Beijing: China University of Geosciences, 1-70 (in Chinese with English summary)
|
Tang JX, Chen YC, Wang DH, Wang CH, Xu YP, Qu WJ, Huang W and Huang Y. 2009a. Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongbo'gyamda County, Tibet and its geological significance. Acta Geologica Sinica, 83(5): 698-704 (in Chinese with English abstract)
|
Tang JX, Wang CH, Qu WJ, Du AD, Ying LJ and Gao YM. 2009b. Re-Os isotopic dating of molybdenite from the Yulong porphyry copper molybdenum deposit in Tibet and its metallogenic significance. Rock and Mineral Analysis, 28(3): 215-218 (in Chinese with English abstract)
|
Tao JX, Wang T, Chen ZH, Luo ZZ, Xu LQ, Hao XY and Cui LW. 2009. The Re-Os isotopic dating of molybdenite from the Wulandele molybdenum copper poly metallic deposit in Sonid Zuoqi of Inner Mongolia and its geological significance. Rock and Mineral Analysis, 28(3): 249-253 (in Chinese with English abstract)
|
Tu QJ, Wang YS and Dong LH. 2014. Re-Os dating of molybdenite from the Baishan molybdenum deposit in the eastern Tianshan area of Xinjiang and its geological significance. Xinjiang Geology, 32(3): 322-327 (in Chinese with English abstract)
|
Wang CH, Wang DH, Chen ZH, Yan CH, Wu ZL, Lin DY and Liu NZ. 2009b. Geological characteristics and metallogenic epoch of the Lishan molybdenum deposit: A discussion on regional prospecting for Mo in the south eastern coast of China. Acta Mineralogica Sinica, 29(1): 63-69 (in Chinese with English abstract)
|
Wang H, Ren YS, Zhao HL, Ju N and Qu WJ. 2011. Re-Os dating of molybdenite from the Liushengdian molybdenum deposit in Antu area of Jilin Province and its geological significance. Acta Geoscientica Sinica, 32(6): 707-715 (in Chinese with English abstract)
|
Wang L. 2010. Metallogenic model and prospecting potential in Dabaoshan molybdenum polymetallic ore deposit, north Guangdong Province. Ph. D. Dissertation. Wuhan: China University of Geosciences, 1-132 (in Chinese with English summary)
|
Wang LR. 2012. Geologoical and geochemical characteristics of Antuoling molybdenum deposit in Hebei Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-117 (in Chinese with English summary)
|
Wang P. 2015. Comparative study of porphyry Mo mineralization in continental collision and magmatic arc insights from Yaochong and Diyanqinamu porphyry Mo deposits. Ph. D. Dissertation. Beijing: University of Chinese Academy of Sciences, 1-233 (in Chinese with English summary)
|
Wang SH. 2013. Re-Os isotopic dating of molybdenite from Shierpai molybdenum deposit in Wuping, Fujian, and its geological significance. Geologic Review, 59(5): 885-892 (in Chinese with English abstract)
|
Wang SH and Huang HX. 2015. Re-Os isotopic dating of molybdenite and the Yanshanian mineralization of the Tongkeng molybdenum deposit in Liancheng, Fujian Province. Journal of Jilin University (Earth Science Edition), 45(1): 119-131 (in Chinese with English abstract)
