岩石学报  2021, Vol. 37 Issue (8): 2339-2363, doi: 10.18654/1000-0569/2021.08.06   PDF    
土耳其西部新生代斑岩成矿岩浆氧逸度-挥发份元素组成演化特征——来自锆石和磷灰石组成约束
赵俊兴1,2, 苏本勋1,2,3, UYSAL İbrahim4, AYDIN Faruk4, 肖燕2,5, SEN Cuneyt4, 回凯旋1,2,3, 秦克章1,2,3     
1. 中国科学院矿产资源研究重点实验室, 中国科学院地质与地球物理研究所, 北京 100029;
2. 中国科学院地球科学研究院, 北京 100029;
3. 中国科学院大学地球与行星科学学院, 北京 100049;
4. Department of Geological Engineering, Karadeniz Technical University, Trabzon 61080;
5. 岩石圈演化国家重点实验室, 中国科学院地质与地球物理研究所, 北京 100029
摘要: 特提斯成矿域中段的土耳其西部集中产出了与俯冲、碰撞-后碰撞、伸展动力学背景有关的斑岩型铜、钼、金矿床。前人已完成了针对这些斑岩型矿床构造背景的大量研究工作,但对于区内不同构造背景下斑岩型矿床的成矿岩浆源区性质、成矿元素-挥发分含量和成矿物质演化关系尚未有系统研究。而这些研究将对认识中特提斯构造域晚白垩世以来在新特提斯洋俯冲、欧亚板块-Tauride-Anatolide板块碰撞和伸展过程中斑岩矿床形成时地壳厚度、壳幔相互作用方式及成矿物质演化过程具有重要意义。本研究选择土耳其西段三个斑岩成矿带(Tavşanlı带、Biga半岛成矿带和Afyon-Konya带)内五个斑岩型矿床的成矿岩体与同期侵入岩-火山岩,开展锆石微量元素和磷灰石主量元素研究,限定碰撞与伸展环境下斑岩型矿床成矿岩浆的形成温度、氧逸度条件及其与岩浆形成时地壳厚度的关系,利用磷灰石F-Cl-S含量组成揭示熔体挥发分和硫元素的物质组成,进而约束新特提斯洋俯冲-碰撞-伸展过程中斑岩系统的深部物质演化规律。研究结果表明,土耳其西部新生代斑岩型矿床成矿岩浆锆石大部分落于高水含量-高氧逸度区间,具有相似的稀土元素标准化配分曲线。从始新世到中新世,锆石氧逸度Ce4+/Ce3+比值呈现出先降低(斑岩型Cu-Mo矿到斑岩型Mo矿)后升高(斑岩型Mo-Cu矿到斑岩Au矿)的趋势,且相对于斑岩型Mo矿和Mo-Cu矿,斑岩型Au矿和Cu-Mo矿成矿岩体的锆石形成时具有相对较高的氧逸度。绝大部分斑岩型矿床成矿岩体的锆石EuN/EuN*位于0.4~0.7之间,但斑岩型Mo矿和斑岩型Mo-Cu矿床的锆石具有相对较低的EuN/EuN*比值,可能是由于在结晶时熔体受斜长石结晶影响较大。锆石微量元素显示(Yb/Gd和Hf/Y-Th/U)锆石组成大部分受岩浆房中角闪石±榍石±磷灰石分离结晶控制。根据锆石Ti温度计估算土耳其西部斑岩型矿床成矿岩体及其相关岩体的形成温度在650~900℃之间,结晶温度从斑岩型Au矿、斑岩型Cu-Mo/Mo-Cu矿至斑岩型Mo矿呈现递减趋势。对于熔体的挥发分与硫含量组成,始新世-渐新世斑岩型Cu-Mo与Mo矿床成矿岩浆相对具有高F和低Cl组成,中新世伸展环境形成的斑岩型Mo-Cu矿和斑岩型Au矿床成矿岩浆Cl含量普遍较高。与成矿岩体同期的暗色包体或基性岩脉中磷灰石计算获得的熔体硫含量均大于侵入体对应熔体的硫含量,且具有不均一的含量组成,表明基性岩浆注入可能为岩浆房提供硫。结合区域动力学和地壳厚度估算,本文认为触发土耳其西部新生代斑岩矿床形成的动力学机制是:在新特提斯洋向北单向汇聚的背景下,北部始新世-渐新世斑岩矿床受控于碰撞后俯冲的新特提斯洋板片(Vardar洋)后撤-回转-断离过程;南部中新世斑岩矿床的形成则受控于爱琴海板片俯冲控制的地壳伸展-减薄过程。北侧Izmir-Ankara-Erzincan缝合带附近的Tavşanlı与Biga半岛斑岩成矿带始新世-渐新世斑岩型矿床的形成与熔融-同化-储存-均一过程(MASH)有关,深部地壳热区过程(DCHZ)与中新世Afyon-Konya带斑岩型矿床的形成有关。
关键词: 斑岩矿床    锆石微量元素    岩浆氧逸度    磷灰石主量元素    成矿物质演化    土耳其西部    特提斯构造域    
Evolution of magma oxidation states and volatile components in the Cenozoic porphyry ore systems in the western Turkey, Tethyan domain: Constraints from the compositions of zircon and apatite
ZHAO JunXing1,2, SU BenXun1,2,3, UYSAL İbrahim4, AYDIN Faruk4, XIAO Yan2,5, SEN Cuneyt4, HUI KaiXuan1,2,3, QIN KeZhang1,2,3     
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4. Department of Geological Engineering, Karadeniz Technical University, Trabzon 61080, Turkey;
5. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract: In the middle part of the Tethys metallogenic domain, the western section of Turkey concentrates porphyry-type deposits associated with three primary tectonic settings: subduction, collisiona-post-collision, and extension. Many studies have been performed on the petrogenesis and tectonic setting of porphyry deposits in the western section of Turkey. However, the current research is still in its infancy. Little systematic work has been done on the nature of the mineralized magma source, the content of ore elements-volatile elements, and the evolution of ore materials in porphyry deposits under different tectonic settings. It is crucial to understand the crustal thickness, the tectonic model, degree of crust-mantle interaction, and the evolution of ore materials during the formation of porphyry deposits during the subduction of the New Tethyan Ocean and the collisional-post-collisional-extension process of the Eurasian-Tauride-Anatolide plate since the Late Cretaceous in the middle section of Tethyan domain. In this study, zircon trace elements and apatite major elements were studied in five porphyry deposits from three metallogenic belts (Tavşanlı belt, Biga Peninsula metallogenic belt, and Afyon-Konya belt) in the western part of Turkey, to define zircon trace element characteristics, crystallizing temperature-oxygen fugacity conditions and volatile-component concentrations in the melts during the formation of porphyry deposits in different tectonic environments, and then to constrain the evolving processes of ore materials and to decipher the deep-crustal processes during the formation of porphyry systems during continental collision, subsequent post-collisional and extensional environments in the Tethyan domain. Zircon trace elements show that most igneous rocks from Cenozoic porphyry deposits in western Turkey show the features of high water content and high oxygen fugacity, with similar chondrite-normalized zircon REE patterns, and the mafic mineral enclaves present higher total rare-earth contents than the contemporaneous rocks; most zircons have EuN/EuN* from 0.4 to 0.7, and zircon grains related to the porphyry Mo and porphyry Mo-Cu are more influenced by fractional crystallization plagioclase in the magma chamber; Ti-in-zircon thermometer estimates the crystallizing temperature of igneous rocks, ranging from 650℃ to 900℃, with decreasing crystallization temperature from porphyry Au, to porphyritic Cu-Mo/Mo-Cu, then to porphyritic Mo deposits. The composition of zircon trace elements (Yb/Gd and Hf/Y-Th/U) suggests the the features of trace elements in zircon are mainly controlled by fractional crystallization of hornblende±titanite±apatite; zircon oxygen fugacity Ce4+/Ce3+ ratio shows a decreasing (porphyry Cu-Mo to porphyry Mo) and then increasing (porphyry Mo-Cu to porphyry Au) trend from Eocene to Miocene. Most of the Cenozoic porphyry deposits and their coeval magmatism in western Turkey exhibit "normal" volatile-element contents: Eocene-Oligocene porphyry Cu-Mo and Mo deposits have relatively high F and low Cl contents in the melt. In contrast, porphyry Mo-Cu and porphyry Au deposits formed in the Miocene extensional environments generally have high magmatic Cl contents. Magmatic sulphur content obtained from calculations of the apatite compositions in mafic mineral enclaves and mafic dykes contemporaneous with the causative magmatic rocks is greater than the sulphur content of the corresponding magma, and the sulphur content in apatite and the calculated melt sulphur content are not uniform in composition, indicating that the injection of mafic magma may have provided sulphur to the magma chamber; Among 16~12Ma volcanic rocks near the Kisladağ porphyry gold deposit in the Afyon-Konya belt, dacite (12.6Ma) close to the epoch of the Au mineralization has the highest magmatic sulphur content composition, reasonably resulting in the Au mineralization. Based on the regional dynamics analysis and crustal thickness estimates, we suggest that the kinetic mechanism triggering the formation of Cenozoic porphyry ore deposits in western Turkey. The Eocene-Oligocene porphyry deposits in the north were controlled by the collision and post-collisional subduction of the Neotethyan oceanic plate (Vardar Ocean), including slab-roll back and break-off process; the formation of Miocene porphyry deposits in the southern section was controlled by the crustal extension and thinning process under the tectonic setting of the subduction of the Aegean plate. The formation of Eocene-Oligocene porphyry deposits in the northern Tavşanlı and Biga Peninsula porphyry belts near the Izmir-Ankara-Erzincan suture zone is related to the melting-assimilation-storage-homogenization process (MASH), and the deep crustal hot zone process (DCHZ) is related to the formation of porphyry ore deposits in the Miocene Afyon-Konya belt.
Key words: Porphyry-type deposit    Zircon trace elements    Oxygen fugacity of magma    Apatite major elements    Evolution of ore materials    Western Turkey    Tethyan domain    

斑岩型矿床是全球铜、钼、金的重要来源(芮宗瑶等, 1984; 王之田等, 1994; Titley, 1997; Cooke et al., 2005; Sinclair, 2007; Sillitoe, 2010)。全球的斑岩型矿床集中产出于环太平洋、特提斯和古亚洲洋三大成矿域内(芮宗瑶等, 1984)。其中,特提斯斑岩成矿域的一个重要特征是很多矿床形成于弧-陆或者陆-陆碰撞过程中或之后(Jankovic′, 1997; 侯增谦等, 2004; Harangi et al., 2007; Li et al., 2011; Qin, 2012; Lu et al., 2013; Deng et al., 2014; Hou and Zhang, 2015; Richards, 2015a)。针对这类发育在特斯提成矿域内与碰撞有关的斑岩型矿床,中国学者在西藏冈底斯成矿带和玉龙成矿带上开展了大量矿床成因和成矿构造背景的研究工作(唐仁鲤等, 1995; 李光明和芮宗瑶, 2004; Yang et al., 2009, 2016; Qin, 2012; Mao et al., 2014; Wang et al., 2015),为理解特提斯成矿域构造演化和成矿过程做出了巨大贡献。在此基础上发展形成的大陆碰撞环境斑岩矿床成矿理论(侯增谦和杨志明, 2009; 秦克章等, 2014),和环太平洋斑岩成矿带与俯冲有关的岩浆弧环境斑岩成矿理论(Kerrich et al., 2000; Richards, 2003; Seedorff et al., 2005),以及造山后伸展环境的斑岩矿床成矿模式(Richards, 2009),普遍为学者所接受。

