岩石学报  2021, Vol. 37 Issue (8): 2364-2384, doi: 10.18654/1000-0569/2021.08.07   PDF    
南祁连拉脊山构造带早古生代岩浆混合作用: 以马场岩体为例
牛漫兰1, 文凤玲1, 闫臻2, 吴齐1,3, 李秀财1, 孙毅1, 李晨1     
1. 合肥工业大学资源与环境工程学院, 合肥 230009;
2. 中国地质科学院地质研究所, 北京 100037;
3. 聊城市自然资源和规划局, 聊城 252000
摘要: 拉脊山构造带位于南祁连构造带北缘,发育大量早古生代岩浆岩。其南缘马场岩体主要由黑云母花岗岩和花岗闪长岩组成,花岗闪长岩中发育大量的镁铁质微粒包体。黑云母花岗岩、花岗闪长岩和镁铁质包体LA-ICP-MS锆石U-Pb年龄分别为467±7Ma、468±6Ma、466±6Ma。黑云母花岗岩具有低K2O/Na2O(0.28~0.37)、高Sr/Y(125~168)比值特征,为埃达克质岩;同时,黑云母花岗岩还具有相对低的MgO、Cr、Ni含量和Mg#值,富集轻稀土、大离子亲石元素(Ba、K、Pb、Sr)以及Zr、Hf,亏损重稀土和高场强元素(Nb、Ta、Ti),具有Eu正异常(Eu/Eu*=1.30~1.58),亏损Sr-Nd和锆石Hf同位素组成((87Sr/86Sr)t=0.7044~0.7046,εNdt)=+2.05~+2.21,εHft)=+8.2~+10.2),指示黑云母花岗岩是新生地壳物质重熔的产物。镁铁质微粒包体与寄主花岗闪长岩之间呈过渡-截然接触界线,发育反向脉,角闪石嵌晶结构、斜长石不平衡生长结构、镁铁质凝块以及刀刃状黑云母、针状磷灰石等显微结构反映典型的岩浆混合特征。镁铁质微粒包体与寄主花岗闪长岩均富集大离子亲石元素(Cs、K、Pb、Sr),亏损高场强元素(Nb、Ta、Zr、Hf),具有与黑云母花岗岩一致的Sr-Nd同位素组成,但镁铁质微粒包体具有更高的MgO含量(6.15%~9.12%)、Mg#值(57~60)和Cr(271×10-6~424×10-6)、Ni(54.7×10-6~86.6×10-6)含量,暗示镁铁质微粒包体与花岗闪长岩是由受俯冲流体交代的地幔熔体与新生地壳物质重熔形成的熔体经岩浆混合而成。结合区域背景分析,本文认为马场岩体的形成与南祁连洋俯冲过程中幔源岩浆底侵加热新生地壳以及岩浆混合作用相关。
关键词: 镁铁质微粒包体    早古生代    岩浆混合    马场岩体    拉脊山构造带    
Early Paleozoic magma mixing in the Lajishan tectonic belt of South Qilian: An example from the Machang pluton
NIU ManLan1, WEN FengLing1, YAN Zhen2, WU Qi1,3, LI XiuCai1, SUN Yi1, LI Chen1     
1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Liaocheng Natural Resources and Planning Bureau, Liaocheng 252000, China
Abstract: Early Paleozoic granitoid rocks are widespread in the Lajishan tectonic belt, northern margin of the South Qilian Belt. The Machang pluton, located in the southern edge of the Lajishan tectonic belt, is mainly composed of biotite granite, granodiorite, and mafic microgranular enclaves (MMEs). LA-ICP-MS zircon U-Pb dating yields the Middle Ordovician crystallization ages of 468~466Ma for those rocks. The biotite granites exhibit low K2O/Na2O (0.28~0.37) and high Sr/Y (125~168) and (La/Yb)N ratios, typical features of adakitic rocks. They are enriched in LREEs, LILEs, Zr, and Hf, but depleted in HREEs and HFSEs (Nb, Ta, Ti) with positive Eu anomalies. In addition, they also have relatively low contents of MgO, Cr, and Ni and Mg# values, and slightly depleted Sr-Nd isotopic composition of whole-rocks and depleted Hf isotopic composition of zircons ((87Sr/86Sr)t=0.7044~0.7046, εNd(t)=+2.05~+2.21, εHf(t)=+8.2~+10.2), overlapping with those of the Late Cambrian to Early Ordovician arc-related mafic igneous rocks of the Lajishan tectonic belt, hinting an derivation from anatexis of juvenile crustal materials. Most of the MMEs are sharp contact with their host granodiorites, but a few shows transitional contacts. The MMEs and host granodiorites are characterized by enrichment of LILEs (Cs, K, Pb, Sr) and depletion of HFSEs (Nb, Ta, Zr, Hf), and have similar Sr-Nd-Hf isotopic composition, which are slightly enriched relative to those of biotite granites. However, the MMEs have lower SiO2, higher MgO (6.15%~9.12%), Mg# (57~60), Cr (271×10-6~424×10-6), and Ni (54.7×10-6~86.6×10-6) contents than the host rocks. Moreover, the MMEs are featured by disequilibrium textures, such as back veining, poikilitic hornblende, disequilibrium-textured plagioclase, mafic clot, blade-shaped biotite, and acicular apatite. It is therefore inferred that the MMEs and granodiorites are generated by the mixing of subduction-related metasomatized mantle-derived mafic magmas and felsic magmas originating from partial melting of the juvenile crust. In combination with evidence of regional geology, it can be concluded that the Machang pluton were formed during the subduction of the South Qilian Ocean and related to partial melting of the juvenile crust by the upwelling mantle and magma mixing.
Key words: Mafic microgranular enclave    Early Paleozoic    Magma mixing    Machang pluton    Lajishan tectonic belt    

岩浆混合常见于在岩浆演化过程中,既是花岗岩的重要形成方式之一,也是控制花岗质岩石成分变化与多样性的关键因素(Venezky and Rutherford, 1997)。暗色包体和寄主花岗岩石被认为是探究花岗岩成因与多样性、壳幔相互作用等过程的关键对象。目前,对于包体成因尚存在多种认识,如:(1)源区残留体(Chappell et al., 1987);(2)围岩捕掳体(Chappell et al., 1987);(3)早期结晶矿物堆积体(Didier, 1973);(4)镁铁质岩浆注入到长英质岩浆中的岩浆混合(Vernon, 1984; Didier and Barbarin, 1991)。

拉脊山构造带及其周边地区广泛发育早古生代中酸性侵入岩(ca. 470~440Ma)。前人曾对这些岩浆岩开展了岩石成因方面的研究,目前存在有前寒武基底熔融(Yang et al., 2016)、岩石圈地幔熔融(或受地壳混染)(钟林汐, 2015)、新生地壳熔融(Cui et al., 2019)、壳-幔岩浆混合作用(郭周平等, 2015; 崔加伟等, 2016)等不同认识。然而,对这些花岗质岩石中镁铁质暗色微粒包体所做工作相对较少,制约了对岩石成因的深入认识。因此,本文选取拉脊山构造带东南缘马场岩体及其镁铁质暗色微粒包体为研究对象,在详细的野外调查基础上,开展了岩相学、锆石同位素地质年代学和Hf同位素、全岩元素地球化学和Sr-Nd同位素地球化学研究,确定了马场岩体的形成时代,查明了其源区特征,探讨了其岩石成因和形成环境,为拉脊山构造带早古生代演化过程提供了补充证据。

1 区域地质背景

祁连造山带位于青藏高原东北缘,是中央造山带的重要组成部分之一(图 1)。祁连造山带自北向南通常被划分为北祁连、中祁连和南祁连构造带(冯益民等, 2002)。北祁连构造带主要是由早古生代岛弧火山岩、弧后盆地岩石、包含SSZ型和MOR型蛇绿岩以及HP/LT变质岩等的增生杂岩共同构成。中祁连构造带主要由托赖岩群、朱龙关群、湟源群、马衔山群、兴隆山群等前寒武系基底及早古生代侵入岩组成。南祁连构造带主要由前寒武系化隆岩群、寒武纪-奥陶纪岛弧火山岩、蛇绿混杂岩及古生代侵入岩等共同组成(青海省地质矿产局, 1991; Yan et al., 2015b, 2019a, b; 宋述光等, 2013, 2019; Fu et al., 2018, 2019; 付长垒等, 2014, 2018)。