|
Wu YH, Xiong XL, Zhao TP, Zhu ZM and Li L. 2013. Zircon U-Pb age of the ore-bearing granite and molybdenite Re-Os isotopic age of the Donggebi Mo deposit, Xinjiang and their geological significance. Geotectonica et Metallogenia, 37(4): 743-753 (in Chinese with English abstract)
|
Xiang JH, Liang XQ, Shan YH, Wang C, Dong CG, Yu SH and Tan ZJ. 2018. Two phases of mineralization in the Dabaoshan polymetallic deposit, Guangdong Province: Constraints from Re-Os geochronology of black carbonaceous mudstone and molybdenite. Geotectonica et Metallogenia, 42(4): 732-745 (in Chinese with English abstract)
|
Xie GQ, Mao JW, Li RL, Zhang ZS, Zhao WC, Qu WJ, Zhao CS and Wei SK. 2006. Metallogenic epoch and geodynamic framework of Cu-Au-Mo(W) deposits in southeastern Hubei Province: Constraints from Re-Os molybdenite ages. Mineral Deposits, 25(1): 43-52 (in Chinese with English abstract)
|
Xu MH. 2016. Research on geological and geochemical characteristics of porphyry copper deposits in Xinjiang Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-97 (in Chinese with English summary)
|
Xu Y. 2014. Geological and geochemical characteristics from Duobaoshan mining granitic rock in Heilongjiang Province. Master Degree Thesis. Beijing: China University of Geosciences, 1-62 (in Chinese with English summary)
|
Xue J, Nie FJ, Dai TG, Peng ES and Liu YF. 2010. Re-Os isotopic dating of molybdenite from the Aryn nuur Mo deposit in Mongolia and its geological implications. Acta Geoscientica Sinica, 31(3): 350-356 (in Chinese with English abstract)
|
Yang YF, Li N and Wang LJ. 2011. Fluid inclusion study of the Donggou porphyry Mo deposit, Henan Province. Acta Petrologica Sinica, 27(5): 1453-1466 (in Chinese with English abstract)
|
Yang Z, Jiang H, Yang MG, Mei HB, Hu GD, Zhang LL and Zhang. 2017. Zircon U-Pb and molybdenite Re-Os dating of the Gangjiang porphyry Cu-Mo deposit in central Gangdese and its geological significance. Earth Science, 42(3): 339-356 (in Chinese with English abstract)
|
Yu RA. 2014. Geological-geochemical characters and mineralization of Wuheerchulutu molybdenum deposit in Inner Mongolia. Master Degree Thesis. Beijing: China University of Geosciences, 1-70 (in Chinese with English summary)
|
Yu RA, Zhang F, Tang YX, Liu XX, Xie Y, Qu K, Li ZD and Qu WJ. 2016. Re-Os isotopic dating of newly discovered porphyric Mo deposit in the central section of Erenhot-Dong Ujinmqin Qi and its geological significance. Acta Geologica Sinica, 90(1): 139-150 (in Chinese with English abstract)
|
Yu XQ, Chen W and Li W. 2008. The Re-Os isotopic dating of molybdenite from the Dasuji molybdenum deposit in Zhuozi County of Inner Mongolia and its geological significance. Geology and Exploration, 28(2): 29-37 (in Chinese with English abstract)
|
