岩石学报  2021, Vol. 37 Issue (7): 2256-2270, doi: 10.18654/1000-0569/2021.07.17   PDF    
前陆冲断带构造逆冲推覆作用与岩石响应特征——以库车坳陷东部中-下侏罗统为例
张荣虎1,2, 魏国齐1, 王珂1,2, 魏红兴3, 杨钊1,2, 余朝丰1,2, 智凤琴1,2     
1. 中国石油天然气股份有限公司勘探开发研究院, 北京 100086;
2. 中国石油天然气股份有限公司杭州地质研究院, 杭州 310023;
3. 中国石油天然气股份有限公司塔里木油田分公司, 库尔勒 841000
摘要: 构造成岩作用一直是控制盆地深层-超深层、前陆冲断带岩石性质的关键因素,尤其是构造逆冲推覆变形及其对岩石的挤压减孔、破裂造缝和流体改造等作用。为了明确库车坳陷东部中-下侏罗统的岩石构造成岩效应和有利储集性岩石分布,本文基于大量露头实测分析、钻井、地震和测井资料对库车河地区中-下侏罗统开展了构造-岩石响应和有利储层分布预测研究。结果表明:喜山晚期南天山隆起强烈的逆冲推覆活动产生巨大的侧向构造挤压,库车河地区最大有效古应力为60~120MPa,迪北地区为90~120Mpa,吐格尔明地区为60~90MPa。构造挤压岩石成岩效应有4种典型特征:(1)急剧降低基质孔隙度,构造减孔量为8.8%/100MPa;(2)破裂造缝大大增加渗透率,网状裂缝大大提高了岩石的渗透率10~100倍;(3)快速提高地层流体压力值,形成异常高压;(4)加速水-岩相互作用强度,沿缝网系统溶蚀作用增强,局部有利于胶结物发育和富集。构造挤压致使岩石微观结构、宏观非均质性增强,吐格尔明地区中-下侏罗统发育2类规模有利储集性岩石,其中阿合组累计厚度超过200m,吐格尔明背斜北翼致密性岩石孔隙度为6%~10%,南翼岩石孔隙度为15%~20%;克孜勒努尔组-阳霞组发育中-厚层相对优质孔隙性岩石,累计厚度大于150m,孔隙度一般9%~15%。为库车坳陷东部中-下侏罗统多种类型油气藏高效勘探提供重要依据。
关键词: 库车坳陷    中下侏罗统    逆冲推覆    构造成岩    岩石响应    储层性质    
Tectonic thrust nappe activity and sandstone rock response characteristics in foreland thrust belt: A case study of Middle and Lower Jurassic, Kuqa Depression, Tarim Basin
ZHANG RongHu1,2, WEI GuoQi1, WANG Ke1,2, WEI HongXing3, YANG Zhao1,2, YU ChaoFeng1,2, ZHI FengQin1,2     
1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100086, China;
2. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China;
3. PetroChina Tarim Oilfield Company, Kurla 841000, China
Abstract: Tectonic diagenesis of sandstones has always been the key factor to control the reservoir properties in the deep, ultra-deep and thrust zones of foreland basins, especially the tectonic thrust nappe deformation and its effects on the rock such as compression reduction, fracture and fluid transformation, which has also become the core of oil and gas exploration, production and research. In order to clarify the tectonic evolution of the Middle and Lower Jurassic in the eastern Kuqa Depression, the rock effect caused by rock structures and the distribution of favorable rocks, this paper carried out a study on the structure-rock response and the evaluation of favorable zones based on the measured analysis of a large number of outcrops, drilling, seismic and logging data. The results show that the southern Tianshan uplift in the Late Himalayan Period produced a huge lateral tectonic compression, and its maximum effective paleostress was 60~120MPa in Kuqa river area, 90~120MPa in Dibei area, and 60~90MPa in Tugerming area, respectively. There are four typical characteristics of the compressive diagenesis effects to the rock structures: (1) the porosity of matrix is sharply reduced, and the structural porosity is 8.8%/100MPa; (2) the fractures greatly increase permeability, and reticular fractures greatly increase rock permeability by 10~100 times; (3) the formation fluid pressure is increased rapidly to form abnormal high pressure; (4) the intensity of water-rock interaction is accelerated, and the dissolution of the system along the seam network is enhanced. As a result of tectonic compression, the microstructure and macroscopic heterogeneity of the rock have been enhanced. Two types of favorable reservoir rocks have developed in the Middle and Lower Jurassic in the Tuguerming area. The accumulative thickness of the rocks in the Ahe Formation is over 200m, and the general porosity is 6%~10%. The medium-thick rocks of the Gezilenur Formation and Yangxia Formation are of relatively high quality, with a cumulative thickness of more than 150m and a general porosity of 9%~15%. It provides an important basis for the efficient exploration of various types of Middle and Lower Jurassic rocks in the eastern Kuqa Depression.
Key words: Kuqa Depression    Lower-Middle Jurassic    Tectonic thrust    Tectonic diagenesis    Rock response    Reservoir properties    