目前,已有学者意识到不同构造背景下成矿岩浆的性质和源区特征,能够用于指示构造环境演化阶段的深部过程。以特提斯斑岩成矿域的西藏冈底斯成矿带为例,印亚大陆碰撞过程中,主碰撞阶段与后碰撞阶段形成的岩浆岩在水含量、氧逸度及源区幔源物质比例等方面都存在显著差异(Wang et al., 2014a, 2014b; Yang et al., 2016),这被用于解释新特提斯洋长期俯冲过程与冈底斯成矿带后碰撞环境“瞬时”的斑岩成矿事件的深部构造-岩浆成因联系(Hou et al., 2015a)。值得注意的是,在特提斯成矿域中段的土耳其西段集中产出了与俯冲、后碰撞、伸展这三大动力学背景有关的斑岩型矿床(Yiğit, 2009; 图 1)。但对于这些形成于不同构造背景下斑岩矿床的成矿岩浆源区性质、成矿元素-挥发分的含量和成矿物质的演化关系,尚未有系统的工作。斑岩型矿床的矿质沉淀与出溶于高S-Cl含量、富水、中等氧逸度熔体中的流体有关(Richards, 2003; Seedorff et al., 2005; Sillitoe, 2010),限定斑岩岩浆系统中熔体的氧逸度、挥发份组成和水含量,并解析其演化的影响因素,成为约束斑岩矿床成矿岩浆条件及其演变过程的重要内容。但研究该问题的难点在于:1)不同构造环境中的斑岩矿床,其成矿岩体组合不同导致含挥发份元素矿物不同,且熔体包裹体普遍不发育,难以估计熔体中F、Cl与S组成(Harris and Anderson, 1984; Webster and Piccoli, 2015);2)测定氧逸度通常利用角闪石和磁铁矿-钛铁矿矿物对(Cao et al., 2017),但磁铁矿-钛铁矿容易后期的影响,而使得计算结果不准确;3)成矿岩浆氧逸度-挥发份组成的时间演化过程研究较少(Chelle-Michou and Chiaradia, 2017; Zhu et al., 2018)。而研究该问题最好的切入点是利用锆石(年龄、氧逸度、矿物结晶影响和含水量)和磷灰石(挥发份在矿物/熔体之间的配分系数)解决该问题(Loader et al., 2017; Cao et al., 2018; Zhao et al., 2020; 邹心宇等, 2021)。故而,本研究选择土耳其西段三个斑岩成矿带(Tavşanlı带、Biga半岛成矿带和Afyon-Konya带)内五个斑岩型矿床的成矿岩体与同期侵入岩-火山岩作为研究对象(图 1),利用锆石和磷灰石组成开展碰撞-伸展环境下斑岩型矿床形成的深部过程研究,限定碰撞与伸展环境下斑岩型矿床成矿岩浆的形成温度、氧逸度条件及其与岩浆形成时地壳厚度的关系,利用磷灰石F-Cl-S含量组成揭示熔体挥发分和硫元素的物质组成,进而约束新特提斯洋俯冲-碰撞-伸展过程中斑岩系统的深部物质演化规律。

图 1 特提斯土耳其段主要斑岩型矿床分布图(据Yiğit, 2009修改) 其中土耳其西部主要为四个成矿阶段:1-俯冲阶段;2-碰撞阶段(Tavşanlı带);3-晚碰撞-后碰撞阶段(Biga半岛成矿带);4-后碰撞伸展阶段(Afyon-Konya成矿带); 成矿带划分来自Kuşcu et al. (2019). 本次研究选择2-4区域内典型矿床开展研究 Fig. 1 Distribution map of main porphyry deposits of Tethys Turkish section (modified after Yiğit, 2009) The western Turkish is mainly composed of four ore-forming stages: 1-subduction stage; 2-collision stage (Tavşanlı belt); 3-from late-collision to post-collision stage (Biga Peninsula metallogenic belt); 4-post-collision extension stage (Afyon-Konya metallogenic belt); the division of metallogenic belt refers to Kuşcu et al. (2019). The typical deposits of 2~4 region were selected to research in this study
1 土耳其西部斑岩矿床构造背景

位于特提斯带中段的土耳其斑岩型矿床,从北向南主要分为Pontides、Anatolides和Border Folds三条主要成矿带(图 1, Yiğit, 2006, 2009, 2012; Hou and Zhang, 2015)。其中,Pontides斑岩铜矿带(Nakov et al., 2002; Moix et al., 2008) 主要是与新特提斯洋盆的分支——Vardar洋白垩纪末-古新世初北向俯冲(Stampfli, 2000)有关,并在土耳其东北部Pontides造山带形成岛弧型钙碱性火山-岩浆系列并出露多处大型斑岩型铜矿床(Yiğit, 2006),该期岩浆岩的源区为板片流体交代的地幔楔和下地壳部分熔融(Karacık and Tüysüz, 2010)。Anatolides成矿带的斑岩矿床则与古新世-早始新世欧亚大陆和Tauride-Anatolide板块碰撞之后(T-A板块北侧,Izmir-Ankara-Erzincan缝合带,Şengör and Yilmaz, 1981; Okay and Tüysüz, 1999; Rolland et al., 2009)的后碰撞钙碱性岩浆活动(Topuz et al., 2011; Eyuboglu et al., 2017)、Tauride-Anatolide板块南侧Maden-Helen弧后的钙碱性岩浆活动(Imer et al., 2016)、以及后碰撞伸展环境的碱性岩浆活动(Dilek and Altunkaynak, 2010; Ersoy et al., 2012; Ersoy and Palmer, 2013)有关。Pontides带中斑岩型矿床主要为俯冲型斑岩Cu和Mo-Cu矿(如晚白垩世Derekoy Cu矿, Ohta et al., 1988; Elbeyli-Ordu Mo-Cu矿, Delibaş et al., 2016)。而在Tauride-Anatolide板块,斑岩型矿床类型主要为碰撞型斑岩矿床(始新世Saricayiryayla Cu-Mo矿, Yiğit, 2009; 渐新世Halilaǧ a Cu-Mo矿, Grieve, 2009; 中新世Pınarbaşı Mo-Cu矿, Delibaş et al., 2017)、与碱性岩有关的斑岩型Au矿(西部中新世Kisladaǧ矿, Baker et al., 2016)和东段与钙碱性岩浆有关斑岩-浅成低温Au成矿系统(始新世Copler-Kabatas矿, Imer et al., 2016)。整体上Anatolides西部主要受到南爱琴海板片俯冲(形成Hellenic弧)影响,区内新生代构造演化模式有受单一的连续俯冲带(van Hinsbergen et al., 2005)或受多个连续、不同步的俯冲系统控制两种观点(Dercourt et al., 1986)。而自始新世碰撞以来,Anatolides西部带地区岩浆岩的源区经历先富集再亏损的过程,即地幔成分变化响应大陆碰撞、板片断离和岩石圈撕裂(板片窗)的连续构造演化(总结于Dilek and Altunkaynak, 2010),中新世MenderesMassif变质核杂岩的发育为浅部地壳对伸展环境的响应(Işık et al., 2003; Rossetti et al., 2017)。而东南侧的Border Folds带作为阿拉伯板块的北缘(冈瓦纳大陆组成部分),主要由古生代-中生代地层组成,其基底经历泛非期造山作用(Yiğit, 2009)。该带内发生强烈变形,仅发育有少数与钙碱性-碱性岩浆有关的斑岩矿床,如形成于77~76Ma的Keban斑岩矿床(Yiğit, 2009)。

2 土耳其西部新生代典型斑岩成矿系统基本特征 2.1 Tavşanlı带始新世斑岩成矿系统

该时期斑岩成矿系统主要集中分布于Tavşanlı带内(图 1区域2),包括Saricayiryayla斑岩Cu-Mo矿(Yiğit, 2009)、Gürgenyayla斑岩Cu矿(Kuşcu et al., 2019)、Muratdere斑岩型Mo-Re矿(McFall et al., 2019)等,其形成构造环境主要与板块碰撞引起的钙碱性岩浆作用(Saricayiryayla)和后碰撞伸展环境形成的碱钙性岩浆作用(Muratdere)有关。该带矿床整体品位不高,且相关研究报道较少。以带内Muratdere斑岩型Mo-Re矿(McFall et al., 2019)为例,该矿床赋存在侵位于Daǧküplü蛇绿岩内的花岗闪长质杂岩体中,岩体组成从闪长岩到花岗闪长岩到正长岩,区域构造受NW-SE向Thrace-Eskişehir断裂带控制。矿区中心主要发育有强烈钾化和硅化蚀变,外围出现青磐岩化,而以绿泥石-绢云母为代表的中级泥化叠加在钾化核之上。矿化以浸染状和细脉状黄铜矿、辉钼矿为主。该矿床高Re含量(储量为17, 594kg)可能与蛇绿岩围岩或矿床形成过程中氧化-还原条件变化有关(McFall et al., 2019)。

2.2 Biga半岛始新世至渐新世斑岩成矿系统

该期斑岩成矿系统主要分布于Biga半岛区域和MenderesMassif的北部(图 1区域3)。浅成热液金银(铜)及斑岩铜-金-钼矿床的形成与始新世-渐新世钙碱性火山岩-侵入岩相关(Yiğit, 2012),如Halilaǧa斑岩铜金成矿系统(Smith et al., 2016)、TV Tower浅成低温-斑岩成矿系统(Smith et al., 2014)和Tepeoba斑岩铜钼矿(Yiğit, 2009)。以始新世Halilaǧa斑岩铜金成矿系统(Brunetti, 2016)和渐新世Tepeoba斑岩铜钼矿为例。Halilaǧa矿区内主要包括始新世-渐新世两个时期的火山岩与侵入岩,其中始新世火山沉积岩和渐新世火山沉积岩、次火山岩,其成分从玄武安山岩到流纹英安岩不等,这些岩浆作用被认为是与碰撞后板块断离形成过程相关(Altunkaynak and Genç, 2008)。与火山岩同期形成从闪长岩到花岗岩的侵入体(Kestane、Kocakışla和Evçiler岩体),其中斑岩型矿化与Kestane石英二长斑岩和花岗斑岩有关(Brunetti, 2016)。岩体锆石U-Pb定年和辉钼矿Re-Os定年显示岩体侵位发生于39.2±0.5Ma~37.8±0.4Ma,矿化发生于39.56±0.21Ma(Brunetti, 2016)。蚀变主要为钾硅酸盐化(钾长石-黑云母-磁铁矿)和绢英岩化(石英-绢云母-黄铁矿)。矿石矿物主要为黄铜矿、辉钼矿和黄铁矿,且与早期钾化密切相关;地表有少数氧化淋滤形成次生辉铜矿和铜蓝(Scott et al., 2012)。Tepeoba斑岩铜钼矿(矿石量19.24Mt,铜平均品位0.33%,钼平均品位0.041%),其形成与晚渐新世侵入二叠纪-三叠纪变质基性岩和变质沉积岩中的Eybek花岗岩-花岗闪长岩有关。蚀变矿化以斑岩侵入体和角砾岩筒为中心,其中热液蚀变以钾硅酸盐化、绢云母化和绿泥石化为特征,矿石矿物包括黄铜矿、辉钼矿、黄铁矿、磁铁矿、斑铜矿等(Yiğit, 2012)。角砾岩和岩体中石英脉中辉钼矿Re-Os定年显示该矿床形成于25.0~25.6Ma(Murakami et al., 2005)。