Yuan Y. 2020. Petrogenesis of Early Cretaceous granitoids and Fe-Mo polymetallic mineralization in Yongding-Dehua area, southwestern Fujian Province. Ph. D. Dissertation. Beijing: China University of Geosciences, 1-227 (in Chinese with English summary)
|
Zeng QD, Duan XX, Liu JM, Chu SX, Sun Y and Zhang ZL. 2012. Mineralization, alteration, structure, and Re-Os age of the Lanjiagou porphyry Mo deposit, North China Craton. International Geology Review, 54(10): 1145-1160 DOI:10.1080/00206814.2011.626575
|
Zhai DG, Liu JJ, Wang JP, Peng RM, Wang SG and Li YX. 2009. Re-Os isotopic chronology of molybdenite from the Taipinggou porphyry type molybdenum deposit in Inner Mongolia and geological significance. Geoscience, 23(2): 262-268 (in Chinese with English abstract)
|
Zhang H, Chen DL, Zhai MG, Zhang FX, Gong XK and Sun WD. 2015. Molybdenite Re-Os dating and its tectonic significance of the Guilingou porphyry molybdenum deposit, southern Qinling. Acta Petrologica Sinica, 31(7): 2023-2037 (in Chinese with English abstract)
|
Zhang JJ, Wu MS, Chen ZH, Liu SB, Li LX, Qiu LM, Wu B, Huang AJ and Zhu PJ. 2009. Geochronologic study on the Jinzhuping molybdenum-polymetallic deposit from Shangrao of Jiangxi Province. Rock and Mineral Analysis, 28(3): 228-232 (in Chinese with English abstract)
|
Zhang KY, Wang JP, Du AD, Lin QT, Huang JM, Hu RH and Huang QM. 2009. Re-Os isotopic dating of molybdenite from the Chilu molybdenum deposit in Fu'an, Fujian Province. Geology in China, 36(1): 147-155 (in Chinese with English abstract)
|
Zhang LL, Liu C, Zhou S, Sun K, Qiu R and Feng Y. 2014. Characteristics of ore-bearing granites and ore-forming age of the Huojihe molybdenum deposit in Lesser Xing'an Range. Acta Petrologica Sinica, 30(11): 3419-3431 (in Chinese with English abstract)
|
Zhang MY, Wu G, Li TG, Chen GZ and Fan HY. 2017. Molybdenum metallogenic system of super large porphyry in Caosiyao, Inner Mongolia: Chronology and metallogenic model. Abstracts of the 8th National Symposium on Metallogenic Theory and Prospecting Methods: 643-644 (in Chinese)
|
Zhang Q. 2019. The evolution of granitic magma and its relationship with the Donggebi porphyry molybdenum deposit in the Xinjiang. Master Degree Thesis. Beijing: China University of Geosciences, 1-88 (in Chinese with English summary)
|
Zhang T, Chen ZY, Xu LQ and Chen ZH. 2009. The Re-Os isotopic dating of molybdenite from the Dasuji molybdenum deposit Zhouzi County of Inner Mongolia and its geological significance. Rock and Mineral Analysis, 28(3): 279-282 (in Chinese with English abstract)
|
Zhang ZH, Mao JW, Wang ZL, Du AD, Zuo GC, Wang LS, Wang JW and Qu WJ. 2006. Geology and metallogenetic epoch of the Dabate porphyry copper deposit in west Tianshan Mountains, Xinjiang. Geologic Review, 52(5): 683-689 (in Chinese with English abstract)
|