对构造逆冲推覆与成岩作用相互关系的研究,前人主要在高温变质领域开展了较多的工作。例如,将构造作用引起岩石、矿物的物质调整而产生的岩相和建造过程称为构造动力成岩成矿作用,强调在高温条件下岩石变形或者岩浆结晶时的地球化学作用,并将矿物中元素的调整与应力有机地结合起来,对指导金属矿藏的形成和勘探具有重要意义(杨开庆, 1986邱小平等, 1993)。国外学者认为构造成岩作用主要研究变形作用和变形构造与沉积物化学变化之间的相互关系,并用于研究和评价储层天然裂缝的孔隙度演化过程(Eichhubl et al., 2009Laubach et al., 2010)。天然裂缝是构造成岩作用的典型产物,其孔隙演化及有效性主要取决于构造作用形成裂缝以后发生的成岩胶结及溶蚀作用(Fossen et al., 2007English et al., 2017)。构造和成岩作用之间相互作用的认识在包括预测注入深部地层的流体行为和非常规深部储层中开发油气资源等在内的大范围的应用中越来越重要(Ferraro et al., 2019Weisenberger et al., 2019)。化学和力学过程的相互作用在含有热反应流体和遭受溶解作用、胶结物沉淀和其他化学反应的沉积岩中并不罕见,在变质作用的高温条件下,这些相互作用十分重要(Fossen, 2010ábalos and Elorza, 2012)。

塔里木盆地是中国面积最大的含油气盆地,也是油气分布与地质成因最复杂的盆地(Zhu et al., 2012a, b201520182020)。库车坳陷北部构造带位于塔里木盆地北部南天山山前带(图 1),西从克拉苏河开始,东至阳霞凹陷北缘野云2井,北始于南天山前,南至克拉苏构造带,勘探面积为5900km2;东西长280km,南北宽约30km,自东向西可划分为东段(吐格尔明构造带)、中段(迪北构造带)、西段(巴什构造带)(贾承造等, 2002汪新等, 2010王招明, 2014);库车东部包括迪北构造带、吐格尔明构造带、迪那构造带和阳霞凹陷及周缘地区。全国第四次资源评价表明北部构造带(含巴什构造带)天然气资源量为1.73万亿m3,石油资源量为1.74亿t。持续的勘探发现使得侏罗系成为“西气东输”的储备层系、库车天然气勘探的战略接替领域。前人对这一领域研究认为:北部构造带构造样式具有东西分段特征,总体构造单一,以斜坡背景下的断背斜、断鼻及断块圈闭为主(魏红兴等,2016张荣虎等,2019);中-下侏罗统阿合组发育宽缓湖盆辫状河三角洲平原-前缘巨厚河道砂体(何宏等,2002张惠良等,2002黄克难等,2003顾家裕等,2004);山前带中浅层、深层-超深层砂岩岩石非均质性强,既受沉积微相岩相控制(张荣虎等,2008高志勇等,2013),也受构造挤压控制,特别是构造挤压应力控制岩石物理性质特征明显(寿建峰等, 2003, 2004李军等, 2004, 2011李忠等,2009韩登林等,2015杨宪彰等,2016),而且在常规岩石及致密砂岩岩石均存在(陈子炓等,2001杨帆等,2002寿建峰等, 2007张妮妮等,2015);岩石构造挤压主要受控于岩矿特征、构造样式和最大有效古应力(孙宝珊等,1996鲍洪志等,2009季宗镇等,2010张荣虎等,2011张惠良等,2012)。为了明确在库车坳陷东部中-下侏罗统构造演化、逆冲推覆挤压古应力与岩石非均质性的关系,明确规模有效岩石成因及其空间展布,本文开展了基于露头、钻井、测井和微观实验的的综合研究,为优选有利储集性岩石方向提供重要依据。

图 1 库车坳陷东部中-下侏罗统地质特征综合图 Fig. 1 Geological characteristics of the Middle-Lower Jurassic in the eastern Kuqa Dpression
1 地质概况

库车坳陷位于塔里木盆地北部,是在晚二叠世之前的古生代褶皱基底上历经晚二叠世-三叠纪前陆盆地、侏罗纪-古近纪伸展坳陷盆地和新近纪-第四纪再生前陆盆地演化而形成的。库车坳陷中东部经历多期构造运动,尤其是喜马拉雅运动晚期以来的构造运动导致构造变形强烈,逆冲断裂发育。中-下侏罗统包括阿合组(J1a)、阳霞组(J1y)和克孜勒努尔组(J2kz),其中阿合组自上而下为第一段(砂砾岩夹泥岩段)、第二段(上砂砾岩段)、第三段(下砂砾岩段);阳霞组自上而下为第一段(炭质泥岩段)、第二段(上泥岩煤层段)、第三段(砂砾岩段)和第四段(下泥岩煤层段);克孜勒努尔组自上而下为第一段(上泥岩段)、第二段(砂泥岩互层段)、第三段(下泥岩段)和第四段(煤层砂泥岩段)。阿合组主要为辫状河三角洲上平原沉积,阳霞组主要为辫状河三角洲下平原-前缘沉积,克孜勒努尔组主要为辫状河三角洲前缘沉积。烃源岩主要为三叠系塔里奇克组、侏罗系克孜勒努尔组-阳霞组煤系烃源岩,具有分布广、厚度大、有机质丰度高,现今成熟度普遍较高(Ro>1.0%,处于成熟-高成熟阶段),以生气为主的特征,为多种类型油气藏发育提供了充足物质基础。储层累计厚度巨大,其中阿合组厚度250~430m,储层厚150~200m,巨厚砂岩叠置连片分布,埋深为1200~8500m,岩石非均质性强;阳霞组厚度380~450m,巨厚-中薄层砂岩有效储集厚度100~150m,克孜勒努尔组厚度500~550m,中-薄层砂岩有效储集厚度80~100m(张荣虎等,2019)。新近系吉迪克组巨厚膏泥岩和膏盐岩可作为良好区域盖层,中-上侏罗统厚层泥岩可作为直接盖层,天然气保存条件好(图 1)。