图 1 中国大地构造格架图(a, 据Yan et al., 2015b修改)、祁连造山带地质图(b, 据Fu et al., 2018修改)和拉脊山地质图和研究区位置(c, 据Yan et al., 2015b修改) 锆石U-Pb年龄数据引自1. 雍拥等, 2008; 2. 高亮, 2018; 3. 张照伟, 2014; 4. 钟林汐, 2015; 5. Fu et al., 2018; 6. Cui et al., 2019; 7. 崔加伟等, 2016; 8. Yang et al., 2016; 9. 郭周平等, 2015; 10. Wang et al., 2016, 2018; 11. Gao et al., 2018a, b; 12. Tao et al., 2018a, b Fig. 1 Tectonic framework of China (a, modified after Yan et al., 2015b), geological map of the Qilian Orogen (b, modified after Fu et al., 2018) and geological map of the Lajishan and the study area (c, modified after Yan et al., 2015b)

拉脊山构造带位于中祁连构造带和南祁连构造带之间,分别与北侧湟源群和南侧化隆岩群呈断层接触(图 1c)。化隆岩群自下而上分为智尕昂岩组、关藏沟岩组和鲁满山岩组,主要由以石英岩、片麻岩和混合岩为主的前寒武系基底岩石、呈脉状分布的寒武-奥陶纪镁铁质-超镁铁质侵入岩(506~440Ma)和少量早古生代中酸性侵入岩共同组成(Yan et al., 2015b; Wang et al., 2016; Tao et al., 2018a; 张照伟, 2014; 郭周平等, 2015)。拉脊山构造带主要由早古生代火山-沉积岩、早古生代蛇绿岩、早古生代中酸性侵入岩及少量泥盆系沉积岩组成。地质填图和室内综合研究表明,拉脊山地区早古生代火山-沉积岩系为寒武-奥陶纪时期南祁连洋俯冲形成的沟-弧-盆系,蛇绿岩为早奥陶世(470~480Ma)拼贴至中祁连南缘的早寒武世-早奥陶世(ca.520Ma)SSZ-型蛇绿岩(Fu et al., 2018, 2019; Yan et al., 2019a, b)。早古生代中酸性侵入岩呈带状分布于拉脊山构造带南缘,以花岗岩和闪长岩为主,它们侵入于寒武纪蛇绿混杂岩中,年龄普遍集中在470~450Ma之间(钟林汐, 2015; 崔加伟等, 2016; 高亮, 2018; Cui et al., 2019)。

2 野外及岩相学特征

马场岩体位于拉脊山构造带南缘,出露面积约12km2,呈长条状、东西向展布,北侧侵入到上寒武统六道沟群中(图 2)。它主要由黑云母花岗岩和花岗闪长岩组成,其中花岗闪长岩含有丰富的镁铁质暗色微粒包体。镁铁质微粒包体呈次棱角状-椭圆状,大小从几厘米到几十厘米不等(大部分在10~40cm) 之间(图 3b-d)。包体与寄主岩之间呈过渡型-截然型接触界线,偶见长石斑晶切穿两者之间截然边界(图 3d)和反向脉(图 3c)现象。包体普遍具有斑状结构,发育长石斑晶(图 3d),但是样品之间斑晶含量变化显著。

图 2 研究区地质简图(据闫臻等, 2018修改) Fig. 2 Geological sketch map of the study area

① 闫臻等. 2018. 拉脊山昂思多蛇绿岩-增生杂岩1:25000专题地质图

图 3 马场岩体野外特征 (a)黑云母花岗岩;(b)花岗闪长岩和镁铁质微粒包体;(c)镁铁质微粒包体中发育反向脉;(d)镁铁质微粒包体中发育斜长石斑晶 Fig. 3 Field characteristics of the Machang pluton (a) biotite granite; (b) granodiorite and mafic microgranular enclave; (c) back-veining in mafic microgranular enclave; (d) plagioclase phenocryst in mafic microgranular enclave

黑云母花岗岩主要由斜长石(45%~50%)、石英(25%~30%)和黑云母(20%~25%)组成,另含少量绿帘石(2%~5%);斜长石粒径约为0.3~0.8mm,最大可达1.0mm,呈半自形-自形粒状,普遍发育聚片双晶和环带结构(图 3a图 4a)。

图 4 马场岩体正交偏光下岩相学特征 (a)黑云母花岗岩;(b)镁铁质微粒包体与花岗闪长岩呈截然接触;(c)斜长石环带;(d)角闪石嵌晶结构;(e)刀刃状黑云母;(f)针状磷灰石;(g)镁铁质微粒包体中的镁铁质凝块;(h)包体斜长石具有不平衡生长结构,如环带结构和筛状结构.矿物名称缩写:Qz-石英;Pl-斜长石;Bt-黑云母;Hb-角闪石;Ap-磷灰石 Fig. 4 Microscopic characteristics of the Machang pluton under orthogonal polarized light (a) biotite granite; (b) mafic microgranular enclave showing sharp contact with the host granodiorite; (c) zoned plagioclase; (d) poikilitic hornblende encloding plagioclase microcrystals; (e) blade-shaped biotite; (f) acicular apatite; (g) mafic clots in mafic microgranular enclave; (h) plagioclase with disequilibrium textures, such as zoning- and sieve-textures. Mineral abbreviations: Qz-quartz; Pl-plagioclase; Bt-biotite; Hb-hornblende; Ap-apatite

花岗闪长岩主要由斜长石(50%~55%)、角闪石(20%~25%)、石英(15%~20%)和黑云母(5%~10%)组成(图 4b-d)。斜长石多为半自形-自形,短柱状-长柱状,普遍发育聚片双晶和环带结构(图 4c)。角闪石多呈半自形粒状,少数呈现长条状,发育两组菱形解理,部分角闪石发育嵌晶结构,包裹斜长石和黑云母微晶(图 4d),局部可见刀刃状黑云母和针状磷灰石(图 4e, f)。

镁铁质微粒包体主要由角闪石(45%~50%)、斜长石(25%~30%)、黑云母(15%~20%)和石英(5%~10%)组成;与寄主岩相比,包体中暗色矿物含量更多,矿物颗粒更细,粒径约0.1~1mm,镜下可镁铁质凝块、斜长石不平衡生长结构和环带结构(图 4g, h)。

3 分析测试方法 3.1 LA-ICP-MS锆石U-Pb测年

为确定马场岩体的侵位年龄,本文对黑云母花岗岩(MC18029)、花岗闪长岩(MC18024)以及镁铁质微粒包体(MC 1904)进行LA-ICP-MS锆石U-Pb定年分析。碎样和单矿物挑选在河北省区域地质矿产调查研究所实验室完成,锆石制靶、透反射光及阴极发光(CL)图像工作在重庆宇劲科技有限公司完成。年龄测定工作在合肥工业大学资源与环境工程学院LA-ICP-MS实验室进行,所使用的激光剥蚀系统为Geolas 193,剥蚀孔径32μm,质谱仪为Agilent 7500a。具体工作参数详见Yan et al. (2015a)。测试过程中同位素比值使用的锆石标样91500(206Pb/238U=1065.4±0.6Ma; Wiedenbeck et al., 1995)矫正,同时使用锆石标样Plésovice(206Pb/238U=337Ma; Sláma et al., 2008)监控精度和准确度,微量元素测试使用NIST SRM 610玻璃作为外标,同时使用91Zr作为内标进行计算。数据处理和普通铅校正分别利用软件ICPMSDataCal 9.6(Liu et al., 2010b)和GomPbCorr#3.15(Andersen, 2002)完成,锆石U-Pb年龄谐和图绘制和加权平均年龄计算利用Isoplot 3软件完成(Ludwig, 2003)。详细的测试结果见表 1

表 1 马场岩体LA-ICP-MS锆石U-Pb定年结果 Table 1 Zircon U-Pb dating results obtained by the LA-ICP-MS technique of the Machang pluton
3.2 全岩主微量元素分析