Zhang ZZ, Wu CZ, Gu LX, Feng HX, Zheng YC, Huang JH, Li J and Sun YL. 2009. Molybdenite Re-Os dating of Xintaimen molybdenum deposit in Yanshan-Liaoning metallogenic belt, North China. Mineral Deposits, 28(3): 313-320 (in Chinese with English abstract)
|
Zhao C, Xie XN, Ma C, Liu JX and Cao JH. 2015. Geological significance of zircon age and Re-Os isotopic measurement on molybdenite from Matou Cu-Mo polymetallic deposit Chizhou, Anhui Province, China. The Chinese Journal of Nonferrous Metals, 25(12): 3461-3472 (in Chinese with English abstract)
|
Zhao KQ. 2016. Research on magmatic-fluid process and ore forming of the Mesozoic porphyry Mo metallogenic system in the eastern of Xing-Meng orogenic belt. Ph. D. Dissertation. Changchun: Jilin University, 1-174 (in Chinese with English summary)
|
Zhao RF and Xu T. 2015. Geological characteristics of Shiyaogou molybdenum deposit in the west of Henan Province. Geology and Resources, 24(2): 124-127 (in Chinese with English abstract)
|
Zhao XL. 2007. The Geochronology petrography and geochemical characteristics of Mesozoic granitoids from Shanghang area in SW Fujian and their implications. Master Degree Thesis. Beijing: Chinese Academy of Geological Sciences, 1-61 (in Chinese with English summary)
|
Zhe M, Hu JZ, Zhou W and Ding HY. 2014. Geological characteristics and molybdenite Re-Os isotopic dating of Antuoling molybdenum deposit in Hebei Province. Geoscience, 28(2): 339-347 (in Chinese with English abstract)
|
Zheng W, Ouyang HG, Zhao HJ, Zhao CS, Yu XF, Luo DL, Huang HG and Ouyang ZX. 2017. Re-Os dating for the molybdenite from the Xiping Mo-Cu polymetallic deposit in Guangdong Province and its geological significance. Acta Petrologica Sinica, 33(3): 843-858 (in Chinese with English abstract)
|
Zhong LF, Xia B, Liu LW, Li J, Lin XG, Xu LF and Lin LZ. 2010. Metallogenic geochronology of Yuanzhuding Cu-Mo deposit in western Guangdong-eastern Guangxi metallogenic belt and its geological significance. Mineral Deposits, 29(3): 395-404 (in Chinese with English abstract)
|
Zhou K, Ye HS, Mao JW, Qu WJ, Meng SF, Meng F and Gao YL. 2009. Geological characteristics and molybdenite Re-Os isotopic dating of Yuchiling porphyry Mo deposit in western Henan Province. Mineral Deposits, 28(2): 170-184 (in Chinese with English abstract)
|
Zhou XG, Wu JH, Qu WJ, Gong M, Yuan CX, Liao MH, Zhao G, Li M, Wei JH and Ma ZD. 2011. Re-Os dating of molybdenites from Yuanlingzhai molybdenum deposit in southern Jiangxi Province and its geological significance. Mineral Deposits, 30(4): 690-698 (in Chinese with English abstract)
|
Zhu MT, Wu G, Xie HJ, Wan Y, Zhong W, Mi F and Li J. 2010. Re-Os isotopic geochronolgy and fluid inclusion study of Lailisigao'er porphyry Cu-Mo deposit in western Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 26(12): 3667-3682 (in Chinese with English abstract)
|