2.3 Afyon-Konya中新世-上新世斑岩金-钼-铜矿及浅成低温成矿系统

中新世时在土耳其西部安纳托利亚地区斑岩成矿系统主要以斑岩型金矿、斑岩型钼矿和浅成低温型金-铜矿为主(图 1区域4),如Kisladaǧ Au矿床(Baker et al., 2016)、Pınarbaşı Mo-Cu矿床(Delibaş et al., 2017)、Sayacik和Afyon-Sandıklı Au-Cu矿床(Sönmez and Kuşcu, 2020)。其中该时期最年轻的浅成低温金矿床形成于5.78±0.01Ma(Öksüt高硫型Au(-Cu)矿,Aluç et al., 2020)。以Kisladaǧ斑岩金矿(47.6t,金平均品位0.61g/t)为例,该矿床位于土耳其安纳托利亚西部,产出于一个多期侵入的二长斑岩杂岩体中,该杂岩体侵入到同期Beydaǧı地层火山和Menderes变质基底中(Baker et al., 2016)。该套侵入体及其火山岩具有高钾钙碱性至钾玄质的特征,与安纳托利亚西部地区火山岩的地球化学性质相似。矿区内主要有三期侵入岩相,其中早期的二长斑岩侵入体金品位最高(平均约0.8g/t)。金品位最高区域位于该期侵入体内高温钾化蚀变中。网脉状矿化主要与高温钾化蚀变及其向外分布的电气石-白云母蚀变有关(Bozkaya et al., 2020)。上部高级泥化蚀变晚于白云母-电气石蚀变,且含有较少量的铜金矿化。矿区内发育面积最大的蚀变为泥化蚀变(高岭石±蒙脱石±黄铁矿±石英),并叠加在各类热液蚀变之上。金属组合上该矿床的钼与金关系最为密切,而铜的平均浓度却异常低(~200×10-6),但随着深度增加而增加(500×10-6~1000×10-6)。Baker et al. (2016)利用高精度同位素定年揭示Kisladaǧ与金矿化有关的岩浆-热液活动时限小于0.4Myr(即14.76±0.01Ma~14.36±0.02Ma),其中金沉淀主要与硫化物的沉淀有关(14.49±0.06Ma),成矿流体具有高氧化特征(Oyman and Dyar, 2007)。而Pınarbaşı斑岩Mo-Cu矿位于Menderes变质基底的北部,成矿与侵位于Budaǧan灰岩和Daǧardı混杂岩中的石英二长岩-花岗闪长岩-花岗岩有关(Oygür, 1997),热液蚀变主要为钾化、绢英岩化和高级泥化,矿化以脉状和细脉浸染状为主,矿石矿物包括有辉钼矿、黄铜矿、磁铁矿、方铅矿、闪锌矿、斑铜矿和黄铁矿等。成岩成矿时代集中于~18.3Ma(Delibaş et al., 2017)。其形成被认为是早中新世区域构造伸展作用形成的大规模岩浆-热液作用的产物(Delibaş et al., 2017; Özen and Arık, 2019)。

3 研究对象和测试方法

本次研究测试样品主要选取土耳其西部新生代斑岩型矿床中的成矿岩体、同期火山岩及其暗色包体开展锆石和磷灰石主-微量元素测试工作(共20件样品),样品包括Saricayiryayla斑岩Cu-Mo矿床所在岩体、Halilaǧa斑岩Cu-Mo矿所在区域火山岩组合、Tepeoba斑岩Mo矿和Pınarbaşı斑岩Mo-Cu矿成矿岩浆岩组合和Kisladaǧ斑岩Au矿的成矿同期火山岩组合(样品岩性详见表 1)。

表 1 土耳其西部新生代斑岩矿床基本特征和本次研究样品概况 Table 1 The characteristics of the Cenozoic porphyry-type ore deposits in this study and main information of the analytical samples

锆石和磷灰石在分选后制靶,并拍摄透反射光照片和选择无裂缝和矿物-流体包裹体颗粒区域,以便后续开展矿物主微量元素测试工作。锆石和磷灰石的阴极发光图像主要在中国科学院地质与地球物理研究所使用配置MonoCL4的Nova NanoSEM 450场发射扫描电子显微镜(FSEM)完成。锆石微量元素含量中国科学院地质与地球物理研究所岩石圈演化重点实验室的Agilent 7500a四级杆电感耦合等离子体质谱仪上完成(与193nm ArF准分子激光剥蚀仪联机)。每个时间分辨分析数据包括大约20~30s的空白信号和50s的样品信号。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal(Liu et al., 2008)完成。详细的仪器操作条件和数据处理方法同Liu et al.(2008, 2010)。锆石微量元素选点主要为先前锆石U-Pb定年测试点,激光束斑选择为44~60μm,略大于之前的年龄测定束斑。锆石微量元素含量利用NIST610、USGS参考玻璃BCR-2G与BIR-1G作为多外标、Zr作内标的方法进行定量计算(Liu et al., 2010)。锆石微量元素结果见于表 2

表 2 土耳其西部新生代斑岩矿床中岩浆岩锆石LA-ICPMS微量元素数据(×10-6) Table 2 The analytical data of LA-ICPMS zircon trace elements from magmatic rocks in the Cenozoic porphyry ore deposits, western Turkey (×10-6)

磷灰石主量元素在中国科学院地质与地球物理研究所(IGGCAS)使用JEOL-JXA8100电子探针完成。本次研究工作条件为加速电压15kV,束流10nA,探针束斑大小为3~5μm,Si、Fe、Mn、Mg、Na、S和Cl的计数时间为20s,F的计数时间为40s,Ca和P的计数时间为10s。选点过程中我们只将感兴趣的磷灰石颗粒在电子束下进行移动,以防止F、Cl、Ca和P成分的迁移。Stormer et al. (1993)指出这些元素在EPMA分析中的Kα-X射线计数率与电子束的照射时间密切相关。所有数据均采用ZAF进行校正,所有结果见表 3

表 3 土耳其西部新生代斑岩矿床中岩浆岩磷灰石EPMA主量元素数据(wt%) Table 3 The analytical data of EPMA apatite major elements from magmatic rocks in the Cenozoic porphyry ore deposits, western Turkey (wt%)
4 测试结果 4.1 锆石微量元素组成

本次研究共测定333颗锆石微量元素数据,结合全岩数据(赵俊兴等,未发表数据)和Li et al. (2019)的Geo-fO2来计算锆石钛饱和温度和氧逸度(表 2)。结果显示土耳其西部新生代斑岩矿床的成矿岩浆具有如下的特征:(1)锆石微量元素表明土耳其西部新生代斑岩矿床成矿岩浆大部分落于高水含量-高氧逸度区间(图 2);(2)岩浆岩锆石具有相似的稀土元素配分曲线(图 3),且暗色包体锆石较同期岩体有较高的稀土总量(图 3a, d);(3)绝大部分锆石的EuN/EuN*位于0.4~0.7之间,斑岩Mo和斑岩Mo-Cu矿相关锆石在结晶时熔体受斜长石结晶影响更大,具有更低EuN/EuN*比值(图 4a);(4)利用Ferry and Watson (2007)的锆石Ti饱和温度计(假设TiO2活度为0.7)估算土耳其西部斑岩成矿及其相关岩体的形成温度在650~900℃之间,锆石Ti温度显示岩体结晶温度表现为:斑岩Au矿>斑岩Cu-Mo=斑岩Mo-Cu矿>斑岩Mo矿,呈现递减趋势(图 4b);(5)锆石微量元素显示(Yb/Gd和Hf/Y-Th/U,图 4c, d)锆石在岩浆房结晶过程中,其微量元素组成大部分受角闪石±榍石±磷灰石分离结晶控制,该分离结晶控制趋势与全岩微量元素指示演化受角闪石结晶相控制一致(图 5);(6)斑岩Au和斑岩Cu-Mo相关岩体锆石形成时氧逸度高于斑岩Mo和斑岩Mo-Cu矿岩体,结合各岩体形成年龄,锆石氧逸度Ce4+/Ce3+比值呈现出先降低(斑岩Cu-Mo到斑岩Mo)后升高(斑岩Mo-Cu到斑岩Au)的趋势(图 4d)。

图 2 锆石(Ce/Nd)/Y-10000×(Eu/Eu*)/Y图解 其中锆石微量元素组成圈定高氧逸度-高含水量成矿岩体(△FMQ>2和H2O < 12%)与低氧逸度-低含水量(△FMQ < 2和H2O < 5%)非成矿岩体范围来自Lu et al. (2016) Fig. 2 Zircon (Ce/Nd)/Y vs. 10000×(Eu/Eu*)/Y diagram The zircon trace element ranges to define high oxygen fugacity-high water content fertile magma (△FMQ>2 and H2O < 12%) and low oxygen fugacity-low water content (△FMQ < 2 and H2O < 5%) infertile suite refer to Lu et al. (2016)

图 3 土耳其西部新生代斑岩矿床岩浆岩锆石球粒陨石标准化稀土元素配分图解(标准化值据Sun and McDonough, 1989) Fig. 3 Chondrite-normalization REE patterns of western Turkish Neozoic porphyry deposit magmatic rock zircon (normalization values after Sun and McDonough, 1989)

图 4 锆石Hf-EuN/EuN*(a)、Hf-锆石Ti饱和温度(b)、Th/U-Yb/Gd(c)和Th/U-Hf/Y(d)之间演化关系 图a中氧化条件演化趋势来自Dilles et al. (2015),图c和d中分离结晶趋势来自Lee et al. (2021). 图例见图 2 Fig. 4 The evolution relationship of zircon Hf vs. EuN/EuN* (a), Hf vs. zircon Ti saturation temperature (b), Th/U vs. Yb/Gd (c) and Th/U vs. Hf/Y (d) The evolution trend of oxidizing condition in Fig. 4a refers to Dilles et al. (2015), the fractional crystallization trend in Fig. 4c, d refers to Lee et al. (2021). Legends refer to Fig. 2

图 5 土耳其西部斑岩矿床中锆石年龄和锆石Th/U、Ti温度、EuN/EuN*和Ce4+/Ce3+比值之间演化关系 Fig. 5 The evolution relationship of zircon age and zircon Th/U, Ti-in-zircon temperature, EuN/EuN* and Ce4+/Ce3+ ratio in the porphyry ore deposits, western Turkey
4.2 磷灰石主量元素组成

本次共测试18个样品中263颗磷灰石的主量元素组成。分析结果显示(表 3)大部分测试磷灰石样品均具有高F、低Cl的卤族元素组分特征,属于氟磷灰石。主量元素组成各平均值CaO(54.00%~55.62%)、P2O5(41.78%~42.87%)、Na2O(0.03%~0.22%)、SiO2(0.09%~0.49%)、FeO(0.03%~0.42%)、MnO(0.04%~0.51%)、MgO(BDL-0.32%)含量变化不大,但F(1.74%~3.47%)、Cl(0.13%~2.21%)、SO3含量(BDL~0.84%)变化较大。整体上Saricayiryayla斑岩Cu-Mo矿和Tepeoba斑岩Mo矿具有较高的磷灰石F/Cl比值(图 6a),而Halilaǧa与Pınarbaşı矿床中岩浆磷灰石的Cl含量较高(图 6b)。同时,暗色包体和基性岩墙中的磷灰石往往显示较寄主岩石和同期酸性岩体具有较高的Cl含量和SO3含量。如Tepeoba斑岩Mo矿中成矿花岗岩磷灰石具有较高的F含量(3.47±0.18%)和较低的Cl含量(0.13±0.03%), 而同期基性岩脉则显示较高的磷灰石Cl含量(0.26±0.32%~0.39±0.49%)和S含量(最高可达0.34%)。

图 6 斑岩矿床中磷灰石中F含量-F/Cl比值(a)和Cl含量-F/Cl比值(b)之间的关系 Fig. 6 The relationship of apatite F content vs. F/Cl ratios (a) and Cl content vs. F/Cl ratios (b) in porphyry deposits
5 讨论 5.1 土耳其西部新生代斑岩系统岩浆氧逸度演化趋势