2 构造演化及逆冲挤压古应力特征 2.1 中-下侏罗统构造演化特征

库车坳陷东部吐格尔明背斜新生代构造活动主要经历三期构造演化:第一期构造活动是古新世,吐格尔明背斜核部发育古隆起,下白垩统和中侏罗统克孜勒努组(J2kz)遭受剥蚀,构造高部位缺失,古新世库姆格列木群(E1-2km)在背斜南北两翼超覆沉积,背斜北翼苏维依组(E2-3s)直接超覆于下白垩统之上,吐格尔明背斜中部靠近当时古隆起的构造高点,较晚接受沉积。第二期构造活动是渐新世末,吐格尔明背斜局部断裂重新活动;中新统吉迪克组(N1j)与下伏古近系的局部角度不整合接触;中新统吉迪克组(N1j)与康村组(N1k)的沉积连续,厚度均匀。第三期为上新世库车组(N2k)沉积晚期,南天山隆起,对盆地强烈逆冲推覆挤压产生斜向剪切作用,古老基底断裂发生活化,派生出数条次级断裂,与主断裂共同控制了吐格尔明背斜现今的形态特征,构造高点相对北移。古隆起构造演化总体呈早期北西-南东向,中期持续隆升,晚期最终定型(图 2)。迪北地区经历两期构造变形,分别为古新世、上新世,表现为区域性的古近系与下伏下白垩统之间不整合接触。中新世吉迪克组(N1j)发育膏盐岩塑性流动形成的低幅盐构造,造成迪那背斜带顶部的吉迪克组厚度变化大,同时由于膏盐地层的存在,导致上下构造滑脱,形成两套不同的褶皱和冲断构造;迪北背斜与其南侧的单斜带从成因上是一个大型基底冲断褶皱,迪那背斜属于该冲断带南侧的伴生小型滑脱褶皱,膏盐的赋存导致深-浅层变形的差异,将该区的构造样式复杂化(图 3)。

图 2 库车坳陷东部吐格尔明地区过MN1井南北向构造演化剖面 Fig. 2 The south-north tectonic evolution of MN1 of Tugerming area in the eastern Kuqa Depression

图 3 库车坳陷东部迪北地区过依南2井南北向构造演化剖面 Fig. 3 The south-north tectonic evolution of YN2 of Dibei area in the eastern Kuqa Depression
2.2 逆冲挤压推覆古应力特征

库车坳陷南天山隆起造山期,强烈的逆冲推覆活动产生巨大的侧向构造挤压,其最大古应力值通常由声发射法Kaiser效应获取,其与岩石性质和裂缝密度等相关性良好(孙宝珊等, 1996;郑荣才, 1998;鲍洪志等, 2009季宗镇等, 2010张荣虎等, 2011)。本次研究通过南天山露头定向大样品(岩样30cm×30cm×30cm)和钻井大样品(岩心10cm×10cm)共12块声发射法古应力分析,结合测井定量最大有效古应力计算表明(表 1),库车河地区侏罗系阿合组所受最大有效古应力为60~120MPa,最大可达142MPa;迪北地区侏罗系阿合组所受最大有效古应力为60~90MPa;吐格尔明地区侏罗系阿合组所受最大有效古应力为60~90MPa。最大有效古应力值总体呈东西带状展布,自北向南减弱降低趋势明显,其中吐格尔明地区受基底卷入古隆起遮挡,背斜北翼侏罗系最大有效古应力值明显比南翼高,二者相差约30~70MPa(图 4)。

表 1 侏罗系岩石构造挤压古应力与岩石微观特征鉴定表 Table 1 Identification of Jurassic reservoir structural compressive paleostress and reservoir microscopic characteristics

图 4 库车坳陷东部侏罗系最大有效古应力等值线分布图 Fig. 4 Maximum effective paleostress contour distribution in the eastern Kuqa Depression
3 岩石构造动力作用响应特征

通过对岩石的埋藏演化的渐进式微观结构表征和物理性质实测,砂岩岩石在埋藏成岩中晚期,受构造动力挤压作用,主要有4个方面的响应特征:孔隙减小/喉道消失,直至岩石致密化;岩石破裂/裂缝产生,形成应力变形带和裂缝带;地层流体压力快速提高,形成异常高压;加速水-岩相互作用,缝网溶蚀带和胶结充填带。