Zhu XF, Chen YJ, Wang P, Zhang C, Cai YL, Deng K, Xu QW and Li KY. 2018. Zircon U-Pb age, and Hf isotope of causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia. Earth Science Frontiers, 25(5): 119-134 (in Chinese with English abstract)
|
白珏, 张可. 2013. 内蒙古乌日尼图钼铜矿床辉钼矿铼-锇同位素定年及其地质意义. 矿产勘查, 4(6): 671-677. DOI:10.3969/j.issn.1674-7801.2013.06.011 |
蔡明海, 彭振安, 屈文俊, 贺钟银, 冯罡, 张诗启, 徐明, 陈艳. 2011. 内蒙古乌拉特后旗查干德尔斯钼矿床地质特征及Re-Os测年. 矿床地质, 30(3): 377-384. DOI:10.3969/j.issn.0258-7106.2011.03.001 |
蔡文艳. 2020. 黑龙江省多宝山矿集区铜-钼-金多金属成矿作用研究. 博士学位论文. 长春: 吉林大学, 1-238
|
陈珲. 2010. 云南澜沧老厂隐伏花岗斑岩岩石学, 年代学及成因研究. 硕士学位论文. 昆明: 昆明理工大学, 1-78
|
陈沐龙, 吕昭英, 马昌前, 云平. 2015. 海南岛石门山钼多金属矿床的Re-Os同位素定年及地质意义. 地质论评, 29(4): 285-286. |
陈伟军, 刘建明, 刘红涛, 孙兴国, 张瑞斌, 张作伦, 覃锋. 2010. 内蒙古鸡冠山斑岩钼矿床成矿时代和成矿流体研究. 岩石学报, 26(5): 1423-1436. |
陈志广, 张连昌, 万博, 张玉涛, 吴华英. 2008. 内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义. 岩石学报, 24(1): 115-128. |
代军治, 毛景文, 赵财胜, 李褔让, 王瑞廷, 谢桂青, 杨富全. 2008. 辽西兰家沟钼矿床花岗岩SHRIMP锆石U-Pb年龄及岩石化学特征. 地质学报, 82(11): 1555-1564. DOI:10.3321/j.issn:0001-5717.2008.11.011 |
戴宝章, 蒋少涌, 王孝磊. 2009. 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约. 岩石学报, 25(11): 2889-2901. |
戴朝成, 黄成, 焦正, 王新亮. 2017. 内蒙古中部乌拉山地区西沙德盖岩体地球化学-年代学特征及其地质意义. 现代地质, 31(4): 662-671. DOI:10.3969/j.issn.1000-8527.2017.04.002 |
戴盼, 吴胜华, 丁成武. 2018. 江西王坞斑岩型Mo-Cu矿床花岗斑岩锆石U-Pb和辉钼矿Re-Os同位素测年及地质意义. 岩石学报, 34(9): 2598-2614. |
丁海洋. 2014. 太行山北段大湾钼矿地球化学特征, 成矿流体及物质来源分析. 硕士学位论文. 北京: 中国地质大学, 1-62
|
范飞鹏, 肖凡, 项红亮, 陈世忠, 李超, 周延, 陈凯, 曹明轩. 2020. 闽中德化邱埕钼矿床辉钼矿Re-Os同位素定年. 中国地质, 1-15, http://kns.cnki.net/kcms/detail/11.1167.P.20200219.2316.007.html
|
冯晓曦, 姚书振, 段明, 曲凯, 王佳营, 冯旭彪, 李超, 周利敏. 2015. 内蒙古白乃庙铜(钼)矿床辉钼矿Re Os同位素年龄及其地质意义. 吉林大学学报(地球科学版), 45(1): 132-141. |
高亚龙, 张江明, 叶会寿, 孟芳, 周珂, 高阳. 2010. 东秦岭石窑沟斑岩钼矿床地质特征及辉钼矿Re-Os年龄. 岩石学报, 26(3): 729-739. |
龚福志, 郑有业, 张刚阳, 屈文俊. 2008. 首次在冈底斯发现主碰撞期斑岩铜矿——来自西藏吉如斑岩铜矿辉钼矿Re-Os同位素年龄的证据. 四川地质学报, 28(4): 296-299. DOI:10.3969/j.issn.1006-0995.2008.04.009 |
何书跃, 李东生, 李良林, 祁兰英, 何寿福. 2009. 青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义. 大地构造与成矿学, 33(2): 236-242. DOI:10.3969/j.issn.1001-1552.2009.02.007 |
侯万荣, 聂凤军, 杜安道, 李超, 江思宏, 白大明, 刘妍. 2010. 内蒙古西沙德盖钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 29(6): 1043-1053. DOI:10.3969/j.issn.0258-7106.2010.06.008 |
侯雪刚. 2017. 吉黑东部中生代斑岩型钼矿床的成矿岩体: 从成因到成矿. 博士学位论文. 长春: 吉林大学, 1-179
|
胡清华, 黄定柱, 李冰, 杨丽梅, 尹光候. 2010. 普朗斑岩铜矿包裹体、同位素研究及成矿时代. 云南地质, 29(3): 351-357. DOI:10.3969/j.issn.1004-1885.2010.03.026 |
胡升奇, 朱强, 张先进, 易顺华, 彭松柏, 周国发, 吴林波, 陈海红. 2013. 广东园珠顶铜钼矿床花岗斑岩年代学、地球化学特征及锆石Hf同位素. 矿床地质, 32(6): 1139-1158. DOI:10.3969/j.issn.0258-7106.2013.06.004 |
贾丽琼, 徐文艺, 杨丹, 杨竹森, 王粱. 2015. 江西九瑞地区宝山斑岩型铜多金属矿床锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 矿床地质, 34(1): 63-80. |
蒋金明, 沙元成, 李永明, 胡正华. 2015. 江西瑞昌市宝山花岗闪长斑岩地球化学特征及地质意义. 东华理工大学学报(自然科学版), 38(2): 176-182. DOI:10.3969/j.issn.1674-3504.2015.02.006 |
鞠楠. 2020. 吉林中部斑岩型钼矿成矿规律与远景预测. 博士学位论文. 长春: 吉林大学, 1-132
|