主量元素分析工作在广州澳实矿物实验室进行,在温度为25℃,相对湿度50%的条件下采用ME-XRF26d X射线荧光光谱仪(PW2424)熔融法进行测试,检测限为0.01,相对误差小于5%。微量元素分析在中国地质科学院国家测试中心完成,微量稀土元素测试依据GB/T 14506.30—2010进行,测试仪器为等离子质谱仪(PE300D),检出限为0.05,精度优于10%。详细的测试结果见表 2

表 2 马场岩体主量元素(wt%)、微量和稀土元素(×10-6)测试结果 Table 2 Major (wt%) and trace element (×10-6) compositions of the Machang pluton
3.3 全岩Sr-Nd同位素

全岩Sr-Nd同位素分析在中国科学技术大学壳幔物质与环境重点实验室完成,具体分析步骤参照Yang et al.(2010, 2011, 2012),测试仪器为FinniganMaT262表面热电离质谱(TIMS),测试过程中Sr同位素采用(标准溶液NBS987)87Sr/86Sr=0.710269±18(2SD,n=6)校正,Nd同位素采用(标准溶液JNdi-1)143Nd/144Nd=0.512110±7(2SD,n=6)进行校正,详细测试结果见表 3

表 3 马场岩体Sr-Nd同位素组成 Table 3 Sr-Nd isotopic compositions of the Machang pluton
3.4 MC-ICP MS锆石Hf同位素分析

锆石原位Hf同位素分析在合肥工业大学资源与环境工程学院同位素实验室利用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成。该系统由Cetac Analyte HE激光剥蚀系统与ThermoFisher Neptune Plus MC-ICP-MS联合组成,激光束斑直径为55μm,频率8Hz,激光剥蚀过程中采用氦气(0.9L/min)和氩气(0.9L/min)的混合气体为载气。每5个测试点分析一个标准样作为监控样,标准样分别为Penglai(176Hf/177Hf=0.282915±0.000019)、Plešovice(176Hf/177Hf=0.282484±0.000007)和Qinghu(176Hf/177Hf=0.282997±0.000009),均接近参考值(Li et al., 2010, 2013; Sláma et al., 2008)。同质异位素干扰扣除以及仪器分馏校正采用Gu et al. (2019)提供的方法完成。该实验室质量监控样结果显示实验室长期准确度误差(相对于参考值)小于1ε单位,精确度误差小于2ε单位。对分析数据的离线处理采用LAZrnHf-Calculator@HFUT(Gu et al., 2019)完成。具体测试结果见表 4

表 4 马场岩体锆石Hf同位素分析结果 Table 4 LA-MC-ICP-MS zircon Hf-isotope data for the Machang pluton
4 分析结果 4.1 锆石U-Pb年龄

黑云母花岗岩锆石呈自形长柱状,长宽比约为2:1,发育清晰的岩浆震荡环带(图 5a)。19个测点中5组数据谐和度低于90%,其中13组谐和度大于95%的数据给出的206Pb/238U年龄为483~453Ma,加权平均年龄为467±7Ma(图 5b),代表黑云母花岗岩的结晶年龄。

图 5 马场岩体典型阴极发光图像与LA-ICP-MS锆石U-Pb谐和图 Fig. 5 Representative cathodoluminenscence images for zircon grains and LA-ICP-MS zircon U-Pb concordia diagrams for the Machang pluton

花岗闪长岩锆石多呈短柱状,少量呈长柱状,发育清晰震荡环带(图 5c)。16组谐和年龄数据的206Pb/238U年龄变化于477~450Ma之间,加权平均年龄为468±6Ma(图 5d)。镁铁质微粒包体中16组谐和年龄数据的206Pb/238U年龄介于490~452Ma之间,加权平均年龄为466±6Ma(图 5f),与寄主花岗闪长岩在误差范围内一致。

4.2 主微量元素特征

黑云母花岗岩具有高SiO2(67.93%~70.15%)、Na2O(4.47%~4.91%)含量和低的K2O(1.37%~1.68%)、全碱含量(6.10%~6.38%)及K2O/Na2O比值(0.28~0.37),属于亚碱性系列(图 6a)和中钾钙碱性系列(图 6b);Al2O3含量(16.26%~17.27%)较高,属于弱过铝质岩石(图 6c)。另外,样品具有低的MgO含量(0.78%~1.13%)和Mg#值(39.69~42.68),相似于地壳熔融实验熔体(图 6d图 7a)。稀土元素配分曲线以轻稀土元素相对重稀土元素显著富集的右倾配分型式为特征(图 8a),并显示有清晰的Eu正异常(Eu/Eu*=1.30~1.58)。在原始地幔标准化微量元素蛛网图中(图 8b),黑云母花岗岩相对富集Ba、K、Pb、Sr等大离子亲石元素和Zr、Hf,相对亏损Nb、Ta、Ti等。样品还具有低的Y(4.24×10-6~5.41×10-6)和Yb(0.35×10-6~0.45×10-6)以及较高的Sr(643×10-6~713×10-6)含量,因而,表现出高的Sr/Y(125~168)和(La/Yb)N(15.7~21.4)比值,可归属埃达克质岩(图 9)。

图 6 马场岩体主量元素特征 (a) TAS图解(Middlemost, 1994; 碱性/亚碱性分界线据Irvine and Baragar, 1971);(b) SiO2-K2O图解(Peccerillo and Taylor, 1976);(c) A/CNK-A/NK图解(Maniar and Piccoli, 1989);(d) SiO2-Mg#图解(据Stern and Kilian, 1996; Rapp et al., 1999修改) Fig. 6 Characteristics of major elements of the Machang pluton (a) TAS diagram (Middlemost, 1994; alkaline/subalkaline dividing line from Irvine and Baragar, 1971); (b) SiO2 vs. K2O diagram (Peccerillo and Taylor, 1976); (c) A/CNK vs. A/NK diagram (Maniar and Piccoli, 1989); (d) SiO2 vs. Mg# diagram (modified after Stern and Kilian, 1996; Rapp et al., 1999)

图 7 马场岩体代表性二元图解(a, 据Liu et al., 2010a修改) Fig. 7 Representative binary variation plots for Machang pluton (a, after Liu et al., 2010a)

图 8 马场岩体球粒陨石标准化稀土元素配分图(a, 标准化数值据Boynton, 1984)和原始地幔标准化微量元素蛛网图(b, 标准化数值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized rare earth element distribution patterns (a, normalization values after Boynton, 1984) and primitive mantle-normalized trace element spidergrams (b, normalization values after Sun and McDonough, 1989) of the Machang pluton

图 9 马场岩体Sr/Y-Y和(La/Yb)N-YbN图解(据Defant and Drummond, 1990) Fig. 9 Sr/Y vs. Y diagram and (La/Yb)N vs. YbN diagram of the Machang pluton (after Defant and Drummond, 1990)

花岗闪长岩相对于黑云母花岗岩,具有更低的SiO2(59.94%~61.62%)和更高的Fe2O3T(5.30%~6.13%)、MgO(3.31%~3.58%)、CaO(6.15%~6.37%)含量,及相似的低K2O/Na2O比值(0.29~0.34),也属于亚碱性系列和中钾钙碱性系列(图 6a, b)。它们虽含有相对更高的Al2O3含量(17.11%~17.48%),但是A/CNK却相对更低(0.90~0.93),属准铝质岩石(图 6c)。另外,样品还表现出更高的Mg#(52.94~55.60)和Cr(68.9×10-6~73.8×10-6)、Ni(2.64×10-6~26.6×10-6)含量,暗示存在幔源物质的加入。花岗闪长岩也显示出右倾的稀土元素配分模式,但是稀土元素含量尤其是重稀土元素含量显著更高(图 8a),轻重稀土分馏程度相对更低,且无明显Eu异常(Eu/Eu*=0.96~1.01)。因此,它们的Sr含量(683×10-6~708×10-6)虽接近于黑云母花岗岩,却给出明显更低的Sr/Y(38.9~41.1)和(La/Yb)N(6.36~8.76)比值,落入正常岛弧岩浆岩序列范围内(图 9)。微量元素蛛网图显示,花岗闪长岩富集Cs、K、Pb、Sr等大离子亲石元素,亏损Zr、Hf、Ti、Nb、Ta等高场强元素(图 8b)。