通过斑岩成矿带的构造演化历史和岩浆岩微量元素-同位素研究,能够获得俯冲-碰撞过程中地壳属性(Sillitoe, 2018)、地壳厚度演化(如, (La/Yb)N比值, Profeta et al., 2015; Zhu et al., 2017; Y/Sr比值, Deng et al., 2018; 岩浆金属元素含量和俯冲带地壳厚度关系, , 2014)、斑岩成矿带的岩石圈结构(如, 同位素填图, Hou et al., 2015b; 地幔或下地壳包体研究, Wang et al., 2016, Xu et al., 2017)、俯冲板块边界信息(如, 配合板块汇聚速度和地壳缩短估算, Wang et al., 2015)等宏观要素。

本次研究得到土耳其西部新生代斑岩系统的岩浆氧逸度自晚古新世-早始新世碰撞阶段到后碰撞环境经历先降低后升高的过程(图 5d,Ce4+/Ce3+比值的变化关系)。该特征与西藏冈底斯碰撞环境斑岩矿床(Wang et al., 2014a, b; Yang et al., 2016)和安第斯型俯冲环境斑岩矿床(Cao et al., 2016; Li et al., 2017; Angerer et al., 2018)的氧逸度演化趋势不同。西藏冈底斯碰撞环境和安第斯俯冲型成矿岩浆演化趋势表明为成矿岩浆含水量和氧逸度均显著升高,地壳加厚过程可能是控制其氧逸度升高的重要因素(Tang et al., 2020)。因此,估算土耳其西部斑岩矿床成矿岩体及其同期岩浆岩形成时地壳厚度,并结合锆石氧逸度评价地壳厚度演化过程对岩浆氧逸度的控制过程,是解释土耳其西部新生代斑岩系统岩浆氧逸度演化趋势的重要研究内容。

本次研究使用Hu et al. (2017)在碰撞造山带岩浆岩研究中提出的地壳厚度估算公式。Hu et al. (2017)利用全岩Sr/Y和(La/Yb)N比值以及Crust 1.0模型获得碰撞带地壳厚度(H)计算公式估算地壳厚度:H=0.67×Sr/Y+28.21和H=27.78×ln[0.34×(La/Yb)N],并指出与前人在俯冲岛弧带岩浆岩中获得的地壳厚度估算模型相比(Chiaradia, 2014; Profeta et al., 2015),在相同地壳厚度下碰撞环境的中酸性岩浆岩(SiO2含量为55%~72%)具有较低的Sr/Y和较高的(La/Yb)N比值(Hu et al., 2017)。我们结合前人在土耳其西部地区发表的新生代岩浆岩数据(选择SiO2含量在55%~72%),使用该模型对土耳其西部50Ma以来的斑岩矿床及同期岩浆岩形成时地壳厚度进行估算(图 7)。估算结果表明三条成矿带内成矿与非成矿岩体尽管估算值略有不同,但随时间演化趋势基本一致,即Tavşanlı带和Biga半岛成矿带在始新世到渐新世岩浆岩形成时地壳厚度估算值略微升高,Afyon-Konya成矿带早中新世地壳依然有与Biga半岛成矿带相似的估算厚度。但到中晚中新世Afyon-Konya成矿带的地壳厚度明显增大。而针对本次研究所选择的样品,全岩的(La/Yb)N和估算地壳厚度(图 8a, b)显示从始新世到早中新世有着地壳逐渐加厚的趋势。而在渐新世-中新世的Tepeoba斑岩Mo矿、Pınarbaşı斑岩Mo-Cu矿和Kisladaǧ斑岩Au矿中,从成矿前到成矿期岩浆演化过程明显经历地壳减薄事件(图 8a, b,随时间明显降低的(La/Yb)N)。在该过程中Pınarbaşı斑岩Mo-Cu矿和Kisladaǧ斑岩Au矿的岩浆氧逸度明显上升(图 8c),说明与地壳减薄相关的深部过程可能是控制土耳其西部中新世高氧逸度成矿岩浆形成的重要机制。同时,全岩微量元素(图 9ab)和锆石微量元素(图 4d)指示,土耳其西部斑岩矿床成矿岩浆地球化学特征可能主要受到以角闪石为主的分离结晶作用控制。因此,在该地壳减薄过程中可能发生基性岩浆注入过程,使得成矿期岩浆氧逸度升高。

图 7 土耳其西部斑岩矿床岩体及同时期岩浆岩地壳厚度估算与形成时代演化图 图中地壳厚度估算公式来自Hu et al. (2017),并分别利用全岩(La/Yb)N(a)和Sr/Y比值(b)进行估算,其中Tavşanlı带岩体数据来自Altunkaynak (2007)Kuşcu et al. (2019)Güraslan and Altunkaynak (2019);Biga半岛成矿带数据来自Kuşcu et al. (2019);Afyon-Konya成矿带数据来自Karaoğlu et al. (2010), Prelevic′ et al. (2015), Delibaş et al. (2017)Kuşcu et al.(2019) Fig. 7 The evolution diagrams of western Turkish porphyry deposits rock and contemporary magmatic rock crustal thickness estimation and formation age The computational formula of crustal thickness refers to Hu et al. (2017), whole rock (La/Yb)N (a) and Sr/Y (b) ratio was used to calculate respectively, the Tavşanlı belt rock values refer to Altunkaynak (2007), Kuşcu et al. (2019) and Güraslan and Altunkaynak (2019); Biga Peninsula metallogenic belt values refer to Kuşcu et al. (2019); Afyon-Konya metallogenic belt values refer to Karaoğlu et al. (2010), Prelevic′ et al. (2015), Delibaş et al. (2017) and Kuşcu et al. (2019)

图 8 斑岩矿床中各类岩体锆石年龄-(La/Yb)N(a)、锆石年龄-地壳估算厚度(b)和岩浆氧逸度-地壳估算厚度(c)图解 △FMQ通过锆石计算获得,以平均值和1StDev表示 Fig. 8 Magmatic zircon age vs. whole-rock (La/Yb)N (a), zircon age vs. crustal estimation thickness (b), magmatic oxygen fugacity (vs. crustal estimation thickness diagrams △FMQ was obtained by zircon calculation, and showed in terms of average and 1StDev

图 9 本次研究的斑岩矿床中各类岩体SiO2-Dy/Yb(a)和SiO2-(La/Yb)N(b)图解 其中角闪石和石榴石演化趋势来自Davidson et al. (2007),全岩数据来自赵俊兴等(未发表数据) Fig. 9 Different types of magmatic rock SiO2 vs. Dy/Yb (a) and SiO2 vs. (La/Yb)N (b) diagrams in this study The evolution trends of amphibole and garnet refer to Davidson et al. (2007). The whole-rock geochemical compositions are cited from Zhao et al. (unpublished data)
5.2 岩浆中挥发份F-Cl-S演化特征——来自磷灰石组成的约束

斑岩型矿床的金属元素主要以Cl、S络合物的形式搬运,以金属硫化物的形式沉淀。如Cu与Au在熔体中低氧逸度条件下以氯络合物形式迁移,金在高氧逸度条件下以硫氢络合物形式迁移,岩浆系统高氯含量有助于提高铜和金的溶解度(Zajacz and Halter, 2009)。而从斑岩铜矿到斑岩钼矿,岩体酸性程度常与磷灰石F/Cl比值成正比(Mathez and Webster, 2005; 陈雷等, 2017; Zhao et al., 2020)。因此,研究斑岩矿床成矿物质富集-演化过程,有助于理解挥发分F、Cl、S以及成矿元素本身的地球化学行为(Richards, 2015b)。鉴于岩浆磷灰石和共存熔体处于平衡状态,可使用磷灰石和平衡熔体实验分配系数从磷灰石成分估算在给定P-T条件下熔体的F和Cl含量(Stock et al., 2016)。近期研究表明,在磷灰石和熔体之间存在F和Cl的非能斯特分配,在确定熔体中F、Cl和/或H2O的浓度时,各种实验结果和热力学模型利用磷灰石和熔体之间不同的F和Cl交换系数(KD)进行估算(Pan and Fleet, 2002; Riker et al., 2018; Li and Costa, 2020)。然而,该方法要求已知熔体中的三种成分之一(F或Cl或H2O含量),以便使用交换系数确定岩浆的挥发分及水含量。但由于熔体中的F、Cl、H2O含量常需要利用较难找寻的熔体包裹体或火山玻璃进行测定,该类研究对象较难找寻。因此,在本研究中,我们使用卤族元素在磷灰石与熔体间的分配系数值来估算岩浆的F和Cl含量。考虑到岩浆成分(全岩成分熔体的摩尔A/CNK和N/NK)和估计的温度-压力条件,我们使用磷灰石与英安质-流纹质熔体之间的Cl和F分配系数(A/CNK为0.90~1.05,N/NK为0.60~0.77,Webster et al., 2009; Doherty et al., 2014),其所代表的压力和温度范围是50~200MPa和900~924℃。长英质硅酸盐熔体的F浓度方程式为(Webster et al., 2009):CF(%)=[(磷灰石中的XF)-0.12]/3.02,其中XF表示磷灰石中的摩尔F含量。对于熔体中Cl含量的计算,我们使用Bao et al.(2016)的公式,该公式利用了Webster et al. (2009)Doherty et al. (2014)数据提供了一个简单的基于权重的能斯特分配系数方法:CCl(熔体,%)=CCl(磷灰石,%)×0.16052。我们利用该公式估算熔体Cl含量。对于岩浆的硫含量,岩浆磷灰石中SO3含量主要受温度、氧化状态和硅酸盐熔体中硫含量的控制(Peng et al., 1997; Parat and Holtz, 2005)。考虑到熔体中硫含量的变化,早期Peng et al. (1997)利用与温度相关的磷灰石-熔体分配系数,开展岩浆相对硫含量的估算,公式为ln(S磷灰石/熔体(%))=21130/T(单位为开氏度)-16.2。Parat et al. (2011)总结前人发表的实验数据,给出了SO3磷灰石(%)=0.157×lnSO3熔体(%)+0.9834(r2=0.68)。我们假设各岩浆磷灰石从硫酸盐饱和熔体结晶,利用Parat et al. (2011)的方法估算岩浆硫含量。虽然两种计算方法会获得不同的岩浆硫含量,但仍可判断其总体演化趋势。

计算结果显示(表 3):(1)土耳其西部新生代斑岩矿床及其同期岩浆活动大多数表现出“正常”挥发分元素含量(Richards, 2015b),即俯冲相关地幔楔部分熔融形成的硅酸盐熔体中的S含量≤4000×10-6,Cl含量≤3000×10-6(全球数据总结于Johnson et al., 2010);(2)始新世斑岩铜矿和渐新世斑岩铜钼矿中岩浆相对具有高F和低Cl组成,中新世伸展环境形成的斑岩钼铜矿和斑岩金矿中岩浆Cl含量普遍较高(图 10a-c);(3)三条成矿带上与成矿岩体同期的暗色包体或基性岩脉中磷灰石计算获得的岩浆硫含量均大于侵入体对应岩浆的硫含量(Tepeoba斑岩钼矿成矿岩体和Saricayiryayla对应岩体的花岗岩中磷灰石无SO3检出),且磷灰石中硫含量和计算熔体硫含量组成并不均一,表明基性岩浆注入可能为岩浆房提供硫;(4)在Afyon-Konya带Kisladaǧ斑岩金矿附近16~12Ma火山岩中,与Au成矿同期英安岩(12.6Ma)具有最高岩浆硫含量组成,说明该期成矿岩浆具有较高的硫含量,利于成矿(图 10d)。