康永建. 2015. 内蒙古八大关斑岩型铜钼矿成矿作用研究. 硕士学位论文. 北京: 中国地质科学院, 1-110
|
拉片, 格桑多吉, 阿旺, 次旦仲嘎. 2017. 西藏拉抗俄地区铜钼矿地质特征及成因初探. 世界有色金属, (13): 168, 170. |
冷秋锋, 唐菊兴, 郑文宝, 张金树, 唐攀, 严刚, 董宇. 2015. 西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义. 中国地质, 42(2): 570-584. DOI:10.3969/j.issn.1000-3657.2015.02.016 |
李俊建, 唐文龙, 付超, 李超, 屈文俊, 张彤, 王守光, 党智财, 周勇, 赵丽君. 2016. 内蒙古阿巴嘎旗比鲁甘干斑岩型钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 地质通报, 35(4): 519-523. DOI:10.3969/j.issn.1671-2552.2016.04.004 |
李立兴, 松权衡, 王登红, 王成辉, 屈文俊, 汪志刚, 毕守业, 于城. 2009. 吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨. 岩矿测试, 28(3): 283-287. DOI:10.3969/j.issn.0254-5357.2009.03.018 |
栗亚芝, 孔会磊, 南卡俄吾, 李金超, 贾群子, 杜玉良, 陈向阳, 宋忠宝, 张雨莲, 全守村. 2015. 青海省纳日贡玛斑岩型铜钼矿床成矿岩体的物质来源及成矿背景分析. 地质科技情报, 34(1): 1-9. DOI:10.3969/j.issn.1009-6248.2015.01.001 |
梁清玲, 江思宏, 王少怀, 李超, 曾法刚. 2012. 福建紫金山矿田罗卜岭斑岩型铜钼矿床辉钼矿Re-Os定年及地质意义. 地质学报, 86(7): 1113-1118. DOI:10.3969/j.issn.0001-5717.2012.07.007 |
刘彬. 2015. 东天山白山斑岩钼矿地质地球化学特征及成因研究. 硕士学位论文. 北京: 中国地质大学, 1-70
|
刘啟能. 2013. 安徽金寨沙坪沟斑岩钼矿床及其与岩浆岩的关系. 硕士学位论文. 合肥: 合肥工业大学, 1-87
|
刘瑞斌. 2016. 内蒙古呼扎盖吐斑岩型钼矿床地质地球化学特征及成因机制. 硕士学位论文. 北京: 中国地质大学, 1-112
|
刘舒波, 李超, 岑况, 屈文俊. 2012. 含辉钼矿全岩样品Re-Os同位素定年研究: 在北京大庄科钼矿床中的应用. 现代地质, 26(2): 254-260. DOI:10.3969/j.issn.1000-8527.2012.02.005 |
陆三明, 李建设, 阮林森, 赵丽丽, 黄凡, 王波华, 张怀东. 2019. 安徽省金寨县沙坪沟钼矿床稳定同位素地球化学特征. 现代地质, 33(2): 262-270. |
罗泽雄, 吴有旨, 万浩章. 2011. 江西金溪熊家山钼矿床成因探讨. 中国西部科技, 10(3): 1-4, 52. DOI:10.3969/j.issn.1671-6396.2011.03.001 |
罗正传, 李永峰, 李俊平, 魏明君, 李毅, 高阳. 2013. 豫南大别山北麓姚冲钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 地质学报, 87(9): 1359-1369. |
马阁, 申萍, 潘鸿迪, 曹冲, 冯浩轩, 周满红. 2019. 内蒙古白乃庙铜金矿床含矿斑岩地球化学, 锆石U-Pb年代学, 微量元素地球化学及成矿指示意义. 地质学报, 93(12): 3144-3165. DOI:10.3969/j.issn.0001-5717.2019.12.010 |
马星华, 陈斌, 赖勇, 鲁颖淮. 2009. 内蒙古敖仑花斑岩钼矿床成岩成矿年代学及地质意义. 岩石学报, 25(11): 2939-2950. |
孟树, 闫聪, 赖勇, 舒启海, 孙艺. 2013. 内蒙古车户沟钼铜矿成矿年代学及成矿流体特征研究. 岩石学报, 29(1): 255-269. |
孟祥金, 侯增谦, 高永丰, 黄卫, 曲晓明, 屈文俊. 2003. 西藏冈底斯成矿带驱龙铜矿Re—Os年龄及成矿学意义. 地质论评, 49(6): 660-666. DOI:10.3321/j.issn:0371-5736.2003.06.015 |
孟祥金, 徐文艺, 吕庆田, 屈文俊, 李先初, 史东方, 文春华. 2012. 安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄. 地质学报, 86(3): 486-494. DOI:10.3969/j.issn.0001-5717.2012.03.010 |
聂凤军, 屈文俊, 刘妍, 杜安道, 江思宏. 2005. 内蒙古额勒根斑岩型钼(铜)矿化区辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 24(6): 638-646. DOI:10.3969/j.issn.0258-7106.2005.06.007 |
聂凤军, 张万益, 杜安道, 江思宏, 刘妍. 2007. 内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义. 地质学报, 81(7): 898-905. DOI:10.3321/j.issn:0001-5717.2007.07.004 |
聂凤军, 孙振江, 李超, 刘翼飞, 吕克鹏, 张可, 刘勇. 2011. 黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义. 矿床地质, 30(5): 828-836. DOI:10.3969/j.issn.0258-7106.2011.05.006 |
聂凤军, 李香资, 李超, 赵宇安, 刘翼飞. 2013. 内蒙古兴和县曹四夭特大型钼矿床辉钼矿Re-Os同位素年龄及地质意义. 地质论评, 59(1): 175-181. DOI:10.3969/j.issn.0371-5736.2013.01.019 |
牛志勇, 冯久林, 向祥辉, 张聪, 吕向志. 2017. 随县黄家沟钼矿床Re-Os同位素年龄及其地质意义. 资源环境与工程, 31(6): 683-687. |