与寄主岩相比,镁铁质微粒包体具有更低的SiO2(49.12%~58.10%)、Al2O3(14.16%~15.06%)、全碱含量(3.75%~3.89%)和更高的Fe2O3T(7.89%~12.17%)、MgO(6.08%~9.01%)、CaO(7.43%~9.38%)含量;且样品间SiO2含量变化较大,这与样品中所含的长英质捕虏晶含量不等是一致的。镁铁质微粒包体具有与寄主岩相似的低的K2O/Na2O值(0.30~0.44),同属于亚碱性系列和中钾钙碱性系列(图 6a, b),但镁铁质微粒包体的A/CNK(0.63~0.75)更低,为准铝质岩石(图 6c)。另外,包体呈现出更高的Mg#(57.12~60.42)和Cr(271×10-6~424×10-6)、Ni(54.7×10-6~86.6×10-6)含量,显著高于地壳实验熔体,更接近于地幔熔体成分(图 6d图 7a)。镁铁质微粒包体还显示与寄主岩相似的右倾稀土元素配分模式,但稀土元素含量更高(图 8a),轻重稀土分馏程度更低,且具有明显的Eu负异常(Eu/Eu*=0.66~0.87)。原始地幔标准化微量元素蛛网图显示,镁铁质微粒包体相对富集Cs、K、Pb、Sr等大离子亲石元素,亏损Nb、Ta、Zr、Hf等高场强元素(图 8b)。

4.3 Sr-Nd同位素

不同岩性样品都具有轻微亏损的Sr-Nd同位素组成(图 10a),黑云母花岗岩和花岗闪长岩具有相似的(87Sr/86Sr)t比值,分别是0.7044~0.7046、0.7047~0.7048,但是黑云母花岗岩εNd(t)值(+2.05~+2.21)高于花岗闪长岩(+0.94~+1.01)。花岗闪长岩内镁铁质微粒包体的(87Sr/86Sr)tεNd(t)分别是0.7047和+1.08。

图 10 马场岩体(87Sr/86Sr)t-εNd(t) (t=467Ma)图解(a)和全岩εNd(t)与锆石εHf(t)关系图(b)(据Vervoort and Blichert-Toft, 1999) 图a中数据来源:Zhang et al., 2014; Yang et al., 2015, 2016; Fu et al., 2018; Cui et al., 2019 Fig. 10 (87Sr/86Sr)t vs. εNd(t) (t=467Ma) diagram (a) and whole rock εNd(t) vs. zircon εHf(t) (b) (after Vervoort and Blichert-Toft, 1999) of the Machang pluton Data resources in Fig. 10a: Zhang et al., 2014; Yang et al., 2015, 2016; Fu et al., 2018; Cui et al., 2019
4.4 锆石原位Lu-Hf同位素

本文分别对黑云母花岗岩、花岗闪长岩和镁铁质微粒包体进行了锆石原位Lu-Hf同位素测试。结果显示,黑云母花岗岩176Hf/177Hf初始值为0.282712~0.282770,εHf(t)为+8.2~+10.2;寄主花岗闪长岩和镁铁质微粒包体176Hf/177Hf初始值分别为0.282578~0.282704和0.282644~0.282707,二者具有相似的εHf(t)值,分别为+3.4~+7.9和+5.8~+8.0,但寄主花岗闪长岩εHf(t)变化范围更大。值得注意的是,黑云母花岗岩和花岗闪长岩都呈现出显著的Nd-Hf同位素解耦,位于地壳演化线之上(εHf(t)=1.34, εNd(t)=+2.82; Vervoort and Patchett, 1996; Vervoort and Blichert-Toft, 1999)(图 10b)。

5 岩石成因 5.1 黑云母花岗岩

马场黑云母花岗岩具有较低的A/CNK值(1.04~1.07)、锆石饱和温度(752~776℃,表 2)和P2O5含量(0.09%~0.13%),且P2O5与SiO2具有显著的负相关关系(图 7d),显示黑云母花岗岩具有I型花岗岩特征(Chappell and White, 1974, 2001)。此外,样品呈现出高的SiO2(67.93%~70.15%)、Sr含量(643×10-6~713×10-6),低MgO含量(0.78%~1.14%)、Mg#值(39.69~42.68)、Y(4.24×10-6~5.41×10-6)和Yb含量(0.35×10-6~0.45×10-6),具有埃达克岩的特征;较高的Sr/Y(125~168)和La/Yb(23.2~31.8),应为高Sr/Y埃达克岩。

埃达克岩的成因主要有:(1)下地壳或加厚下地壳岩石部分熔融(Atherton and Petford, 1993);(2)俯冲板片部分熔融(Defant and Drummond, 1990);(3)玄武质母岩浆的同化混染-分离结晶(AFC)(Castillo et al., 1999);(4)壳幔岩浆混合作用(Qin et al., 2010)。马场黑云母花岗岩具有明显的Eu正异常(Eu/Eu*=1.30~1.58)和高的Sr/Y(124~168)比值,Sr/Y与SiO2无明显相关关系(图 7h),暗示源区并无斜长石的残留,且在岩浆演化过程中也无斜长石的结晶分异作用。根据样品轻重稀土强烈的分异现象(图 8a),较低的HREE(2.55×10-6~3.34×10-6)以及较高的La/Yb(23.2~31.8)比值,指示源区的残留相矿物主要为石榴子石。此外,黑云母花岗岩显著的Nb-Ta负异常可能是由金红石或者角闪石等富钛矿物的残留所造成的(Xiong et al., 2011)。然而,通常情况下金红石的残留除了会导致Nb-Ta负异常外,还会造成Zr-Hf等元素的亏损,这与样品表现出的Zr-Hf正异常所不相符(Xiong et al., 2006)。另外,黑云母花岗岩Nb/Ta比值与SiO2的负相关性(图 7i),以及明显亏损的中稀土元素(图 8a),指示源区存在角闪石的残留。综上所述,黑云母花岗岩源区残留相受石榴子石和角闪石控制,缺乏金红石残留。由于金红石稳定域大多保持在1.5GPa以上(Hellman and Green, 1979; Klemme et al., 2002; Xiong et al., 2005),因此岩浆源区熔融时的压力应小于1.5GPa。根据玄武岩脱水熔融实验证明,石榴子石稳定域通常为1.0~1.2GPa(Wolf and Wyllie, 1994),进一步说明了黑云母花岗岩的源区熔融深度在30~40km范围内。

黑云母花岗岩具有高SiO2(67.93%~70.15%)、低MgO(0.78%~1.14%)含量和Mg#(40~43)以及较低的Cr(6.30×10-6~9.87×10-6)、Ni(2.39×10-6~3.12×10-6)含量,在野外露头未见镁铁质微粒包体,镜下也未观察到筛状结构、嵌晶结构以及针状磷灰石等岩浆混合的显微特征,暗示黑云母花岗岩可能不是幔源岩浆分异或者壳幔岩浆混合形成;主量、微量元素与SiO2之间普遍缺乏相关关系(图 7),结合La-La/Sm和La-La/Yb图解(图 11),进一步指示岩浆演化过程中没有明显的分离结晶作用。因此,黑云母花岗岩应该不是由玄武质母岩浆同化混染-分离结晶作用形成。

图 11 马场岩体La/Sm-La和La/Yb-La图解 Fig. 11 La/Sm vs. La diagram and La/Yb vs. La diagram of the Machang pluton