图 10 土耳其西部斑岩矿床中磷灰石的F-Cl含量(a),及锆石年龄和对应岩体磷灰石估算的岩浆F(b)、Cl(c)和S(d)含量的演化关系 其中岩浆中氟含量计算来自Webster et al. (2009),岩浆中氯含量计算来自Webster et al. (2009)Doherty et al. (2014),岩浆中硫含量计算来自Parat et al. (2011),图例见图 7 Fig. 10 The evolution relationship of apatite F-Cl content (a), zircon age and magmatic F (b), Cl (c), S (d) content calculated from apatite in the corresponding rock in western Turkish porphyry deposit The calculation of F content in magmatic refers to Webster et al. (2009), Cl content calculation refers to Webster et al. (2009) and Doherty et al. (2014), S content calculation refers to Parat et al. (2011). Legends refer to Fig. 7

斑岩成矿岩浆是否富硫,目前主要利用岩体中的岩浆矿物(岩浆硬石膏和磷灰石)和同期火山岩中熔融包裹体开展研究。如在成矿相关的斑岩中发现岩浆硬石膏,表明其形成时岩浆的氧逸度至少大于NNO+0.5,岩浆中硫含量为0.05%~1%(Carrol and Rutherford, 1987; Parat et al., 2011; Xiao et al., 2012)。而利用高硫含量的磷灰石和硫在磷灰石和熔体间的分配系数,计算平衡岩浆中的硫含量可达1000×10-6以上(Streck and Dilles, 1998; Liaghat and Tosdal, 2008),而通过矿床内未发生硫化物饱和的基性端元中熔体包裹体测定硫含量为100×10-6~900×10-6(Seo et al., 2011; Grondahl and Zajacz, 2017; Zhang and Audétat, 2017),属于正常的岩浆硫含量范围。由于高氧逸度使得岩浆中的硫以+6价形式赋存,并记录在结晶的磷灰石中(Parat et al., 2011),因此前人在俯冲与碰撞环境斑岩成矿带区域对比研究中发现成矿期磷灰石常具有较高的SO3含量。如中亚造山带哈萨克斯坦地区斑岩铜矿研究(Cao et al., 2016)指出,俯冲作用可以加厚新生下地壳和岩石圈地幔,并使楔形地幔氧逸度不断升高,较高的氧逸度使得成矿期岩石磷灰石较成矿前具有明显较高的SO3含量。西藏班公湖-怒江带俯冲期斑岩铜金矿(Li et al., 2021)和冈底斯后碰撞环境斑岩铜钼矿(Tang et al., 2020)中,岩浆的高氧逸度使得成矿岩体中岩浆磷灰石具有较高的硫含量。上述成矿带的研究与我们在Tavşanlı带、Biga半岛斑岩成矿带和Afyon-Konya成矿带斑岩矿床中观察到高氧逸度(图 5d)条件下的磷灰石高硫组成相一致。表明在俯冲、碰撞-后碰撞和伸展环境的斑岩矿床形成过程中,成矿期高氧逸度岩浆中的磷灰石常具有较高的SO3含量。

5.3 触发土耳其西部斑岩矿床形成的动力学机制——与新特提斯单向汇聚过程有关

根据斑岩矿床的形成时代、成矿岩浆的性质及与区内(或重大)地质事件的时空耦合关系,可以表征斑岩矿床形成时的动力学机制,进而约束板块之间俯冲、碰撞和陆内伸展等一系列构造过程及细节(Tosdal and Richards, 2001)。例如在洋-陆或洋-洋俯冲环境中,若成矿有关的埃达克质岩石,与高镁安山岩/富铌玄武岩、A型花岗岩具有密切的时空关系,则其形成可能与洋脊俯冲有关(Cooke et al., 2005)。依据安第斯位于平板俯冲正上方或缓俯冲向陡俯冲过渡区域的众多超大型斑岩铜矿建立的“平板俯冲模型”(Kay and Mpodozis, 2001; Reich et al., 2003),斑岩铜矿的形成可能与俯冲带结构和俯冲板片的几何形态有关,如俯冲板片上存在洋底高原(Gutscher et al., 2000; Rosenbaum et al., 2005),或俯冲板片上的转换断层(Richards and Holm, 2013)均可触发斑岩铜矿的形成。俯冲带极性反转(Solomon, 1990)或者碰撞使得俯冲作用中止的阶段(Sillitoe, 1997),能够在陆缘弧后背景下形成富金斑岩铜矿。在增生和碰撞造山带内,斑岩矿床形成的时空分布特征可以指示造山带增生及小陆块拼合过程(如中亚造山带西段,秦克章, 2000; Wan et al., 2011, 2017)。通过斑岩矿床的形成时代和区域上成岩-成矿时代朝缝合带方向变年轻的现象,可能说明深部发生俯冲板片回转过程(slab roll-back,如保加利亚地区俯冲相关矿床, Von Quadt et al., 2005; 西藏冈底斯主碰撞阶段斑岩矿床, Zhao et al., 2014)。在碰撞型斑岩铜矿则集中分布在后碰撞阶段(Hou et al., 2004)或挤压向伸展转换阶段(Qin et al., 2005),可能与俯冲大陆板片断离作用有关(slab break-off, De Boorder et al., 1998)。陆内环境的斑岩铜金矿或者斑岩钼矿,则可根据其形成时代判断与陆内伸展背景或者走滑转换背景相关(Wang et al., 2006; Richards, 2009)。更为重要的是,不同的构造动力学背景之间可以相互叠置衍生出复合模型,用来解释某些大型-超大型斑岩矿床及矿集区形成机制,如Gao et al. (2018)利用“洋脊俯冲和俯冲改造的基性下地壳”模型解释中亚造山带的部分斑岩矿床形成机制。Deng et al. (2021)提出三江地区新生代大尺度岩石圈构造变形——地壳差异性旋转造成壳幔圈层非耦合变形,活化早期预富集的成矿物质,形成北衙和玉龙巨型斑岩-矽卡岩矿集区。由此可见,当斑岩矿床形成于俯冲-碰撞-后碰撞一系列构造演化过程时,触发斑岩矿床形成的动力学机制往往是较为复杂的。

鉴于特提斯构造域鲜明的地质演化特征是南侧冈瓦纳大陆不断裂解、块体向北漂移并与劳亚大陆持续聚合(吴福元等, 2020),该特征被形象称为“特提斯号”单向列车(Wan et al., 2019)。而这种板块单向裂解-聚合过程在土耳其-伊朗地区尤为突出(Şengör and Yilmaz, 1981; Stampfli and Borel, 2004)。数值模拟研究(Menant et al., 2016)显示板块动力学和相关的软流圈影响着该地区弧与弧后区域岩浆活动的形成、运移和排布,而形成的熔体将弱化岩石圈并促进岩石圈的变形及其与软流圈的耦合。该三维板块动力学模型强调俯冲动力学过程与相关的软流圈流动对矿床在空间和时间上分布的影响,以及在伸展的弧后环境中变质穹窿对含矿流体循环-集中的重要性(Menant et al., 2018)。由此可见,这种俯冲体制是控制包括土耳其在内的白垩纪晚期以来地中海东部俯冲带的地球动力学和成矿演化重要动力学因素。在该种向北单向俯冲体制控制下,土耳其西部斑岩型矿床形成时代具有向南逐渐变年轻的特点。这反映其形成与分布受控于碰撞后俯冲的新特提斯洋板片(Vardar洋)后撤-回转过程(slab roll-back),即地幔楔热结构在板片后撤-板片回转过程中发生改变,热的软流圈地幔回流触发地幔楔部分熔融,形成Tavşanlı带与Biga半岛斑岩成矿带的斑岩型矿床。这种俯冲的洋壳发生板片回转和断裂过程,在土耳其以西的Apuseni-Banat-Timok-Srednogorie成矿带上形成时代向南迁移岛弧性质的火山岩和花岗岩,von Quadt et al. (2005)认为这些与钙碱性岩浆有关的斑岩型Cu-Au矿和浅成低温矿床可能与碰撞后俯冲板片的回转过程有关。而在特提斯东段西藏冈底斯斑岩矿床中,仅在古新世-始新世岩浆活动有关的斑岩矿床具有相似时代分布特征(Zhao et al., 2014, 2016),并被认为是与俯冲的新特提斯洋壳板片后撤的构造过程相关。这一时期,陆陆碰撞造成俯冲的新特提斯洋板片发生回转,引发的软流圈回流改变了地幔楔的热结构,并诱发同时期藏南林子宗组岛弧火山岩向南迁移(Lee et al., 2009)。由此可见,这种新特提斯洋向北俯冲过程中由于陆-陆碰撞形成板片后撤-板片回转过程是特提斯中-东段形成的斑岩矿床的一类重要触发机制。

此后土耳其西部地区经历了地壳隆升过程(图 7图 8),在中新世Afyon-Konya带形成了以Pınarbaşı Mo-Cu矿和Kisladaǧ Au矿为代表的斑岩型矿床。新近研究指出(Rabayrol and Hart, 2021),在西安纳托利亚中新世成矿作用主要集中在晚中新世(15~9Ma),之前是成矿较差的早中新世岩浆(21~18Ma),之后为贫矿的上新世至第四纪碱性岩浆。这种成矿集中期与中-东安纳托利亚地区岩浆岩有明显差别,即中东部早期为成矿岩浆,随后岩浆向含水少、氧化程度低和以地幔组分为主的源区特征演化。这种整体上岩浆活动特征与中新世俯冲的爱琴海与塞浦路斯板块回转-撕裂,及阿拉伯板块断裂过程有关,该过程往往造成贫水的软流圈地幔上涌和回流,进而减薄了安纳托利亚地区深部岩石圈地幔(Rabayrol and Hart, 2021)。此时控制该区域岩浆演化和斑岩矿床形成的动力学条件已由北侧Vardar洋俯冲消减造成的Tauride-Anatolide板块碰撞,转为由土耳其以南爱琴海板片俯冲控制的伸展区域。我们的研究指出,在这一中新世深部过程响应下同时期土耳其西部地区浅部地壳经历了明显减薄过程(图 8a, b),深部富集的岩石圈地幔减压发生部分熔融(Richards, 2009; Baker et al., 2016),形成的岩浆向着更高氧化程度演化(图 5d图 8c中绿色与黄色),这类高氧逸度的岩浆条件使得硫元素更容易保存在熔体中(如最高的熔体硫估计量),为后期成矿提供有利条件。该动力学推论与前人利用地震数据获得土耳其西部地壳厚度(Zhu et al., 2006)与Moho面深度研究结果相一致(Karabulut et al., 2013),即从Izmir-Ankara-Erzincan缝合带到Menders Massif再到地中海沿岸,地壳厚度从36km到28~30km减薄至25km,Moho面深度从32km到25km到20km。

因此,我们认为触发土耳其西部新生代斑岩矿床形成的动力学机制是:在新特提斯洋向北单向汇聚的背景下,北部始新世-渐新世斑岩矿床受控于碰撞后俯冲的新特提斯洋板片(Vardar洋)后撤-回转-断离过程;南部中新世斑岩矿床的形成受控于爱琴海板片俯冲控制的地壳伸展-减薄过程。