彭振安, 李红红, 屈文俊, 张诗启, 丁海军, 陈晓日, 张斌, 张永正, 徐明, 蔡明海. 2010. 内蒙古北山地区小狐狸山钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 29(3): 510-516. DOI:10.3969/j.issn.0258-7106.2010.03.012 |
卿敏, 葛良胜, 唐明国, 屈文俊, 袁士松, 赵玉锁. 2011. 内蒙古苏尼特右旗毕力赫大型斑岩型金矿床辉钼矿Re-Os同位素年龄及其地质意义. 矿床地质, 30(1): 11-20. DOI:10.3969/j.issn.0258-7106.2011.01.002 |
邵建波, 王洪涛, 陈殿义, 潘月栋. 2016. 吉林省中东部季德屯及石马洞大型钼矿床辉钼矿Re-Os同位素年龄及地质意义. 世界地质, 35(3): 717-728. DOI:10.3969/j.issn.1004-5589.2016.03.012 |
申志超, 侯增谦, 陈志宽, 李秋耘, 周玉谋, 王志敏. 2015. 河北木吉村斑岩铜矿辉钼矿Re-Os定年、成矿斑岩锆石U-Pb定年和Hf同位素组成研究. 岩石矿物学杂志, 34(4): 526-538. DOI:10.3969/j.issn.1000-6524.2015.04.007 |
松权衡, 邢树文, 张勇, 李超, 王岩, 于城. 2016. 吉林长安堡钼(铜)矿床成矿时代及物质来源: 来自辉钼矿Re-Os同位素证据. 岩矿测试, 35(5): 550-557. |
宋史刚, 丁振举, 姚书振, 周宗桂, 张世新, 杜安道. 2008. 甘肃武山温泉辉钼矿Re-Os同位素定年及其成矿意义. 西北地质, 41(1): 67-73. DOI:10.3969/j.issn.1009-6248.2008.01.008 |
孙庆龙, 孙景贵, 赵克强, 唐臣, 张勇, 韩世炯, 杨帆. 2014. 黑龙江鹿鸣斑岩型钼矿床Re-Os同位素定年及其地质意义. 世界地质, 33(2): 418-425. DOI:10.3969/j.issn.1004-5589.2014.02.018 |
孙衍东. 2017. 陕西省金堆城斑岩型钼矿床矿物学及地球化学特征. 硕士学位论文. 北京: 中国地质大学, 1-70
|
孙燕, 刘建明, 曾庆栋, 褚少雄, 周伶俐, 吴冠斌, 高玉友, 沈文君. 2013. 内蒙东部白土营子钼铜矿田的矿床地质特征, 辉钼矿Re-Os年龄及其意义. 岩石学报, 29(1): 241-254. |
唐菊兴, 陈毓川, 王登红, 王成辉, 许远平, 屈文俊, 黄卫, 黄勇. 2009a. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义. 地质学报, 83(5): 698-704. |
唐菊兴, 王成辉, 屈文俊, 杜安道, 应立娟, 高一鸣. 2009b. 西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义. 岩矿测试, 28(3): 215-218. |
陶继雄, 王弢, 陈郑辉, 罗忠泽, 许立权, 郝先义, 崔来旺. 2009. 内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征. 岩矿测试, 28(3): 249-253. DOI:10.3969/j.issn.0254-5357.2009.03.011 |
涂其军, 王杨双, 董连慧. 2014. 新疆东天山白山钼矿辉钼矿Re-Os测年及地质意义. 新疆地质, 32(3): 322-327. DOI:10.3969/j.issn.1000-8845.2014.03.007 |
王成辉, 王登红, 陈郑辉, 严朝辉, 吴资龙, 林东燕, 刘乃忠. 2009b. 福建砺山钼矿的地质特征、成矿时代及区域找矿前景. 矿物学报, 29(1): 63-69. |
王辉, 任云生, 赵华雷, 鞠楠, 屈文俊. 2011. 吉林安图刘生店钼矿床辉钼矿Re-Os同位素定年及其地质意义. 地球学报, 32(6): 707-715. DOI:10.3975/cagsb.2011.06.08 |
王磊. 2010. 粤北大宝山钼多金属矿床成矿模式与找矿前景研究. 博士学位论文. 武汉: 中国地质大学, 1-132
|
王理瑞. 2012. 河北省涞水县安妥岭钼矿矿床地质与地球化学特征研究. 硕士学位论文. 北京: 中国地质大学, 1-117
|
王玭. 2015. 大陆碰撞与岩浆弧背景斑岩钼矿对比研究——以姚冲和迪彦钦阿木钼矿床为例. 博士学位论文. 北京: 中国科学院大学, 1-233
|
王少怀. 2013. 福建武平十二排钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 地质论评, 59(5): 885-892. |
王少怀, 黄宏祥. 2015. 福建连城铜坑钼矿床辉钼矿Re-Os同位素年龄及燕山期成矿事件. 吉林大学学报(地球科学版), 45(1): 119-131. |
吴云辉, 熊小林, 赵太平, 朱志敏, 李立. 2013. 新疆东戈壁斑岩型Mo矿辉钼矿Re-Os年龄和成矿岩体锆石U-Pb年龄及其地质意义. 大地构造与成矿学, 37(4): 743-753. |
向建华, 梁新权, 单业华, 王策, 董超阁, 余世花, 谭志军. 2018. 广东大宝山多金属矿床两期成矿: 来自黑色炭质泥岩和辉钼矿Re-Os同位素定年的证据. 大地构造与成矿学, 42(4): 732-745. |
谢桂青, 毛景文, 李瑞玲, 张祖送, 赵维超, 屈文俊, 赵财胜, 魏世昆. 2006. 鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨: 辉钼矿Re-Os同位素年龄. 矿床地质, 25(1): 43-52. DOI:10.3969/j.issn.0258-7106.2006.01.006 |
徐昱. 2014. 黑龙江省多宝山矿区花岗质岩体地质地球化学特征. 硕士学位论文. 北京: 中国地质大学, 1-62
|
许茗涵. 2016. 新疆斑岩型铜矿成矿地质与地球化学特征研究. 硕士学位论文. 北京: 中国地质大学, 1-97
|
薛静, 聂凤军, 戴塔根, 彭恩生, 刘翼飞. 2010. 蒙古国阿林诺尔钼矿床辉钼矿Re-Os同位素年龄及地质意义. 地球学报, 31(3): 350-356. |
杨永飞, 李诺, 王莉娟. 2011. 河南省东沟超大型钼矿床流体包裹体研究. 岩石学报, 27(5): 1453-1466. |