3.1 构造挤压减孔急剧降低基质孔隙度

构造挤压造成山前带侏罗系岩石基质孔隙快速降低,残余粒间孔大量消失,通过构造古应力、压实减孔模拟、岩石物性测试、微观结构鉴定渐进式实验分析表明,侏罗系阿合组的构造减孔量为8.8%/100MPa(表 1图 5)。自北向南随着多级次逆冲断裂的滑脱释压、古隆起基底岩层的遮挡削弱等因素,构造挤压应力逐渐减弱,岩石基质孔隙逐渐得到保存(图 6)。以迪北地区DQ06-268剖面为例,主体部分为挤压推覆背景下形成的南倾斜坡带,发育由逆冲断层和反冲断层控制的一系列断鼻和断背斜;构造挤压的最大古应力由北向南从112MPa减小到30MPa左右,而岩石孔隙度与最大古构造应力分布相反,由北向南有逐渐增加趋势,物性趋于升高。同时由于砂泥岩薄互层中泥岩和煤层的顺层和斜向塑性滑脱泄压作用,构造挤压在煤系地层中的中-薄层砂体遭受构造挤压减孔作用明显减弱,岩石基质孔隙度相对较高,如吐格尔明背斜周缘北翼构造挤压最大有效古应力明显高于南翼,纵向上克孜勒努尔组、阳霞组中薄层砂岩由于泥岩和煤层的广泛顺层滑脱释力作用,经受的最大有效构造挤压古应力弱于阿合组巨厚砂岩,同等岩矿类型(如粗粒长石岩屑砂岩、含砾粗粒长石岩屑砂岩、中粒岩屑砂岩)条件,其岩石储集性能(如孔隙度)也相对好于阿合组(图 7图 8)。

图 5 库车坳陷东部侏罗系岩石构造挤压减孔量与最大有效古应力关系 Fig. 5 The relationship between the amount of hole reduction and the maximum effective paleostress in the Jurassic reservoir in the eastern Kuqa Depression

图 6 库车坳陷不同构造样式下侏罗系阿合组构造挤压与岩石性质模拟图 (a)逆冲背斜-单斜断裂滑脱释压模式;(b)逆冲背斜基底卷入遮挡和断裂滑脱释压模式 Fig. 6 Simulation of tectonic compression and reservoir properties of Jurassic Ahe Formation in Kuqa Depression under different tectonic styles (a) thrust anticlin-monoclinal fault release pressure mode; (b) thrust anticline base involved in shielding and fault pressure release mode

图 7 库车坳陷吐格尔明地区侏罗系不同层段构造挤压最大有效古应力变化图 Fig. 7 Maximum effective palaeostress changes of tectonic compression in different Jurassic strata in Tugelming area of Kuqa Depression

图 8 库车坳陷吐格尔明地区吐西1、明南1井侏罗系不同层段最大有效古应力变化曲线 Fig. 8 Maximum effective palaeostress variation curves of different Jurassic strata in Wells TX1 and MN1 in Tugelming area of Kuqa Depression
3.2 构造挤压破裂造缝大大增加渗透率

逆冲推覆构造挤压致使中-下侏罗统岩石形成大量颗粒贯穿缝、线性排列缝、颗粒破碎缝,库车河地区裂缝线密度一般在6~8条/米,面密度一般在4~11m/m2;吐格尔明地区阳霞煤矿阿合组构造裂缝线密度约3.3条/米,面密度约0.7m/m2;迪北地区阿合组构造裂缝线密度一般低于0.7条/米,平均约0.2条/米,面密度低于9.0m/m2,平均约2.9 m/m2(图 9)。根据迪北地区890块岩石物性分析、微观结构鉴定资料表明:岩石裂缝连通呈网状,可提高岩石渗透率10~100倍,提高岩石基质孔隙度、渗透率使其分别达5%~8%、0.1~1mD,使含裂缝岩石孔隙度达7%~8%、渗透率达1~100mD(最高可达2667.28mD)(图 9图 10)。

图 9 库车坳陷东部迪北地区侏罗系阿合组岩石物性对比图 (a)孔隙度;(b)渗透率 Fig. 9 Reservoir properties of Jurassic Ahe Formation in Dibei area in the eastern Kuqa Depression (a) porosity; (b) permeability

图 10 库车坳陷东部侏罗系阿合组含裂缝岩石微观特征图 (a)依南4,J1a,4475.79m,细-中砂岩,微孔隙分布在伊利石中, 粒内溶孔较少,分布在钾长石和个别喷出岩岩屑中,未见裂缝,φ=6.12%,K=0.193mD;(b)依南4,J1a,4378.01m,含砾中细砂岩,孔隙以粒间溶孔、微孔隙为主,次为粒内溶孔, 偶见泥质收缩缝,延伸短,φ=6.89%,K=0.395mD;(c)迪北105X,J1a,4764.18m, 未充填微裂缝平行层面分布, 粒间孔、粒内溶孔与缝相连通, φ=9.43%,K=5.42mD;(d)依南5,J1a,4896.35m, 孔隙以粒间溶孔、微孔隙为主,次为粒内溶孔,成岩缝、构造缝发育,φ=6.5%,K=1.35mD;(e)依南5,J1a,4938.34m, 砂砾岩,定向构造微缝发育,孔隙为粒间孔、粒内溶孔和微孔隙,φ=8.5%,K=32.1mD;(f)依南2C,J1a, 4754.32m,含砾粗砂岩,网状构造缝,宽一般 < .01-0.01mm,延伸长短不一, 钾长石溶孔发育,粒间溶孔孔径大小不等,φ=11.12%,K=42.2mD;(g)库车河东2沟,J1a,压实致密,微裂缝沿粒缘呈网状分布,相互连通,φ=7.88%,K=34.4mD;(h)青松水泥厂,J1a,长石粒内溶孔。微裂缝呈网状交织,相互连通,φ=9.88%,K=16.5mD;(i)迪北102井,5145.21m,J1a,微裂缝呈网状分布,沟通孔隙,φ=5.1%,K=5.99mD Fig. 10 Microscopic characteristics of fractured reservoirs of Jurassic Ahe Formation in the eastern Kuqa Depression
3.3 构造挤压快速提高地层流体压力值