5.4 土耳其西部斑岩型矿床形成的深部过程

当关注到斑岩矿床形成的深部壳幔相互作用时,研究的着力点便集中到两个概念模型:一个是地幔楔部分熔融形成的玄武质岩浆MASH过程(熔融-同化-储存-均一过程,Hildreth and Moorbath, 1988; Richards, 2003; Li et al., 2016),普遍用来解释俯冲环境斑岩系统中酸性岩浆的形成;另一个是深部地壳热区过程(Deep Crustal Hot Zone过程,简称DCHZ过程,Annen et al., 2006; Kemp et al., 2007),该模型强调岩浆成分取决于玄武质岩浆的侵位深度及与其平衡的地温梯度,其中富水玄武质母岩浆形成于玄武岩分离结晶和地壳围岩部分熔融过程(由冷却玄武岩的热和水造成, Annen et al., 2006),目前有学者利用该模式解释特提斯中段碰撞环境斑岩矿床(Deng et al., 2018; Wan et al., 2018)和我国华南晚中生代与花岗岩有关矿床(Wang et al., 2021) 形成的深部过程。但应用这两个概念模型有一定的适用条件:MASH模式需要有持续的俯冲作用(俯冲流体造成地幔楔部分熔融)并提供稳定的热和基性岩浆,以便在壳幔边界附近停留和均一化。而DCHZ模式需要考虑到斑岩矿床的形成过程中发生基性岩浆注入过程(Hattori and Keith, 2001)。因此,MASH模式更容易解释北侧Izmir-Ankara-Erzincan缝合带附近的Tavşanlı与Biga半岛斑岩成矿带斑岩矿床的形成,因为白垩纪-古新世的Pontides斑岩铜矿带是由Vardar洋向北持续俯冲形成的,该时期岩浆岩的弧型岩浆特征(Yiğit, 2009; Kuşcu et al., 2019)表明至少在古新世该区域深部仍存在持续的俯冲作用。加之板片回转-断裂形成广泛的中酸性岩浆作用和混合作用,指示深部MASH模式可能是控制该区域斑岩矿床形成的重要深部过程。而对于Afyon-Konya带中Pınarbaşı斑岩Mo-Cu矿(18~17Ma)和Kisladaǧ斑岩Au矿(16~12Ma),本研究指出形成该时期其高氧逸度成矿岩浆可能直接继承于富集的岩石圈地幔部分熔融。伸展过程中地壳减薄造成富集地幔部分熔融形成玄武质岩浆,并且该时期熔体Cl含量明显高于Tavşanlı与Biga半岛斑岩矿床中熔体Cl含量(图 10c),表明岩浆磷灰石结晶的熔体环境存在明显差异。由于深部DCHZ带内底侵的玄武质岩浆能够同时为浅部岩浆房提供S和Cl(Zhu et al., 2018),本文更倾向于利用DCHZ模式解释中新世Afyon-Konya带斑岩矿床形成的深部过程。但在DCHZ过程中底侵玄武岩注入岩浆房的深度和时限则需要下一步更为精细的研究确定。

6 结论

本文以土耳其西段三个成矿带(Tavşanlı带、Biga半岛成矿带和Afyon-Konya带)内五个斑岩矿床的岩浆岩中锆石微量元素和磷灰石主量元素特征的研究,解析碰撞-伸展环境斑岩矿床形成的深部过程,获得如下认识:

(1) 锆石微量元素表明土耳其西部新生代斑岩矿床成矿岩浆大部分落于高水含量-高氧逸度区间;锆石Ti温度计估算土耳其西部斑岩成矿及其相关岩体的形成温度在650~900℃之间,结晶温度表现为斑岩Au矿>斑岩Cu-Mo=斑岩Mo-Cu矿>斑岩Mo矿,呈现递减趋势;锆石微量元素显示(Yb/Gd和Hf/Y-Th/U)其组成大部分受角闪石±榍石±磷灰石分离结晶控制;从始新世到中新世,锆石氧逸度Ce4+/Ce3+比值呈现出先降低(斑岩Cu-Mo到斑岩Mo)后升高(斑岩Mo-Cu到斑岩Au)的趋势,且斑岩Au和斑岩Cu-Mo相关岩体锆石形成时氧逸度高于斑岩Mo和斑岩Mo-Cu矿岩体。

(2) 始新世-渐新世斑岩型Cu-Mo与Mo矿床中岩浆相对具有高F和低Cl组成,中新世伸展环境形成的斑岩Mo-Cu矿和斑岩Au矿中岩浆Cl含量普遍较高,其中与成矿岩体同期的暗色包体或基性岩脉中磷灰石计算获得的岩浆硫含量均大于侵入体对应岩浆的硫含量,表明基性岩浆注入可能为岩浆房提供硫。

(3) 通过区域动力学分析和地壳厚度估算,本文认为触发土耳其西部新生代斑岩矿床形成的动力学机制是:在新特提斯洋向北单向汇聚的背景下,北部始新世-渐新世斑岩矿床受控于碰撞后俯冲的新特提斯洋板片(Vardar洋)后撤-回转-断离过程;南部中新世斑岩矿床的形成受控于爱琴海板片俯冲控制的地壳伸展-减薄过程。北侧Izmir-Ankara-Erzincan缝合带附近的Tavşanlı与Biga半岛斑岩成矿带始新世-渐新世斑岩矿床的形成与熔融-同化-储存-均一过程(MASH)有关;深部地壳热区过程(DCHZ)与中新世Afyon-Konya带斑岩矿床有关。

致谢      野外工作得到中国科学院地质与地球物理研究所李继磊副研究员、褚杨副研究员、冯振天博士、刘霞博士、景揭俊博士的帮助;测试工作得到中国科学院地质与地球物理研究所余可龙博士和贾立辉工程师的协助;成文过程受益于“特提斯地球动力系统重大研究计划”研究团队的学术交流,并得到了中国科学院地质与地球物理研究所万博研究员、曹明坚研究员、胡方泱副研究员和邹心宇博士,中国科学院青藏高原研究所李金祥研究员的帮助、指导和启发;审稿人的宝贵修改意见和建议,以及期刊编辑的精心修改,使文章得以完善。在此笔者及其团队一并致以诚挚的谢意。