相对锆石Hf同位素组成,黑云母花岗岩具有较富集的全岩Sr-Nd同位素特征,指示黑云母花岗岩来源于陆壳重熔而不是板片熔融形成,因为洋壳熔融形成的岩石Sr-Nd-Hf同位素呈现同步亏损的特征,但马场黑云母花岗岩锆石εHf(t)值(+8.2~+10.2)显著高于全岩εNd(t)值(+1.97~+2.14),尽管沉积物的加入也可以导致熔体Nd同位素值降低,但沉积物加入的同时必然会使Hf同位素富集,这显然与黑云母花岗岩较亏损的锆石Hf同位素组成特征相矛盾。另外,马场黑云母花岗岩较低的Th(2.22×10-6~3.00×10-6)和U(0.32×10-6~0.86×10-6)含量也无法用沉积物加入来解释,因此,黑云母花岗岩只可能是陆壳重熔形成。陆壳重熔包括古老陆壳(前寒武基底)重熔和新生陆壳重熔。而马场黑云母花岗岩Sr-Nd-Hf同位素明显不同于化隆岩群前寒武基底岩石的Sr-Nd-Hf同位素组成(图 10a; Yan et al., 2015b; Li et al., 2018),说明黑云母花岗岩并不是古老陆壳重熔形成。黑云母花岗岩具有明显的Nd-Hf同位素解耦特征(图 10b),造成Nd-Hf同位素解耦的原因一般有两种,一是锆石效应,即部分熔融过程中锆石残留导致体系中εHf(t)值升高,但这种情况下岩石中通常会出现继承锆石,而马场黑云母花岗岩中并未出现继承锆石,所以Nd-Hf同位素解耦不是锆石效应导致的。二是继承自源岩的成分特征,即源岩本身就具有Nd-Hf解耦现象。马场黑云母花岗岩具有与拉脊山早-中寒武世SSZ型蛇绿岩以及寒武纪-奥陶纪低钾镁铁质岩石等新生岛弧岩石相似的Sr-Nd同位素特征(图 10a)。研究显示,部分SSZ型蛇绿岩和新生的岛弧岩石来源于受俯冲流体交代的地幔源区(Fu et al., 2018; Wang et al., 2018; Gao et al., 2018a, b),因此,马场黑云母花岗岩源岩可能是起源自遭受俯冲洋壳释放流体交代的新生岩石圈地幔部分熔融形成的弧岩浆岩。这与黑云母花岗岩明显的Nd-Hf同位素解耦现象相一致,因为流体中Hf含量通常较低,发生交代作用时几乎不会引起新生地幔Hf同位素变化,但是会导致Sr-Nd同位素组成富集特征。所以,本文认为黑云母花岗岩为新生陆壳重熔的产物,源岩可能是遭受俯冲洋壳释放流体交代的新生岩石圈地幔部分熔融形成的弧岩浆岩。

5.2 花岗闪长岩及其镁铁质微粒包体

马场花岗闪长岩中发育大量镁铁质微粒包体,包体与寄主岩之间具有显著的岩浆混合作用特征:(1)包体在寄主岩中的随机分布,大小不等,呈次棱角状-椭圆状,与寄主岩之间界限呈过渡-截然接触,部分包体发育网状脉和反向脉(图 3c),普遍具有斑状结构,发育斜长石斑晶,大颗粒的斜长石斑晶切过包体和寄主岩边界,且不同样品间长石斑晶含量差距显著(图 3d)。(2)镁铁质微粒包体与寄主岩具有一致的矿物组合,但包体中暗色矿物(角闪石和黑云母)显然更多,且矿物粒度较寄主岩更细。(3)包体和寄主岩中斜长石具有不平衡生长结构(环带结构和筛状结构)、发育刀刃状黑云母和针状磷灰石(图 4e, f),斜长石斑晶周围堆聚大量黑云母和角闪石的集合体(镁铁质凝块)(图 4g),寄主岩中发育大量角闪石嵌晶结构(图 4d)。(4)镁铁质微粒包体与寄主岩形成于同一时代(468~466Ma),且均无继承锆石。(5)包体与花岗闪长岩的元素及元素比率之间具有良好的曲线分布及明显的线性关系,MgO-CaO/MgO、MgO-Al2O3/MgO之间呈曲线分布,Al2O3/CaO-Na2O/CaO之间亦呈良好的线性关系(图 12a-c)(Langmuir et al., 1978),符合岩浆混合的演化趋势;在FeOT-MgO图(图 12d)中,数据点均沿岩浆混合趋势线分布。(6)包体与寄主岩呈现出相似的右倾稀土元素配分模式,同时富集Cs、K、Pb、Sr等大离子亲石元素,亏损Zr、Hf、Nb、Ta、Ti等高场强元素。(7)包体与寄主岩均表现出相似的轻微亏损的Sr-Nd同位素组成,包体(87Sr/86Sr)tεNd(t)分别为0.7047和+1.02,寄主岩(87Sr/86Sr)tεNd(t)为0.7047~0.7048和+0.87~+0.95,二者在Sr-Nd同位素上具有明显重叠(图 10a)。以上证据表明,马场花岗闪长岩中发育的镁铁质微粒包体是岩浆混合作用成因的。

图 12 马场岩体主微量元素比值协变关系图(d, 据Zorpi et al., 1989) Fig. 12 Major and trace elements correlation diagrams of the Machang pluton (d, after Zorpi et al., 1989)

镁铁质微粒包体具有较低的SiO2(49.72%~58.18%)、全碱(3.80%~3.92%)含量以及较高的MgO(6.15%~9.12%)、Mg#(57~60)、Cr(271×10-6~424×10-6)、Ni(54.7×10-6~86.6×10-6)含量,表明包体中含有大量镁铁质岩浆组分,而镁铁质岩浆通常是玄武质下地壳或地幔熔融产生。本文研究的镁铁质包体的MgO和Mg#明显高于1~4GPa下的玄武质下地壳实验熔体(图 5d图 6a),因此,排除下地壳来源的可能。同时,Nb/Ta(13.53~26.83)值也显著高于下地壳熔体(Nb/Ta=8.3; Sun and McDonough, 1989),进一步说明马场镁铁质微粒包体并非玄武质下地壳熔融形成,而是来源于地幔源区。另一方面,镁铁质微粒包体具有明显亏损高场强元素(Nb、Ta、Ti),富集大离子亲石元素(Cs、Rb、Ba)的特征,表明其岩浆源区可能有地壳组分的加入。前人研究表明,地壳物质加入到幔源岩浆的方式主要有两种:地壳混染和源区混合(包括俯冲交代)(Zheng, 2012)。然而,在微量元素蛛网图上,镁铁质微粒包体具有Zr、Hf负异常,暗示其地球化学特征并未受到地壳混染,而岩浆混合作用的改造也不明显,其地球化学特征主要继承于地幔源区特征(Zhao and Zhou, 2009),因此,镁铁质包体表现出轻微亏损的Sr-Nd同位素特征和明显的Nd-Hf同位素解耦现象(图 10b)说明其地幔源区遭受俯冲板片起源的流体交代,即镁铁质岩浆来源于受俯冲洋壳释放流体交代的新生岩石圈地幔部分熔融。

与镁铁质微粒包体相比,寄主花岗闪长岩具有更高的SiO2(59.94%~61.62%)和较低的Cr(68.9×10-6~73.8×10-6)、Ni(2.64×10-6~26.6×10-6)含量,富集Cs、K、Pb、Sr等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,右倾的稀土元素配分图显示富集LREE,亏损HREE,具有明显弧岩浆特征;较玄武质地壳熔体更高的MgO含量(3.33%~3.60%)和Mg#值(52.94~55.60)(图 6d图 7a),说明花岗闪长岩不是由单一岩浆结晶分异形成,而是由幔源岩浆与壳源长英质岩浆的共同参与而成。

马场岩体中镁铁质微粒包体、花岗闪长岩和黑云母花岗岩之间的主量元素除P2O5和Al2O3外,K2O、Na2O、MgO、CaO、FeOT等均与SiO2呈线性相关关系(图 7),表明它们可能具有一定的成因联系。花岗闪长岩与黑云母花岗岩均亏损高场强元素(Nb、Ta、Ti),富集大离子亲石元素(K、Pb、Sr),而且有着近乎一致的Sr含量,分别为683×10-6~708×10-6和643×10-6~713×10-6,但花岗闪长岩Sr/Y(38.9~41.1)相对更低,且亏损Zr-Hf。除此之外,Sr-Nd同位素二者也具有显著的相似性(图 10a),这是由于壳源岩浆的Nd元素含量明显高于幔源岩浆。由此可见,在岩浆混合程度较低时,混合岩浆的Nd同位素组成主要继承自长英质端元,故而含包体的花岗闪长岩与不含包体的黑云母花岗岩表现出相近的Nd同位素特征。结合花岗闪长岩与黑云母花岗岩具有相一致的结晶年龄、相似的地球化学特征以及同位素组成,说明花岗闪长岩的酸性端元岩浆与黑云母花岗岩的母岩浆具有相同的源区,均来源于新生下地壳部分熔融。而二者之所以表现出不同的Sr/Y比值和Zr-Hf,很可能与花岗闪长岩中发育镁铁质微粒包体相关。