晚喜山期南天山隆升而产生的侧向构造挤压持续时间短(5Ma以来)、构造变形强烈,致使岩石形变特征明显、快速致密化,地层流体承受构造应力,难以快速流动而趋于保持平衡,在构造背斜、断背斜和斜坡背景上形成压力封存箱,造成异常地层流体超压。实测数据表明迪北地区侏罗系阿合组岩石地层压力为68.59~83.47MPa,压力系数为1.73~1.78;吐格尔明地区背斜低部位阿合组岩石地层压力为1.0~32MPa,压力系数为1.1~1.6,背斜高部位因地层暴露地表油气藏泄压而压力系数降低,一般为0.4~1.0(图 11)。

图 11 库车坳陷东部侏罗系阿合组地层压力系数图 (a)压力系数变化;(b)压力系数分区 Fig. 11 Formation pressure coefficient diagram of J1a in the eastern Kuqa Depression (a) pressure coefficient change; (b) pressure coefficient partition
3.4 构造挤压加速水-岩相互作用强度

岩石在构造挤压作用下变得致密化、裂缝化、地层流体异常高压,在此背景下富含碳酸盐的地层流体,煤系地层演化过程中的酸性流体和有机质沿裂缝网络形成高效地层水-岩石作用体系。根据迪北地区800余块岩石薄片鉴定和微观结构扫描资料表明:主要表现在高温高压条件碳酸盐类溶解度提高,趋于欠饱和,基质孔隙中沉淀胶结作用减弱,酸性地层水溶蚀作用增强,缝网系统连通性更好,沿裂缝网络系统的溶蚀作用和伴生胶结作用更加活跃,显微镜下见大量溶蚀缝、溶扩缝和缝孔溶蚀带,局部见裂缝中充填碳酸盐胶结物或交代产物(图 12)。

图 12 库车坳陷东部侏罗系阿合组含裂缝岩石微观特征图 (a)依南2,4785.05m,J1a,长石粒内溶孔、微裂缝溶蚀扩大;(b)依南2,4843m,J1a,粒间溶蚀孔沿裂缝呈线性分布;(c)依南2,4548.26m,J1a,定向构造缝、粒间孔,裂缝沟通粒间孔促进溶蚀扩大;(d)依南2,4702.2m,J1a,铁泥质充填裂缝,沿裂缝有选择性溶蚀,溶孔呈串珠状;(e)依南5井,4938.34m,J1a,微裂缝极其发育,沿裂缝形成溶蚀扩大孔;(f)迪北102~167,5146.35m,J1a,发育斜交的构造微裂缝;(g) YN-4,4496.52m,J1a,中砂岩,为方解石充填缝(1.2mm宽);(h)依西1,3529.47m,J1a,铁白云石充填裂缝并具交代现象;(i)依南5,吐西1,1735.78m,J1a,细砂岩,溶蚀缝;(j)依南5,4851.4m,J1a,灰色细砂岩,溶蚀缝 Fig. 12 Microscopic characteristics of fractured reservoirs of J1a in the eastern Kuqa Depression
4 逆冲推覆带规模有效储集性岩石空间分布 4.1 巨厚砂体致密储集性岩石

侏罗系阿合组沉积巨厚砂体,主要为辫状河三角洲上平原辫状河道沉积,复合砂体镶嵌叠置连片累计厚度一般为280~350m(杨宪彰等, 2016)。由上所述,根据对吐格尔明地区侏罗系阿合组岩石大量微观特征及储集性能分析表明,岩石主要受控于构造逆冲推覆挤压、古隆起抬升暴露时期发生的表生溶蚀作用和顺断裂的大气水溶蚀作用,自北向南发育裂缝-溶蚀孔隙型、溶蚀孔隙型、残余原生孔隙型三种类型储集性岩石(图 13)。背斜北翼以Ⅳ类储集性岩石为主,孔隙度主要为4%~6%,背斜鼻状构造带以Ⅰ-Ⅱ类储集性岩石为主,孔隙度主要为9%~20%,背斜南翼至阳霞凹陷区以Ⅲ类储集性岩石为主,孔隙度主要为6%~9% (图 14)。逆冲推覆构造挤压致使阿合组岩石演化晚期快速致密化,非均质性急剧增强,东西向上主要受不同强度应力挤压带控制,如在库车河-克孜勒努尔沟20km内,阿合组岩石储集性能对比模型图中表明由弱逆冲推覆构造挤压区(库东Ⅳ剖面、库东Ⅲ剖面)的平均孔隙度9%~14%,降至强逆冲推覆构造挤压区(库东Ⅱ剖面、库东Ⅰ剖面)的6%~9%(图 15)。