在笔者学生时期对斑岩系统构造背景研究过程中,深得李继亮老师的帮助和教导,谨以此文纪念李继亮老师。

参考文献
Altunkaynak Ş. 2007. Collision-driven slab breakoff magmatism in northwestern Anatolia, Turkey. The Journal of Geology, 115(1): 63-82
Altunkaynak Ş and Genç ŞC. 2008. Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102(1-2): 316-340
Aluç A, Kuşcu İ, Peytcheva I, Cihan M and von Quadt A. 2020. The Late Miocene Öksüt high sulfidation epithermal Au-Cu deposit, Central Anatolia, Turkey: Geology, geochronology, and geochemistry. Ore Geology Reviews, 126: 103795
Angerer T, Kemp AIS, Hagemann SG, Witt WK, Santos JO, Schindler C and Villanes C. 2018. Source component mixing controls the variability in Cu and Au endowment along the strike of the Eastern Andean Cordillera in Peru. Contributions to Mineralogy and Petrology, 173(5): 36
Annen C, Blundy JD and Sparks RS. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505-539
Baker T, Bickford D, Juras S, Lewis P, Oztas Y, Ross K, Tukac A, Rabayrol F, Miskovic A, Friedman R, Creaser RA and Spikings R. 2016. The geology of the Kisladagğ porphyry gold deposit, Turkey. In: Richards JP (ed. ). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Special Publications of the Society of Economic Geologists, 19: 57-83
Bao B, Webster JD, Zhang DH, Goldoff BA and Zhang RZ. 2016. Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China: Implications for the behavior of halogens in mineralized porphyry systems. Ore Geology Reviews, 79: 443-462
Bozkaya Ö, Baksheev IA, Hanilçi N, Bozkaya G, Prokofiev VY, Öztaş Y and Banks DA. 2020. Tourmaline composition of the Kışladagğ porphyry Au deposit, Western Turkey: Implication of epithermal overprint. Minerals, 10(9): 789
Brunetti P, Miškovic A, Hart CJR, Davies A and Creaser R. 2016. Geology of the Halilagğa Porphyry Cu-Au Deposit and Emergence of an Eocene Porphyry Belt in NW Turkey. In: SEG-MJD 2016 Conference. Vancouver, BC, Canada: Society of Economic Geologists
Cao MJ, Li GM, Qin KZ, Evans NJ and Seitmuratova EY. 2016. Assessing the magmatic affinity and petrogenesis of granitoids at the giant Aktogai porphyry Cu deposit, Central Kazakhstan. American Journal of Science, 316(7): 614-668
Cao MJ, Qin KZ, Li GM, Evans NJ, Hollings P, Maisch M and Kappler A. 2017. Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): Mössbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses. Ore Geology Reviews, 86: 382-403
Cao MJ, Qin KZ, Li GM, Evans NJ, McInnes BIA, Li JX and Zhao JX. 2018. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet. Mineralium Deposita, 53(3): 299-309
Carroll MR and Rutherford MJ. 1987. The stability of igneous anhydrite: Experimental results and implications for sulfur behavior in the 1982 El-Chichon trachyandesite and other evolved magmas. Journal of Petrology, 28(5): 781-801
Chelle-Michou C and Chiaradia M. 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions to Mineralogy and Petrology, 172(11): 105
Chen L, Yan Z, Wang ZQ and Wang KM. 2017. Characteristics of apatite from 160~140Ma Cu(Mo) and Mo(W) deposits in East Qinling. Acta Geologica Sinica, 91(9): 1925-1941 (in Chinese with English abstract)
Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, 7(1): 43-46
Cooke DR, Hollings P and Walshe JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818
Davidson J, Turner S, Handley H, Macpherson C and Dosseto A. 2007. Amphibole "sponge" in arc crust?. Geology, 35(9): 787-790
De Boorder H, Spakman W, White SH and Wortel MJR. 1998. Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Planetary Science Letters, 164(3-4): 569-575
Delibaş O, Moritz R, Ulianov A, Chiaradia M, Saraç C, Revan KM and Göç D. 2016. Cretaceous subduction-related magmatism and associated porphyry-type Cu-Mo prospects in the Eastern Pontides, Turkey: New constraints from geochronology and geochemistry. Lithos, 248-251: 119-137
Delibaş O, Moritz R, Chiaradia M, Selby D, Ulianov A and Revan MK. 2017. Post-collisional magmatism and ore-forming systems in the Menderes massif: New constraints from the Miocene porphyry Mo-Cu Pınarbaşı system, Gediz-Kütahya, western Turkey. Mineralium Deposita, 52(8): 1157-1178 DOI:10.1007/s00126-016-0711-7
Deng C, Wan B, Dong LL, Talebian M, Windley BF, Dadashzadeh H, Mohammadi B and Barati B. 2018. Miocene porphyry copper deposits in the Eastern Tethyan orogenic belt: Using Sr, O isotopes and Sr/Y ratios to predict the source of ore-related and ore-barren magmas. Gondwana Research, 62: 14-26
Deng J, Wang QF, Li GJ and Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299
Deng J, Wang QF, Gao L, He WY, Yang ZY, Zhang SH, Chang LJ, Li GJ, Sun X and Zhou DQ. 2021. Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet. Geology, 49(4): 428-432
Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP and Biju-Duval B. 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics, 123(1-4): 241-315
Dilek Y and Altunkaynak Ş. 2010. Geochemistry of Neogene-Quaternary alkaline volcanism in western Anatolia, Turkey, and implications for the Aegean mantle. International Geology Review, 52(4-6): 631-655
Dilles JH, Kent AJR, Wooden JL, Tosdal RM, Koleszar A, Lee RG and Farmer LP. 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1): 241-251
Doherty AL, Webster JD, Goldoff BA and Piccoli PM. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid(s)-apatite systems at 50MPa and 850~950℃. Chemical Geology, 384: 94-111
Ersoy YE, Helvacı C, Uysal İ, Karaoğlu Ö, Palmer MR and Dindi F. 2012. Petrogenesis of the Miocene volcanism along the İzmir-Balıkesir Transfer Zone in western Anatolia, Turkey: Implications for origin and evolution of potassic volcanism in post-collisional areas. Journal of Volcanology and Geothermal Research, 241-242: 21-38
Ersoy EY and Palmer MR. 2013. Eocene-Quaternary magmatic activity in the Aegean: Implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos, 180-242: 5-24
Eyuboglu Y, Dudas FO, Thorkelson D, Zhu DC, Liu Z, Chatterjee N, Yi K and Santosh M. 2017. Eocene granitoids of northern Turkey: Polybaric magmatism in an evolving arc-slab window system. Gondwana Research, 50: 311-345
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429-437
Gao J, Klemd R, Zhu MT, Wang XS, Li JL, Wan B, Xiao WJ, Zeng QD, Shen P, Sun JG, Qin KZ and Campos E. 2018. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review. Journal of Asian Earth Sciences, 165: 7-36
Grieve P. 2009. Technical Report on the Halilaga Exploration Property, Canakkale, Western, Turkey. Technical Report by Geology and Resources Solutions Ltd. for Fronteer Development Group Inc., 1-157
Grondahl C and Zajacz Z. 2017. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: The Bingham Canyon example. Earth and Planetary Science Letters, 480: 53-65
Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000. Can slab melting be caused by flat subduction?. Geology, 28(6): 535-538
Güraslan IN and Altunkaynak Ş. 2019. Role of mantle and lower continental crust in the genesis of Eocene post-collisional granitoids: Insights from the Topuk pluton (NW Turkey). Journal of Asian Earth Sciences, 179: 365-384
Harangi S, Downes H, Thirlwall M and Gméling K. 2007. Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian Arc, eastern central Europe. Journal of Petrology, 48(12): 2261-2287
Harris DM and Anderson AT. 1984. Volatiles H2O, CO2, and Cl in a subduction related basalt. Contributions to Mineralogy and Petrology, 87(2): 120-128 DOI:10.1007/BF00376218
Hattori KH and Keith JD. 2001. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Mineralium Deposita, 36(8): 799-806 DOI:10.1007/s001260100209
Hildreth W and Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455-489 DOI:10.1007/BF00372365
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155
Hou ZQ, Gao YF, Meng XJ, Qu XM and Huang W. 2004. Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract)
Hou ZQ and Yang ZM. 2009. Porphyry deposits in continental settings of China: Geological characteristics, magmatic-hydrothermal system, and metallogenic model. Acta Geologica Sinica, 83(12): 1779-1817 (in Chinese with English abstract)
Hou ZQ and Zhang HR. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70: 346-384
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015a. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015b. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575
Hu FY, Ducea MN, Liu SW and Chapman JB. 2017. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application. Scientific Reports, 7: 7058
İmer A, Richards JP and Muehlenbachs K. 2016. Hydrothermal evolution of the Çöpler porphyry-epithermal Au deposit, Erzincan Province, Central Eastern Turkey. Economic Geology, 111(7): 1619-1658
Işık V, Seyitogğlu G and Çemen İ. 2003. Ductile-brittle transition along the Alaşehir detachment fault and its structural relationship with the Simav detachment fault, Menderes massif, western Turkey. Tectonophysics, 374(1-2): 1-18
Janković S. 1997. The Carpatho-Balkanides and adjacent area: A sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32(5): 426-433 DOI:10.1007/s001260050110
Johnson ER, Wallace PJ, Cashman KV and Delgado Granados H. 2010. Degassing of volatiles (H2O, CO2, S, Cl) during ascent, crystallization, and eruption at mafic monogenetic volcanoes in central Mexico. Journal of Volcanology and Geothermal Research, 197(1-4): 225-238
Karabulut H, Paul A, Afacan Ergün T, Hatzfeld D, Childs DM and Aktar M. 2013. Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia. Geophysical Journal International, 194(1): 450-464
Karacık Z and Tüysüz O. 2010. Petrogenesis of the Late Cretaceous Demirköy Igneous Complex in the NW Turkey: Implications for magma genesis in the Strandja Zone. Lithos, 114(3-4): 369-384
Karaoğlu Ö, Helvacı C and Ersoy Y. 2010. Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos, 119(3-4): 193-210
Kay SM and Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11(3): 4-9
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983
Kerrich R, Goldfarb R, Groves D and Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distribution, and origins. In: Hagemann SG and Brown PE (eds. ). Gold in 2000. Reviews in Economic Geology, 13: 501-551
Kuşcu İ, Tosdal RM and Gençaliogğlu-Kuşcu G. 2019. Episodic porphyry Cu (-Mo-Au) formation and associated magmatic evolution in Turkish Tethyan collage. Ore Geology Reviews, 107: 119-154
Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q and Zhang Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20-35
Lee RG, Byrne K, D'Angelo M, Hart CJR, Hollings P, Gleeson SA and Alfaro M. 2021. Using zircon trace element composition to assess porphyry copper potential of the Guichon Creek batholith and Highland Valley Copper deposit, south-central British Columbia. Mineralium Deposita, 56(2): 215-238
Li GM and Rui ZY. 2004. Diagenetic and mineralization ages for the porphyry copper deposits in the Gangdise metallogenic belt, southern Xizang. Geotectonica et Metallogenia, 28(2): 165-170 (in Chinese with English abstract)
Li GM, Cao MJ, Qin KZ, Hollings P, Evans NJ and Seitmuratova EY. 2016. Petrogenesis of ore-forming and pre/post-ore granitoids from the Kounrad, Borly and Sayak porphyry/skarn Cu deposits, Central Kazakhstan. Gondwana Research, 37: 408-425
Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ and Zhang XN. 2017. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions. Gondwana Research, 41: 110-127
Li JX, Qin KZ, Li GM, Xiao B, Chen L and Zhao JX. 2011. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: Melting of thickened juvenile arc lower crust. Lithos, 126(3-4): 265-277
Li JX, Li GM, Evans NJ, Zhao JX, Qin KZ and Xie J. 2021. Primary fluid exsolution in porphyry copper systems: Evidence from magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56(2): 407-415 DOI:10.1007/s00126-020-01013-4
Li WK, Cheng YQ and Yang ZM. 2019. Geo-fO2: Integrated software for analysis of magmatic oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542-2555
Li WR and Costa F. 2020. A thermodynamic model for F-Cl-OH partitioning between silicate melts and apatite including non-ideal mixing with application to constraining melt volatile budgets. Geochimica et Cosmochimica Acta, 269: 203-222
Liaghat S and Tosdal R. 2008. Apatite chemical composition and textures as a probe into magmatic conditions at Galore Creek porphyry copper-gold deposit, British Columbia. Geochimica et Cosmochimica Acta, 72(12): A550
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546
Loader MA, Wilkinson JJ and Armstrong RN. 2017. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility. Earth and Planetary Science Letters, 472: 107-119
Lu YJ, Kerrich R, Kemp AIS, McCuaig TC, Hou ZQ, Hart CJR, Li ZX, Cawood PA, Bagas L, Yang ZM, Cliff J, Belousova EA, Jourdan F and Evans NJ. 2013. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, western Yangtze Craton, China: Compositional characteristics, sources, and implications for continental collision metallogeny. Economic Geology, 108(7): 1541-1576
Lu YJ, Loucks RR, Fiorentini ML, McCuaig TC, Evans NJ, Yang ZM, Hou ZQ, Kirkland CL, Parra-Avila LA and Kobussen A. 2016. Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. In: Richards JP (ed. ). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Special Publications of the Socitety of Economic Geologists, 19: 329-347
Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-584
Mathez EA and Webster JD. 2005. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta, 69(5): 1275-1286
McFall K, Roberts S, McDonald I, Boyce AJ, Naden J and Teagle D. 2019. Rhenium enrichment in the Muratdere Cu-Mo (Au-Re) porphyry deposit, Turkey: Evidence from stable isotope analyses (δ34S, δ18O, δD) and laser ablation-inductively coupled plasma-mass spectrometry analysis of sulfides. Economic Geology, 114(7): 1443-1466
Menant A, Sternai P, Jolivet L, Guillou-Frottier L and Gerya T. 2016. 3D numerical modeling of mantle flow, crustal dynamics and magma genesis associated with slab roll-back and tearing: The eastern Mediterranean case. Earth and Planetary Science Letters, 442: 93-107
Menant A, Jolivet L, Tuduri J, Loiselet C, Bertrand G and Guillou-Frottier L. 2018. 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geology Reviews, 94: 118-135
Moix P, Beccaletto L, Kozur HW, Hochard C, Rosselet F and Stampfli GM. 2008. A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region. Tectonophysics, 451(1-4): 7-39
Murakami H, Watanabe Y and Stein H. 2005. Re-Os ages for molybdenite from the Tepeoba breccia-centered Cu-Mo-Au deposit, western Turkey: Brecciation-triggered mineralization. In: Mineral Deposit Research: Meeting the Global Challenge. Beijing, China: Springer, 805-808