如上所述,若花岗闪长岩确实为形成镁铁质微粒包体的幔源岩浆与黑云母花岗岩的母岩浆混合形成,那么二者以一定的比例混合必然能得到与花岗闪长岩相似的地球化学组成。由于岩浆混合过程中同位素均一化的速率和程度远远大于主量元素(Lesher, 1990; Liu et al., 2013),因此,本文选择主量元素来模拟二者的混合过程。由于分离结晶作用并不是控制黑云母花岗岩成分的主要因素(图 11a, b),黑云母花岗岩的组成更多受控于源区成分,故本文选择黑云母花岗岩中SiO2(70.15%)含量最高的样品(MC18033)作为酸性端元,镁铁质微粒包体中SiO2(49.12%)含量最低的样品(MC18026-3)作为基性端元。再从花岗闪长岩中选择一个样品(MC18021)作为混合后的端元,根据公式Cmi-C2i=x(C1i-C2i)(C1i代表酸性端元中元素i的浓度,C2i代表基性端元中元素i的浓度,Cmi代表混合后的岩石中元素i的浓度)做岩浆混合模拟,得出岩浆混合的线性回归方程(y=0.5892x+7E-16,R2=0.9781),结果显示呈线性岩浆混合模型(图 13; Fourcade and Allegre, 1981; Słaby and Martin, 2008),即花岗闪长岩形成过程中酸性端元的贡献为58.9%,基性端元的贡献为41.1%。显然,岩浆混合模拟支持花岗闪长岩是由受俯冲流体交代地幔起源的熔体与新生下地壳重熔熔体经岩浆混合形成。

图 13 马场岩体岩浆混合模拟计算图解(据Fourcade and Allegre, 1981; Słaby and Martin, 2008) Fig. 13 C1-C2 vs. Cm-C2 diagram of the Machang pluton (after Fourcade and Allegre, 1981; Słaby and Martin, 2008)
5.3 岩浆混合作用对花岗岩成分多样性的控制

拉脊山蛇绿混杂带和侵入其中的早古生代弧岩浆岩表明该地区存在大洋俯冲作用(Yan et al., 2015b; 钟林汐, 2015; Fu et al., 2018; Cui et al., 2019),前人研究表明,南祁连洋初始俯冲时间可延伸至530Ma(Fu et al., 2019; Song et al., 2017),洋-陆俯冲转换事件发生在晚奥陶世(ca. 450~440Ma)(Yan et al., 2019a; Sun et al., 2020)。马场岩体形成于468~466Ma,镁铁质微粒包体明显富集Cs、Rb、Ba等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,表现出明显弧型地球化学特征,这说明镁铁质微粒包体应该是形成于弧背景下;同时,黑云母花岗岩和花岗闪长岩明显富集轻稀土和大离子亲石元素,亏损重稀土和高场强元素,具有弧花岗岩性质,暗示马场岩体形成于俯冲环境,这与南祁连洋于寒武纪-奥陶纪处于持续俯冲状态相一致。

俯冲带是壳-幔物质和能量交换的重要场所,大洋俯冲过程中幔源岩浆底侵作用不仅为地壳熔融提供热源,也为岩浆混合作用提供了物质基础,是导致花岗质岩石成分多样性的重要原因(王德滋, 2004; 齐有强等, 2008)。根据Sr/Y值,马场岩体可分为两类,一类具有高Sr/Y(125~168)埃达克质特征(黑云母花岗岩),另一类具有低Sr/Y(38.9~41.1)特征(花岗闪长岩),并且发育镁铁质微粒包体。造成这种高Sr/Y岩石与低Sr/Y岩石共存的原因可以有以下三种解释:(1)黑云母花岗岩与花岗闪长岩来自不同性质的岩浆源区;(2)岩浆混合作用;(3)副矿物分异。然而,上文已论述黑云母花岗岩与花岗闪长岩来自相同的源区,母岩浆均为新生下地壳部分熔融形成。而如果是副矿物的分异,必然只能是从低Sr/Y值向高Sr/Y值演化,即花岗闪长岩中副矿物分异形成黑云母花岗岩,这种分异将会使黑云母花岗岩中大离子亲石元素较花岗闪长岩更为富集,但显然马场黑云母花岗岩与花岗闪长岩具有一致的Cs、Sr、Pb含量(图 8b),因此,这种高Sr/Y岩石与低Sr/Y岩石共存的现象不是副矿物分异的结果。岩浆混合作用二端元模拟证明花岗闪长岩成分除继承自源区外,还受到幔源岩浆注入的改造。在岩浆混合过程中,成分交换的速率通常是同位素最快,微量元素次之,主量元素迁移最慢。所以在基性岩浆注入到壳源中酸性岩浆的过程中,同位素的快速均一化导致镁铁质微粒包体与寄主花岗闪长岩最终具有一致的同位素组成。而长英质岩浆与幔源岩浆的微量元素交换造成了花岗闪长岩不同于黑云母花岗岩的Sr/Y特征。因此,本文认为岩浆混合作用是造成马场岩体花岗质岩石成分多样性的主要因素。

综上所述,拉脊山构造带马场岩体形成于早古生代南祁连洋俯冲背景下,俯冲过程中流体交代岩石圈地幔并导致其发生部分熔融,部分熔融产生的的幔源岩浆底侵到上覆新生下地壳,加热并导致新生下地壳发生重熔,从而形成长英质岩浆,这些长英质岩浆与幔源岩浆不同程度混合形成花岗闪长岩。

6 结论

(1) 拉脊山构造带东南缘马场岩体中黑云母花岗岩、花岗闪长岩及其镁铁质微粒包体形成于468~466Ma,均为早古生代岩浆活动的产物。

(2) 黑云母花岗岩表现出高Sr/Y埃达克质岩石特征,其源岩可能为新生的寒武纪岛弧岩石;花岗闪长岩由壳-幔岩浆混合作用形成。岩浆混合作用是造成马场岩体高Sr/Y与低Sr/Y岩石共存的主要因素,也是造成拉脊山地区花岗质岩石成分多样性的重要方式。

(3) 马场岩体形成于早古生代南祁连洋俯冲过程中,俯冲流体交代岩石圈地幔并导致其发生部分熔融,部分熔融产生的幔源岩浆底侵并加热上覆新生下地壳,使其发生重熔形成长英质岩浆,这些长英质岩浆与幔源岩浆不同程度混合形成花岗闪长岩。

致谢      中国科学技术大学戴立群教授和尹壮壮博士在Sr-Nd同位素测试,合肥工业大学李全忠、汪方跃副研究员和顾海欧博士在锆石U-Pb年龄和Hf同位素测试工作中的帮助,在此表示感谢。感谢两位审稿人和本刊编辑对本文提出的宝贵意见!

谨以此文缅怀尊敬的李继亮研究员生前给予的悉心野外指导和帮助,令我终生受益、难忘!