杨震, 姜华, 杨明国, 梅红波, 胡光道, 张黎黎, 张裴培. 2017. 冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义. 地球科学, 42(3): 339-356. |
于玺卿, 陈旺, 李伟. 2008. 内蒙古大苏计斑岩型钼矿床地质特征及其找矿意义. 地质与勘探, 28(2): 29-37. |
俞礽安, 张锋, 唐永香, 刘晓雪, 谢瑜, 曲凯, 李志丹, 屈文俊. 2016. 二连-东乌旗中段新发现的乌和尔楚鲁图斑岩型钼矿床Re-Os同位素年龄及其地质意义. 地质学报, 90(1): 139-150. |
俞礽安. 2014. 内蒙古乌和尔楚鲁图钼矿床地质地球化学特征及成矿作用. 硕士学位论文. 北京: 中国地质大学, 1-70
|
袁远. 2020. 闽西南永定-德化地区早白垩世花岗质岩石成因与铁-钼成矿作用. 博士学位论文. 北京: 中国地质大学, 1-227
|
翟德高, 刘家军, 王建平, 彭润民, 王守光, 李玉玺. 2009. 内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义. 现代地质, 23(2): 262-268. DOI:10.3969/j.issn.1000-8527.2009.02.010 |
张红, 陈丹玲, 翟明国, 张复新, 宫相宽, 孙卫东. 2015. 南秦岭桂林沟斑岩型钼矿Re-Os同位素年代学及其构造意义研究. 岩石学报, 31(7): 2023-2037. |
张家菁, 吴木森, 陈郑辉, 刘善宝, 李立兴, 邱良明, 吴斌, 黄安杰, 祝平俊. 2009. 江西省上饶县金竹坪钼多金属矿床成矿年代学研究. 岩矿测试, 28(3): 228-232. DOI:10.3969/j.issn.0254-5357.2009.03.007 |
张克尧, 王建平, 杜安道, 林仟同, 黄金明, 胡荣华, 黄庆敏. 2009. 福建福安赤路钼矿床辉钼矿Re-Os同位素年龄及其地质意义. 中国地质, 36(1): 147-155. DOI:10.3969/j.issn.1000-3657.2009.01.013 |
张琳琳, 刘翠, 周肃, 孙凯, 邱瑞照, 冯瑶. 2014. 小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄. 岩石学报, 30(11): 3419-3431. |
张明玉, 武广, 李铁刚, 陈公正, 范海洋. 2017. 内蒙古曹四夭超大型斑岩钼成矿系统: 年代学和成矿模式. 第八届全国成矿理论与找矿方法学术讨论会论文摘要文集: 643-644. |
张强. 2019. 新疆东戈壁花岗质岩浆演化与斑岩钼矿的关系研究. 硕士学位论文. 北京: 中国地质大学, 1-88
|
张彤, 陈志勇, 许立权, 陈郑辉. 2009. 内蒙古卓资县大苏计钼矿辉钼矿铼-锇同位素定年及其地质意义. 岩矿测试, 28(3): 279-282. DOI:10.3969/j.issn.0254-5357.2009.03.017 |
张遵忠, 吴昌志, 顾连兴, 冯慧, 郑远川, 黄建华, 李晶, 孙亚莉. 2009. 燕辽成矿带东段新台门钼矿床的Re-Os同位素年龄及其地质意义. 矿床地质, 28(3): 313-320. DOI:10.3969/j.issn.0258-7106.2009.03.007 |
张作衡, 毛景文, 王志良, 杜安道, 左国朝, 王龙生, 王见蓶, 屈文俊. 2006. 新疆西天山达巴特铜矿床地质特征和成矿时代研究. 地质论评, 52(5): 683-689. DOI:10.3321/j.issn:0371-5736.2006.05.023 |
赵超, 谢兴楠, 马春, 柳建新, 曹创华. 2015. 安徽池州马头铜钼矿床锆石年龄与辉钼矿Re-Os同位素测定的地质意义. 中国有色金属学报, 25(12): 3461-3472. |
赵克强. 2016. 兴蒙造山带东部中生代斑岩型钼矿成矿系统的岩浆流体作用与成矿研究. 博士学位论文. 长春: 吉林大学, 1-174
|
赵瑞峰, 徐涛. 2015. 豫西马超营断裂带中段石窑沟钼矿地质特征. 地质与资源, 24(2): 124-127. DOI:10.3969/j.issn.1671-1947.2015.02.007 |
赵希林. 2007. 福建省上杭地区中生代花岗岩体的年代学、岩石学、地球化学特征及其地质意义. 硕士学位论文. 北京: 中国地质科学院, 1-61
|
者萌, 胡建中, 周伟, 丁海洋. 2014. 河北省安妥岭钼矿床地质特征及辉钼矿Re-Os同位素年龄. 现代地质, 28(2): 339-347. DOI:10.3969/j.issn.1000-8527.2014.02.012 |
郑伟, 欧阳荷根, 赵海杰, 赵财胜, 于晓飞, 罗大略, 黄华谷, 欧阳志侠. 2017. 广东锡坪钼铜多金属矿床辉钼矿Re-Os同位素定年及其地质意义. 岩石学报, 33(3): 843-858. |
钟立峰, 夏斌, 刘立文, 李杰, 林秀广, 徐力峰, 林良庄. 2010. 粤西-桂东成矿带园珠顶铜钼矿床成矿年代学及其地质意义. 矿床地质, 29(3): 395-404. DOI:10.3969/j.issn.0258-7106.2010.03.002 |
周珂, 叶会寿, 毛景文, 屈文俊, 周树峰, 孟芳, 高亚龙. 2009. 豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄. 矿床地质, 28(2): 170-184. DOI:10.3969/j.issn.0258-7106.2009.02.006 |
周雪桂, 吴俊华, 屈文俊, 龚敏, 袁承先, 廖明和, 赵赣, 李牟, 魏俊浩, 马振东. 2011. 赣南园岭寨钼矿辉钼矿Re-Os年龄及其地质意义. 矿床地质, 30(4): 690-698. DOI:10.3969/j.issn.0258-7106.2011.04.008 |
朱明田, 武广, 解洪晶, 万阈, 钟伟, 糜梅, 刘军. 2010. 新疆西天山莱历斯高尔斑岩型铜钼矿床辉钼矿Re-Os同位素年龄及流体包裹体研究. 岩石学报, 26(12): 3667-3682. |
朱雪峰, 陈衍景, 王玭, 张成, 蔡云龙, 邓轲, 许强伟, 李凯月. 2018. 内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究. 地学前缘, 25(5): 119-134. |
2021, Vol. 37