图 13 库车坳陷东部吐格尔明地区阿合组岩石成因模式图 Fig. 13 Reservoir model of the Ahe Formation of Tugeerming area in the eastern Kuqa Depression

图 14 库车坳陷东部吐格尔明地区阿合组储集性岩石评价预测图 Fig. 14 Reservoir evaluation and prediction of Ahe Formation of Tugeerming area in the eastern Kuqa Depression

图 15 库车坳陷东部库车河-克孜勒努尔沟侏罗系阿合组岩石储集性对比图 Fig. 15 Reservoir porosity properties of Jurassic Ahe Formation in Kuqa river-Kezilenuergou area in the eastern Kuqa Depression
4.2 阳霞组-克孜勒努尔组中-薄层砂体相对优质储集性岩石

侏罗系阳霞组阳二段、四段沉积中薄层砂体,垂向不连续加积,横向呈透镜状延伸较远,累计厚度一般为100~120m,复合砂体横向延伸一般超过1.5km;阳三段巨厚复合砂体分布稳定,累计厚度100~130m,横向延伸超过4km(张荣虎等, 2019)。由上所述,受煤系地层中煤层、泥岩层频繁互层的顺层滑脱释力作用,逆冲推覆构造挤压作用对中-薄层砂体影响较小,岩石储集性能主要受控于岩性和多期溶蚀作用(表生大气水和埋藏酸性水)吐格尔明背斜北翼阳霞组三段(主要目的层)以Ⅲ类储集性岩石为主,孔隙度主要为6%~9%,背斜鼻状构造带以Ⅱ类岩石为主,孔隙度主要为9%~20%,背斜南翼至阳霞凹陷区以Ⅲ类储集性岩石为主,孔隙度主要为6%~9%(图 16)。克孜勒努尔组砂泥岩互层段沉积8个旋回,8套复合薄层砂体,主要为辫状河三角洲前缘沉积,砂体垂向上不连续发育,最厚为30~35m,一般为5~20m,横向上呈透镜状分布且延伸较近,一般小于1.8km,主要为500~1000m(杨宪彰等,2016);背斜主体部位克孜勒努尔组二段(主要目的层)以Ⅰ~Ⅱ类储集性岩石为主,孔隙度主要为9%~20%,背斜北翼、南翼至阳霞凹陷区以Ⅲ类储集性岩石为主,孔隙度主要为6%~9%,自东向西岩石储集性质变差趋势明显。

图 16 库车坳陷东部下侏罗统阳霞组二段储集性岩石分布图 Fig. 16 Reservoir characteristics of the Lower Jurassic Yangxia Formation in the eastern Kuqa Depression
5 结论

(1) 库车坳陷东部侏罗系在喜山晚期南天山隆起强烈地逆冲推覆活动产生巨大的侧向构造挤压,库车河地区侏罗系阿合组所受最大有效古应力为60~120MPa,最大可达142MPa;迪北地区侏罗系阿合组所受最大有效古应力为90~120MPa;吐格尔明地区侏罗系阿合组所受最大有效古应力为60~90MPa。

(2) 岩石构造挤压效应有4种典型特征:急剧降低基质孔隙度,构造减孔量为8.8%/100MPa;破裂造缝大大增加渗透率,网状裂缝大大提高了岩石的渗透率10~100倍;快速提高地层流体压力值,形成异常高压;加速水-岩相互作用强度,沿缝网系统溶蚀作用增强,局部有利于胶结物发育和富集。

(3) 构造挤压致使砂岩岩石微观结构、宏观非均质性增强,吐格尔明地区中-下侏罗统发育2类规模有利储集性岩石,阿合组储集性岩石累计厚度超过200m,一般孔隙度6%~10%,吐格尔明背斜南翼储集性岩石孔隙度可达15%~20%;克孜勒努尔组-阳霞组发育中-厚层相对优质储集性岩石,累计厚度大于150m,孔隙度一般9%~15%。