参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79 DOI:10.1016/S0009-2541(02)00195-X
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Boynton WV. 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114
Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Geology and Mineral Resource of Qinghai Province. Beijing: Geological Publishing House, 1-752 (in Chinese)
Castillo PR, Janney PE and Solidum RU. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33-51 DOI:10.1007/s004100050467
Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174
Chappell BW, White AJR and Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28(6): 1111-1138 DOI:10.1093/petrology/28.6.1111
Chappell BW and White AJR. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489-499 DOI:10.1046/j.1440-0952.2001.00882.x
Cui JW, Zheng YY, Sun X, Wu S, Gao SB, Tian LM, Sun JY and Yang C. 2016. Origin of granodiorite and mafic microgranular enclave in Saizhisi, Qinghai Province: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic constraints. Earth Science, 41(7): 1156-1170 (in Chinese with English abstract)
Cui JW, Tian LM, Sun JY and Yang C. 2019. Geochronology and geochemistry of Early Palaeozoic intrusive rocks in the Lajishan area of the eastern South Qilian Belt, Tibetan Plateau: Implications for the tectonic evolution of South Qilian. Geological Journal, 54(6): 3404-3420 DOI:10.1002/gj.3327
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Didier J. 1973. Granites and their enclaves. The Bearing of Enclaves on the Origin of Granites. Amsterdam: Elsevier, 393
Didier J and Barbarin B. 1991. Enclaves and Granite Petrology. Amsterdam: Elsevier, 625
Feng YM, Cao XD, Zhang EP, Hu YX, Pan XP, Yang JL, Jia QZ and Li WM. 2002. Fragment, Process and Mechanism of the Western Qinling Orogenic Belt. Xi'an: Xi'an Cartographic Press, 263 (in Chinese)
Fourcade S and Allegre CJ. 1981. Trace elements behavior in granite genesis: A case study the calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contributions to Mineralogy and Petrology, 76(2): 177-195 DOI:10.1007/BF00371958
Fu CL, Yan Z, Guo XQ, Niu ML, Xia WJ, Wang ZQ and Li JL. 2014. Geochemistry and SHRIMP zircon U-Pb age of diabases in the Lajishankou ophiolitic mélange, South Qilian terrane. Acta Petrologica Sinica, 30(6): 1695-1706 (in Chinese with English abstract)
Fu CL, Yan Z, Wang ZQ, Buckman S, Aitchison JC, Niu ML, Cao B, Guo XQ, Li XC, Li YS and Li JL. 2018. Lajishankou ophiolite complex: Implications for Paleozoic multiple accretionary and collisional events in the South Qilian belt. Tectonics, 37(5): 1321-1346 DOI:10.1029/2017TC004740
Fu CL, Yan Z, Wang ZQ, Niu ML, Guo XQ, Yu LJ and Li JL. 2018. Texture and composition of the Lajishankou accretionary wedge of the South Qilian belt, NW China. Acta Petrologica Sinica, 34(7): 2049-2064 (in Chinese with English abstract)
Fu CL, Yan Z, Aitchison JC, Guo XQ and Xia WJ. 2019. Abyssal and suprasubduction peridotites in the Lajishan ophiolite belt: Implication for initial subduction of the Proto-Tethyan Ocean. The Journal of Geology, 127(4): 393-410 DOI:10.1086/703488
Gao L. 2018. The discovery and geological significance of adakites in the Lajishan labyrinthine belt in Qinghai. Master Degree Thesis. Qinghai: Qinghai University, 1-51 (in Chinese with English summary)
Gao Z, Zhang HF, Yang H, Pan FB, Luo BJ, Guo L, Xu WC, Tao L, Zhang LQ and Wu J. 2018a. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China). Lithos, 310-311: 255-268 DOI:10.1016/j.lithos.2018.04.002
Gao Z, Zhang HF, Yang H, Luo BJ, Guo L, Xu WC and Pan FB. 2018b. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development. Journal of Asian Earth Sciences, 158: 227-239 DOI:10.1016/j.jseaes.2018.02.022
Gu HO, Sun H, Wang FY, Ge C and Zhou TF. 2019. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios. Journal of Analytical Atomic Spectrometry, 34(6): 1223-1232 DOI:10.1039/C9JA00024K
Guo ZP, Li WY, Zhang ZW, Gao YB, Zhang JW, Li K, Kong HL and Qian B. 2015. Petrogenisis of Lumanshan granites in Hualong area of southern Qilian Mountain: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Geology in China, 42(4): 864-880 (in Chinese with English abstract)
Hellman PL and Green TH. 1979. The role of sphene as an accessory phase in the high-pressure partial melting of hydrous mafic compositions. Earth and Planetary Science Letters, 42(2): 191-201 DOI:10.1016/0012-821X(79)90024-4
Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548 DOI:10.1139/e71-055
Klemme S, Blundy JD and Wood BJ. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109-3123 DOI:10.1016/S0016-7037(02)00859-1
Langmuir CH, Vocke RD Jr, Hanson GN and Hart SR. 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters, 37(3): 380-392 DOI:10.1016/0012-821X(78)90053-5
Lesher CE. 1990. Decoupling of chemical and isotopic exchange during magma mixing. Nature, 344(6263): 235-237 DOI:10.1038/344235a0
Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134 DOI:10.1111/j.1751-908X.2010.00036.x
Li XH, Tang GQ, Gong B, Yang YH, Hou KJ, Hu ZC, Li QL, Liu Y and Li WX. 2013. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes. Chinese Science Bulletin, 58(36): 4647-4654 DOI:10.1007/s11434-013-5932-x
Li YL, Tong X, Zhu YH, Lin JW, Zheng JP and Brouwer FM. 2018. Tectonic affinity and evolution of the Precambrian Qilian block: Insights from petrology, geochemistry and geochronology of the Hualong Group in the Qilian Orogen, NW China. Precambrian Research, 315: 179-200 DOI:10.1016/j.precamres.2018.07.025
Liu L, Qiu JS and Li Z. 2013. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China: Implications for magma mixing and crust-mantle interaction. Lithos, 160-161: 145-163 DOI:10.1016/j.lithos.2012.12.005
Liu SA, Li SG, He YS and Huang F. 2010a. Geochemical contrasts between Early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178 DOI:10.1016/j.gca.2010.09.003
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Ludwig KR. 2003. User's Manual for Isoplot/EX, Version 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 1-70
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Review, 37(3-4): 215-224 DOI:10.1016/0012-8252(94)90029-9
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Qi YQ, Hu RZ, Liu S and Tian JJ. 2008. Review on magma mixing and mingling. Bulletin of Mineralogy, Petrology and Geochemistry, 27(4): 409-416 (in Chinese with English abstract)
Qin JF, Lai SC, Diwu CR, Ju YJ and Li YF. 2010. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, northwestern margin of the South China block: Geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences. Contributions to Mineralogy and Petrology, 159(3): 389-409 DOI:10.1007/s00410-009-0433-2
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0
Słaby E and Martin H. 2008. Mafic and felsic magma interaction in granites: The Hercynian Karkonosze pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353-391
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Song SG, Zhang GB, Zhang C, Zhang LF and Wei CJ. 2013. Dynamic process of oceanic subduction and continental collision: Petrological constraints of HP-UHP belts in Qilian-Qaidam, the northern Tibetan Plateau. Chinese Science Bulletin, 58(23): 2240-2245 (in Chinese) DOI:10.1360/972013-586
Song SG, Yang LM, Zhang YQ, Niu YN, Wang C, Su L and Gao YL. 2017. Qi-Qin Accretionary Belt in Central China Orogen: Accretion by trench jam of oceanic plateau and formation of intra-oceanic arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 62(15): 1035-1038 DOI:10.1016/j.scib.2017.07.009
Song SG, Wu ZZ, Yang LM, Su L, Xia XH, Wang C, Dong JL, Zhou CA and Bi HZ. 2019. Ophiolite belts and evolution of the Proto-Tethys Ocean in the Qilian Orogen. Acta Petrologica Sinica, 35(10): 2948-2970 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.10.02