Nakov R, Kerestedjian T and Kunov A. 2002. The silistar intrusive, eastern Srednogorie zone, Bulgaria: Structural data and potential for porphyry copper and epithermal systems. Turkish Journal of Earth Sciences, 11: 217-229
Okay AI and Tüysüz O. 1999. Tethyan sutures of northern Turkey. In: Durand B, Jolivet L, Horvath L and Serranne M (eds. ). The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156(1): 475-515
Ohta E, Dogan R, Batic H and Abe M. 1998. Geology and mineralization of Derekoy porphyry copper deposit, northern Thrace, Turkey. Bulletin. Geological Survey of Japan, 39(2): 115-134
Oygür V. 1997. Anatomy of an epithermal mineralization: Mumcu (Balıkesir-Sındırgı), inner-western Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 119: 29-39
Oyman T and Dyar MD. 2007. Chemical substitutions in oxidized tourmaline in granite-related mineralized hydrothermal systems, western Turkey. The Canadian Mineralogist, 45(6): 1397-1413
Özen Y and Arık F. 2019. Geochemical, stable isotopic (S, O, H, C), microthermometric and geochronological (U-Pb) evidence on the genesis of the Pınarbaşı porphyry Cu-Mo mineralization (Gediz-Kütahya, Western Turkey). Journal of Geochemical Exploration, 204: 142-166
Pan YM and Fleet ME. 2002. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48(1): 13-49
Parat F and Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150(6): 643-651 DOI:10.1007/s00410-005-0041-8
Parat F, Holtz F and Klügel A. 2011. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: Constraints on the volatile partitioning in evolved alkaline magmas. Contributions to Mineralogy and Petrology, 162(3): 463-478 DOI:10.1007/s00410-011-0606-7
Peng GY, Luhr JF and McGee JJ. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82(11-12): 1210-1224
Prelević D, Akal C, Romer RL, Mertz-Kraus R and Helvacı C. 2015. Magmatic response to slab tearing: Constraints from the Afyon alkaline volcanic complex, western Turkey. Journal of Petrology, 56(3): 527-562
Profeta L, Ducea MN, Chapman JB, Paterson SR, Gonzales SMH, Kirsch M, Petrescu L and DeCelles PG. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5: 17786
Qin KZ. 2000. Metallogenesis in relation to Central-Asia style orogeny of Northern Xinjiang. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-195 (in Chinese with English summary)
Qin KZ, Tosdal RM, Li GM, Zhang Q and Li JL. 2005. Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. In: Zhao C and Guo B (eds. ). Mineral Deposit Research: Meeting the Global Challenge. Beijing: China Land Publishing House, 44-47
Qin KZ. 2012. Thematic articles "Porphyry Cu-Au-Mo deposits in Tibet and Kazakhstan". Resource Geology, 62(1): 1-3
Qin KZ, Xia DX, Li GM, Xiao B, Duo J, Jiang GW and Zhao JX. 2014. Qulong Porphyry-Skarn Type Cu-Mo Deposit, Tibet. Beijing: Science Press, 1-316 (in Chinese)
Rabayrol F and Hart CJR. 2021. Petrogenetic and tectonic controls on magma fertility and the formation of post-subduction porphyry and epithermal mineralization along the Late Cenozoic Anatolian Metallogenic Trend, Turkey. Mineralium Deposita, 56(2): 279-306 DOI:10.1007/s00126-020-00967-9
Reich M, Parada MA, Palacios C, Dietrich A, Schultz F and Lehmann B. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile: Metallogenic implications. Mineralium Deposita, 38(7): 876-885 DOI:10.1007/s00126-003-0369-9
Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533
Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250
Richards JP. 2015a. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70: 323-345
Richards JP. 2015b. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27-45
Richards SW and Holm RJ. 2013. Tectonic preconditioning and the formation of giant porphyry deposits. In: Colpron M, Bissig T, Rusk BG and Thompson JFH (eds. ). Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Littleton, CO, USA: Society of Economic Geologists, 17: 265-275
Riker J, Humphreys MCS, Brooker RA, De Hoog JCM and EIMF. 2018. First measurements of OH-C exchange and temperature-dependent partitioning of OH and halogens in the system apatite-silicate melt. American Mineralogist, 103(2): 260-270
Rolland Y, Billo S, Corsini M, Sosson M and Galoyan G. 2009. Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): Linking Tethys subduction history from E-Turkey to W-Iran. International Journal of Earth Sciences, 98(3): 533-550
Rosenbaum G, Giles D, Saxon M, Betts PG, Weinberg RF and Duboz C. 2005. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth and Planetary Science Letters, 239(1-2): 18-32
Rossetti F, Asti R, Faccenna C, Gerdes A, Lucci F and Theye T. 2017. Magmatism and crustal extension: Constraining activation of the ductile shearing along the Gediz detachment, Menderes Massif (western Turkey). Lithos, 282-283: 145-162
Rui ZY, Huang CK, Qi GM, Xu J and Zhang HT. 1984. Porphyry Copper (Molybdenum) Deposits of China. Beijing: Geological Publishing House, 1-350 (in Chinese)
Scott K, Doerksen, Gray J, Pilotto D, Kirkham G and Rykaart M. 2012. Preliminary economic assessment and technical report for the Halilag a project, Turkey. Canadian National Instrument Technical Report, 43101: 1-243
Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD. 2005. Porphyry deposits: Characteristics and origin of hypogene features. In: Economic Geology, 100th Anniversary Volume. Littleton, Colorado: Society of Economic Geologist, 251-298
Şengör AMC and Yilmaz Y. 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3-4): 181-241
Seo JH, Guillong M, Aerts M, Zajacz Z and Heinrich CA. 2011. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chemical Geology, 284(1-2): 35-44
Sillitoe RH. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3): 373-388
Sillitoe RH. 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41
Sillitoe RH. 2018. Why no porphyry copper deposits in Japan and South Korea?. Resource Geology, 68(2): 107-125
Sinclair WD. 2007. Porphyry deposits. In: Goodfellow WD (ed. ). Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 5: 223-243
Smith MT, Lepore WA, Incekaraoglu T, Shabestari P, Boran H and Raabe K. 2014. Küçükdagğ: A new, high sulfidation epithermal Au-Ag-Cu deposit at the TV Tower property in western Turkey. Economic Geology, 109(6): 1501-1511
Smith MT, Lepore WA, Incekaraoğlu T, Boran H, Barrios A, Leroux G, Ross K, Büyüksolak A, Sevimli A and Raabe K. 2016. High-sulfidation epithermal Au and Porphyry Cu-Au mineralization at the Karaayi target, Biga peninsula, northwestern Turkey. In: Richards JP (ed. ). Tectonics and Metallogeny of the Tethyan Orogenic Belt. Littleton, CO: Society of Economic Geologists, Inc., 19(4): 85-112
Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology, 18(7): 630-633
Sönmez ŞU and Kuşcu İ. 2020. Geology, geochemistry, geochronology and genesis of the Late Miocene porphyry Cu-Au-Mo mineralization at Afyon-Sandıklı (AS) prospect, western Anatolia, Turkey. Ore Geology Reviews, 121: 103506
Stampfli GM. 2000. Tethyan oceans. In: Bozkurt E, Winchester JA and Piper JDA (eds. ). Tectonics and Magmatism in Turkey and Surrounding Area. Geological Society, London, Special Publications, 173: 1-23
Stampfli GM and Borel GD. 2004. The TRANSMED transects in space and time: Constraints on the paleotectonic evolution of the mediterranean domain. In: Cavazza W, Roure F, Spakman W, Stampfli GM and Ziegler PA (eds. ). The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle. Berlin, Heidelberg: Springer, 53-80
Stock MJ, Humphreys MCS, Smith VC, Isaia R and Pyle DM. 2016. Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nature Geoscience, 9(3): 249-254
Stormer JC Jr, Pierson ML and Tacker RC. 1993. Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78(5-6): 641-648
Streck MJ and Dilles JH. 1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology, 26(6): 523-526
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345
Tang M, Lee CTA, Ji WQ, Wang R and Costin G. 2020. Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances, 6(31): eaba6342
Tang RL, Luo HS and Li YQ. 1995. The Geology of Yulong Porphyry Copper (Molybdenum) Ore Belt, Xizang (Tibet). Beijing: Geological Publishing House, 1-320 (in Chinese with English abstract)
Titley SR. 1997. Porphyry copper geology: A late century view. Mining Engineering, 49(7): 57-63
Topuz G, Okay AI, Altherr R, Schwarz WH, Siebel W, Zack T, Satır M and Şen C. 2011. Post-collisional adakite-like magmatism in the Agğvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 125(1-2): 131-150
Tosdal RM and Richards JP. 2001. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. In: Richards JP and Tosdal RM (eds. ). Stuctural Controls on Ore Genesis. Reviews in Economic Geology, Society of Economic Geologists, 14: 157-181
Van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE and Wortel R. 2005. Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33(4): 325-328
Von Quadt A, Moritz R, Peytcheva I and Heinrich CA. 2005. 3:Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria. Ore Geology Reviews, 27(1-4): 95-126
Wan B, Xiao WJ, Zhang LC, Windley BF, Han CM and Quinn CD. 2011. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Implications for the accretionary history of the southern Altaids. Journal of the Geological Society, 168(6): 1311-1321
Wan B, Xiao WJ, Windley BF, Gao J, Zhang LC and Cai KD. 2017. Contrasting ore styles and their role in understanding the evolution of the Altaids. Ore Geology Reviews, 80: 910-922
Wan B, Deng C, Najafi A, Hezarehd M, Talebian M, Dong LL, Chen L and Xiao WJ. 2018. Fertilizing porphyry Cu deposits through deep crustal hot zone melting. Gondwana Research, 60: 179-185
Wan B, Wu FY, Chen L, Zhao L, Liang XF, Xiao WJ and Zhu RX. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China (Earth Sciences), 62(12): 2005-2016
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144
Wang R, Richards JP, Hou ZQ, Yang ZM and DuFrane SA. 2014a. Increased magmatic water content: The key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese Belt, Tibet. Economic Geology, 109(5): 1315-1339
Wang R, Richards JP, Hou ZQ, Yang ZM, Gou ZB and DuFrane SA. 2014b. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese Belt, Tibet: Implication for collision-related porphyry Cu-Mo±Au mineralization. Economic Geology, 109(7): 1943-1965
Wang R, Richards JP, Zhou LM, Hou ZQ, Stern RA, Creaser RA and Zhu JJ. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68-94
Wang R, Collins WJ, Weinberg RF, Li JX, Li QY, He WY, Richards JP, Hou ZQ, Zhou LM and Stern RA. 2016. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: Direct evidence for crust-mantle mixing and metamorphism in the deep crust. Contributions to Mineralogy and Petrology, 171(7): 62 DOI:10.1007/s00410-016-1272-6
Wang XL, Liu JX, Lü QT, Wang S, Wang D and Chen X. 2021. Evolution of deep crustal hot zones constrained by the diversity of Late Mesozoic magmatic rocks in SE China. Ore Geology Reviews, 134: 104143
Wang ZT, Qin KZ and Zhang SL. 1994. Geology and Exploration of Large Copper Deposits. Beijing: Metallurgical Industry Press, 1-162 (in Chinese with English abstract)
Webster JD, Tappen CM and Mandeville CW. 2009. Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. Ⅱ: Felsic silicate systems at 200MPa. Geochimica et Cosmochimica Acta, 73(3): 559-581
Webster JD and Piccoli PM. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11(3): 177-182
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract)
Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L and Zhao JX. 2012. Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo Deposit, Southern Tibet, China. Resource Geology, 62(1): 4-18
Xu B, Griffin WL, Xiong Q, Hou ZQ, O'Reilly SY, Guo Z, Pearson NJ, Gréau Y, Yang ZM and Zheng YC. 2017. Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision. Geology, 45(1): 51-54
Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ and Song YC. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133-159
Yang ZM, Hou ZQ, Chang ZS, Li QY, Liu YF, Qu HC, Sun MY and Xu B. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245: 243-257
Yiğit O. 2006. Gold in Turkey: A missing link in Tethyan metallogeny. Ore Geology Reviews, 28(2): 147-179
Yiğit O. 2009. Mineral deposits of Turkey in relation to Tethyan metallogeny: Implications for future mineral exploration. Economic Geology, 104(1): 19-51
Yiğit O. 2012. A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46: 118-148
Zajacz Z and Halter W. 2009. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth and Planetary Science Letters, 282(1-4): 115-121
Zhang DH and Audétat A. 2017. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Economic Geology, 112(2): 221-244
Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L, Yang YH, Li C and Liu YS. 2014. Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geology Reviews, 56: 312-326
Zhao JX, Li GM, Evans NJ, Qin KZ, Li JX and Zhang XN. 2016. Petrogenesis of Paleocene-Eocene porphyry deposit-related granitic rocks in the Yaguila-Sharang ore district, central Lhasa terrane, Tibet. Journal of Asian Earth Sciences, 129: 38-53
Zhao JX, Qin KZ, Evans NJ, Li GM and Shi RZ. 2020. Volatile components and magma-metal sources at the Sharang porphyry Mo deposit, Tibet. Ore Geology Reviews, 126: 103779
Zhu DC, Wang Q, Cawood PA, Zhao ZD and Mo XX. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223
Zhu JJ, Richards JP, Rees C, Creaser R, DuFrane SA, Locock A, Petrus JA and Lang J. 2018. Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the red chris porphyry Cu-Au Deposit, Northern British Columbia, Canada. Economic Geology, 113(5): 1047-1075
Zhu LP, Mitchell BJ, Akyol N, Cemen I and Kekovali K. 2006. Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1): B01301
Zou XY, Jiang JL, Qin KZ, Zhang YG, Yang W and Li XH. 2021. Progress in the principle and application of zircon trace element. Acta Petrologica Sinica, 37(4): 985-999 (in Chinese with English abstract)
陈雷, 闫臻, 王宗起, 王坤明. 2017. 东秦岭160~140Ma Cu(Mo)和Mo(W)矿床磷灰石成分特征. 地质学报, 91(9): 1925-1941.
侯增谦, 高永丰, 孟祥金, 曲晓明, 黄卫. 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248.
侯增谦, 杨志明. 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型. 地质学报, 83(12): 1779-1817.
李光明, 芮宗瑶. 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学, 28(2): 165-170.
秦克章. 2000. 新疆北部中亚型造山与成矿作用. 博士后研究工作报告. 北京: 中国科学院地质与地球物理研究所, 1-195
秦克章, 夏代祥, 李光明, 肖波, 多吉, 蒋光武, 赵俊兴. 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床. 北京: 科学出版社, 1-316.
芮宗瑶, 黄崇轲, 齐国明, 徐珏, 张洪涛. 1984. 中国斑岩铜(钼) 矿床. 北京: 地质出版社, 1-350.
唐仁鲤, 罗怀松, 李荫清. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社, 1-320.
王之田, 秦克章, 张守林. 1994. 大型铜矿地质与找矿. 北京: 冶金工业出版社, 1-162.
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
邹心宇, 蒋济莲, 秦克章, 张毅刚, 杨蔚, 李献华. 2021. 锆石微量元素的理论基础及其应用研究进展. 岩石学报, 37(4): 985-999.