参考文献
ábalos B and Elorza J. 2012. Structural diagenesis of siderite layers in black shales (Albian Black Flysch, Northern Spain). The Journal of Geology, 120(4): 405-429 DOI:10.1086/665794
Bao HZ, Sun LH, Yu LL and Zhang HW. 2009. Obtainment of ground stress by Kaiser effect of rock acoustic emission. Fault-Block Oil & Gas Field, 16(6): 94-96 (in Chinese)
Chen ZL, Shou JF, Zhang HL, Shen AJ, Si CS, Wang SY, Pi XJ, Cai ZF and Xu F. 2001. Heterogeneity of reservoirs from Arhe Formation Lower Jurassic in Tugerming, Kuqa Depression. Oil & Gas Geology, 22(1): 60-63 (in Chinese with English abstract)
Eichhubl P, Davatzes NC and Becker SP. 2009. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah. AAPG Bulletin, 93(5): 653-681 DOI:10.1306/02180908080
English KL, English JM, Bonnell LM, Lander RH, Hollis C, Redfern J, Guirdham C, Garnham J and Cherif RY. 2017. Controls on reservoir quality in exhumed basins: An example from the Ordovician sandstone, Illizi Basin, Algeria. Marine and Petroleum Geology, 80: 203-227 DOI:10.1016/j.marpetgeo.2016.11.011
Ferraro F, Agosta F, Ukar E, Grieco DS, Cavalcante F, Belviso C and Prosser G. 2019. Structural diagenesis of carbonate fault rocks exhumed from shallow crustal depths: An example from the central-southern Apennines, Italy. Journal of Structural Geology, 122: 58-80 DOI:10.1016/j.jsg.2019.02.008
Fossen H. 2010. Deformation bands formed during soft-sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, 27(1): 215-222 DOI:10.1016/j.marpetgeo.2009.06.005
Gao ZY, Cui JG, Feng JR, Luo Z, Huang XY, Li XP, Zhao XS and Guo ML. 2013. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism. Acta Petrolei Sinica, 34(5): 867-876 (in Chinese with English abstract)
Gu JY, Zhu XM and Jia JH. 2004. Sedimentation and Reservoir in the Tarim Basin. Beijing: Petroleum Industry Press, 36-150 (in Chinese)
Han DL, Zhao RZ, Li Z and Li WF. 2015. The characteristic of diagenetic compaction induced by multiform geodynamic mechanisms in reservoir: An example from Cretaceous sandstone reservoir in Kuqa depression, Tarim Basin. Chinese Journal of Geology, 50(1): 241-248 (in Chinese with English abstract)
He H, Guo JH and Gao YF. 2002. Jurassic sequence stratigraphy and sedimentary facies in Kuqa depression of Tarim Basin. Journal of Jianghan Petroleum Institute, 24(4): 1-3 (in Chinese with English abstract)
Huang KN, Zhan JZ, Zou YS, Wang Z, Zhou CM and Xiao JN. 2003. Sedimentary environments and palaeoclimate of the Triassic and Jurassic in Kuqa River area, Xinjiang. Journal of Palaeogeography, 5(2): 197-208 (in Chinese with English abstract)
Ji ZZ, Dai JS and Wang BF. 2010. Quantitative relationship between crustal stress and parameters of tectonic fracture. Acta Petrolei Sinica, 31(1): 68-72 (in Chinese with English abstract)
Jia CZ, Gu JY and Zhang GY. 2002. Geological constraints of giant and medium-sized gas fields in Kuqa Depression. Chinese Science Bulletin, 47(Suppl.1): 47-54 DOI:10.1007%2FBF02902818
Laubach SE, Eichhubl P, Hilgers C and Lander RH. 2010. Structural diagenesis. Journal of Structural Geology, 32(12): 1866-1872 DOI:10.1016/j.jsg.2010.10.001
Li J, Zhang CM, Wang GW, Xiao CW and Ouyang J. 2004. Terrestrial-stress logging responding characteristics of piedmont tectonic belt and its influence on reservoir property. Acta Petrolei Sinica, 25(3): 23-27 (in Chinese with English abstract)
Li J, Zhang CM, Li JF, Xiao CW and Yuan SJ. 2011. Tectonic compaction and its influence on reservoirs in the Kuqa foreland basin, Tarim. Petroleum Exploration and Development, 38(1): 47-51 (in Chinese with English abstract)
Li Z, Zhang LJ, Shou JF, Han DL, Shen Y and Zhang HL. 2009. Structural strain and structural heterogeneity of sandstone diagenesis: A case study for the Kuqa subbasin in the northern Tarim basin. Acta Petrologica Sinica, 25(10): 2320-2330 (in Chinese with English abstract)
Qiu XP. 1993. Analysis of the achievements in tectonic dynamo-petrologenic and dynamo-metallogenic simulating experiments and their geological significance. Geochimica, (3): 237-240 (in Chinese with English abstract)
Shou JF, Si CS, Zhu GH, Wang SY, Pi XJ and Li QM. 2001. Control factors of the properties of the Lower Jurassic sandstone reservoirs in the Kuqa Depression, Tarim Basin. Geological Review, 47(3): 272-277 (in Chinese with English abstract)
Shou JF, Zhu GH and Zhang HL. 2003. Lateral structure compression and its influence on sandstone diagenesis: A case study from the Tarim. Acta Sedimentologica Sinica, 21(1): 90-95 (in Chinese with English abstract)
Shou JF, Si CS and Zhang D. 2004. Factors controlling properties of Lower Jurassic sandstone reservoirs in Kuqa Depression, Tarim Basin. Acta Geoscientica Sinica, 25(4): 447-452 (in Chinese with English abstract)