Stern CR and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281 DOI:10.1007/s004100050155
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD and Norry MJ (eds. ). Magmatism in Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sun Y, Niu ML, Li XC, Wu Q, Cai QR, Yuan XY and Li C. 2020. Petrogenesis and tectonic implications from the Ayishan Group in the South Qilian Belt, NW China. Geological Journal, 55(10): 6860-6877 DOI:10.1002/gj.3851
Tao L, Zhang HF, Gao Z, Yang H, Zhang LQ, Guo L and Pan FB. 2018a. Across-arc geochemical and Sr-Nd-Hf isotopic variations of mafic intrusive rocks at the southern Central Qilian block, China. Gondwana Research, 59: 108-125 DOI:10.1016/j.gr.2018.03.014
Tao L, Zhang HF, Yang H, Gao Z, Pan FB and Luo BJ. 2018b. Initial back-arc extension: Evidence from petrogenesis of early Paleozoic MORB-like gabbro at the southern Central Qilian block, NW China. Lithos, 322: 166-178 DOI:10.1016/j.lithos.2018.10.015
Venezky DY and Rutherford MJ. 1997. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2ka eruption at Mount Rainier. Journal of Geophysical Research: Solid Earth, 102(B9): 20069-20086 DOI:10.1029/97JB01590
Vernon RH. 1984. Microgranitoid enclaves in granites: Globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967): 438-439 DOI:10.1038/309438a0
Vervoort JD and Patchett PJ. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733 DOI:10.1016/0016-7037(96)00201-3
Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556 DOI:10.1016/S0016-7037(98)00274-9
Wang DZ. 2004. The study of granitic rocks in South China: Looking back and forward. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English abstract)
Wang T, Wang ZQ, Yan Z, Ma ZH, He SF, Fu CL and Wang DS. 2016. Geochronological and geochemical evidence of amphibolite from the Hualong Group, Northwest China: Implication for the Early Paleozoic accretionary tectonics of the Central Qilian belt. Lithos, 248-251: 12-21 DOI:10.1016/j.lithos.2016.01.012
Wang T, Wang DS, Wang ZQ, Lu HF, Wang MQ and Santosh M. 2018. Geochemical and geochronological study of Early Paleozoic volcanic rocks from the Lajishan accretionary complex, NW China: Petrogenesis and tectonic implications. Lithos, 314-315: 323-336 DOI:10.1016/j.lithos.2018.06.014
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304 DOI:10.1016/0012-821X(83)90211-X
Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19(1): 1-23 DOI:10.1111/j.1751-908X.1995.tb00147.x
Wolf MB and Wyllie PJ. 1994. Dehydration-melting of amphibolite at 10kbar: The effects of temperature and time. Contributions to Mineralogy and Petrology, 115(4): 369-383 DOI:10.1007/BF00320972
Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359 DOI:10.1016/j.chemgeo.2005.01.014
Xiong XL, Xia B, Xu JF, Niu HC and Xiao WS. 2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology, 229(4): 273-292 DOI:10.1016/j.chemgeo.2005.11.008
Xiong XL, Liu XC, Zhu ZM, Li Y, Xiao WS, Song MS, Zhang S and Wu JH. 2011. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Science China (Earth Sciences), 54(6): 858-870 DOI:10.1007/s11430-010-4167-9
Yan J, Liu JM, Li QZ, Xing GF, Liu XQ, Xie JC, Chu XQ and Chen ZH. 2015a. In situ zircon Hf-O isotopic analyses of late Mesozoic magmatic rocks in the Lower Yangtze River Belt, central eastern China: Implications for petrogenesis and geodynamic evolution. Lithos, 227: 57-76 DOI:10.1016/j.lithos.2015.03.013
Yan Z, Aitchison J, Fu CL, Guo XQ, Niu ML, Xia WJ and Li JL. 2015b. Hualong Complex, South Qilian terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin. Precambrian Research, 266: 65-85 DOI:10.1016/j.precamres.2015.05.001
Yan Z, Fu CL, Aitchison JC, Buckman S, Niu ML, Cao B, Sun Y, Guo XQ, Wang ZQ and Zhou RJ. 2019a. Retro-foreland basin development in response to Proto-Tethyan Ocean closure, NE Tibet Plateau. Tectonics, 38(12): 4229-4248 DOI:10.1029/2019TC005560
Yan Z, Fu CL, Aitchison JC, Niu ML, Buckman S and Cao B. 2019b. Early Cambrian Muli arc-ophiolite complex: A relic of the Proto-Tethys oceanic lithosphere in the Qilian Orogen, NW China. International Journal of Earth Sciences, 108(4): 1147-1164 DOI:10.1007/s00531-019-01699-6
Yang H, Zhang HF, Luo BJ, Zhang J, Xiong ZL, Guo L and Pan FB. 2015. Early Paleozoic intrusive rocks from the eastern Qilian orogen, NE Tibetan Plateau: Petrogenesis and tectonic significance. Lithos, 224-225: 13-31 DOI:10.1016/j.lithos.2015.02.020
Yang H, Zhang HF, Luo BJ, Gao Z, Guo L and Xu WC. 2016. Generation of peraluminous granitic magma in a post-collisional setting: A case study from the eastern Qilian orogen, NE Tibetan Plateau. Gondwana Research, 36: 28-45 DOI:10.1016/j.gr.2016.04.006
Yang YH, Zhang HF, Chu ZY, Xie LW and Wu FY. 2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126 DOI:10.1016/j.ijms.2009.12.011
Yang YH, Chu ZY, Wu FY, Xie LW and Yang JH. 2011. Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(6): 1237-1244 DOI:10.1039/c1ja00001b
Yang YH, Wu FY, Liu ZC, Chu ZY, Xie LW and Yang JH. 2012. Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. Journal of Analytical Atomic Spectrometry, 27(3): 516-522 DOI:10.1039/c2ja10333h
Yong Y, Xiao WJ, Yuan C, Yan Z and Li JL. 2008. Geochronology and geochemistry of Paleozoic granitic plutons from the eastern Central Qilian and their tectonic implications. Acta Petrologica Sinica, 24(4): 855-866 (in Chinese with English abstract)
Zhang ZW. 2014. The geological and geochemical characteristics of mafic-ultramafic intrusions in the Hualong area, southern Qilian mountains, and its Ni-Cu mineralization. Ph. D. Dissertation. Xi'an: Chang'an University, 1-178 (in Chinese with English summary)
Zhang ZW, Li WY, Gao YB, Li CS, Ripley EM and Kamo S. 2014. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions. Mineralium Deposita, 49(2): 279-292 DOI:10.1007/s00126-013-0488-x
Zhao JH and Zhou MF. 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos, 107(3-4): 152-168 DOI:10.1016/j.lithos.2008.09.017
Zheng YF. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5-48
Zhong LX. 2015. Geochemical characteristics, diagenetic age and tectonic significance of the intermediate-felsic intrusive rocks in the Qinghai Lajishan mountains. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-65 (in Chinese with English summary)
Zorpi MJ, Coulon C, Orsini JB and Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315-329
崔加伟, 郑有业, 孙祥, 吴松, 高顺宝, 田立明, 孙君一, 杨超. 2016. 青海省赛支寺花岗闪长岩及其暗色包体成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约. 地球科学, 41(7): 1156-1170.
冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2002. 西秦岭造山带结构造山过程及动力学. 西安: 西安地图出版社, 263.
付长垒, 闫臻, 郭现轻, 牛漫兰, 夏文静, 王宗起, 李继亮. 2014. 拉脊山口蛇绿混杂岩中辉绿岩的地球化学特征及SHRIMP锆石U-Pb年龄. 岩石学报, 30(6): 1695-1706.
付长垒, 闫臻, 王宗起, 牛漫兰, 郭现轻, 俞良军, 李继亮. 2018. 南祁连拉脊山口增生楔的结构与组成特征. 岩石学报, 34(7): 2049-2064.
高亮. 2018. 青海拉脊山混杂带埃达克岩的发现及其地质意义. 硕士学位论文. 青海: 青海大学, 1-51
郭周平, 李文渊, 张照伟, 高永宝, 张江伟, 李侃, 孔会磊, 钱兵. 2015. 南祁连化隆地区鲁满山花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 中国地质, 42(4): 864-880. DOI:10.3969/j.issn.1000-3657.2015.04.006
齐有强, 胡瑞忠, 刘燊, 田建吉. 2008. 岩浆混合作用研究综述. 矿物岩石地球化学通报, 27(4): 409-416. DOI:10.3969/j.issn.1007-2802.2008.04.012
青海省地质矿产局. 1991. 青海省区域地质志. 北京: 地质出版社, 1-752.
宋述光, 张贵宾, 张聪, 张立飞, 魏春景. 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连-柴北缘高压-超高压变质带的岩石学制约. 科学通报, 58(23): 2240-2245.
宋述光, 吴珍珠, 杨立明, 苏犁, 夏小洪, 王潮, 董金龙, 周辰傲, 毕衡哲. 2019. 祁连山蛇绿岩带和原特提斯洋演化. 岩石学报, 35(10): 2948-2970. DOI:10.18654/1000-0569/2019.10.02
王德滋. 2004. 华南花岗岩研究的回顾与展望. 高校地质学报, 10(3): 305-314. DOI:10.3969/j.issn.1006-7493.2004.03.001
雍拥, 肖文交, 袁超, 闫臻, 李继亮. 2008. 中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义. 岩石学报, 24(4): 855-866.
张照伟. 2014. 南祁连化隆地区镁铁-超镁铁质侵入岩地质、地球化学特征与铜镍成矿. 博士学位论文. 西安: 长安大学, 1-178
钟林汐. 2015. 青海拉脊山中酸性侵入岩的地球化学特征、成岩时代及构造意义. 硕士学位论文. 北京: 中国地质大学(北京), 1-65