Shou JF, Zhang HL, Si CS, Wang X, Chen ZL and Wang SY. 2005. Dynamic Diagenesis of Sandstone. Beijing: Petroleum Industry Press, 1-153 (in Chinese)
Shou JF, Zhang HL and Shen Y. 2007. The analysis of controlling factors on sandstone diagenesis and porosity preservation of Lower Juarassic in Tugerming anticline, Kuqa forland basin. Acta Sedimentologica Sinica, 25(6): 869-875 (in Chinese with English abstract)
Sun BS, Ding YC, Shao ZG, Zhou XG, Wang XH and Zhang DQ. 1996. Application of acoustic emission technique in determination of fossil and present-day stresses in oil fields. Journal of Geomechanics, 2(2): 11-17 (in Chinese with English abstract)
Wang X, Wang ZM, Xie HW, Li SQ, Tang PC, Yin HW, Li Y and Huang SY. 2010. Cenozoic salt structure analysis and deformation simulation in Kuqa depression, Tarim. Scientia Sinica (Terrae), 40(12): 1655-1668 (in Chinese) DOI:10.1360/zd2010-40-12-1655
Wang ZM. 2014. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 25(2): 153-166 (in Chinese with English abstract)
Wei HX, Huang WH, Luo HN, Luo HN, Shi LL and Wang ZT. 2016. Faults characteristics and evolution in the eastern Kuqa Depression. Earth Science, 41(6): 1074-1080 (in Chinese with English abstract)
Weisenberger TB, Eichhubl P, Laubach SE and Fall A. 2019. Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA. Petroleum Geoscience, 24(5): 354-370
Yang F, Di HL, Wang SY, Sun YS and Shen YM. 2002. Reservoir characteristics and genesis of the Jurassic in Yiqikelike tectonic zone of Kuqa depression in Tarim Basin. Journal of Palaeogeography, 4(2): 46-55 (in Chinese with English abstract)
Yang KQ. 1986. Research subjects and orientations on the theory of tectono-petrogenesis and tectono-metallogenesis. Bulletin of the Institute of Geomechanics, CAGS, 7: 1-14 (in Chinese)
Yang XZ, Mao YK, Zhong DK, Li Y, Neng Y, Sun HT and Liu YL. 2016. Tectonic compression controls the vertical property variation of sandstone reservoir: An example of Cretaceous Bashijiqike Formation in Kuqa foreland thrust belt, Tarim Basin. Natural Gas Geoscience, 27(4): 591-599 (in Chinese with English abstract)
Zhang HL, Shou JF, Chen ZL, Wang SY, Yang XN, Pi XJ and Cai ZZ. 2002. Sedimentary characteristics and sandstone body distribution of the Lower Jurassic in Kuqa Depression. Journal of Palaeogeography, 4(3): 47-58 (in Chinese with English abstract)
Zhang HL, Zhang RH, Yang HJ, Yao GS and Ma YJ. 2012. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin. Acta Petrologica Sinica, 28(3): 827-835 (in Chinese with English abstract)
Zhang NN, Liu LF, Su TX, Dai QW and Zhao YY. 2015. Reservoir characteristics and main controlling factors of the Lower Jurassic tight sandstone in eastern Kuqa Depression. Acta Sedimentologica Sinica, 33(1): 160-169 (in Chinese with English abstract)
Zhang RH, Zhang HL, Shou JF, Shen Y and Li C. 2008. Geological analysis of the Lower Cretaceous Bashkirchik Formation in the Dabei area of Kuqa Depression. Chinese Journal of Geology, 43(3): 507-517 (in Chinese with English abstract)
Zhang RH, Yao GS, Shou JF, Zhang HL and Tian JQ. 2011. An integration porosity forecast model of deposition, diagenesis and structure. Petroleum Exploration and Development, 38(2): 145-151 (in Chinese with English abstract)
Zhang RH, Yang HJ, Wang JP, Shou JF, Zeng QL and Liu Q. 2014. The formation mechanism and exploration significance of ultra-deep, low-porosity and tight sandstone reservoirs in Kuqa depression, Tarim Basin. Acta Petrolei Sinica, 35(6): 1057-1069 (in Chinese with English abstract)
Zhang RH, Yang HJ, Wei HX, Yu CF, Yang Z and Wu J. 2019. The sandstone characteristics and hydrocarbon exploration signification of Lower Jurassic in middle-eastern section of northern tectonic belt in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 30(9): 1243-1252 (in Chinese with English abstract)
Zhu GY, Gu LJ, Su J, Dai JX, Ding WL, Zhang JC and Song LC. 2012a. Sedimentary association of alternated mudstones and tight sandstones in China's oil and gas bearing basins and its natural gas accumulation. Journal of Asian Earth Sciences, 50: 88-104 DOI:10.1016/j.jseaes.2012.01.008
Zhu GY, Cui J, Su J, Yang HJ, Zhang B, Hu JF and Zhu YF. 2012b. Accumulation and Reformation of Silurian Reservoir in the Northern Tarim Basin. Acta Geologica Sinica, 86(1): 209-225 DOI:10.1111/j.1755-6724.2012.00623.x
Zhu GY, Zhang SC, Liu KY, Yang HJ, Zhang B and Zhang YG. 2013. A well-preserved 250 million-year-old oil accumulation in the Tarim Basin, western China: Implications for hydrocarbon exploration in old and deep basins. Marine and Petroleum Geology, 43: 478-488 DOI:10.1016/j.marpetgeo.2012.12.001
Zhu GY, Wang HT, Weng N, Yang HJ, Zhang K, Liao FR and Neng Y. 2015. Geochemistry, origin and accumulation of continental condensate in the ultra-deep-buried Cretaceous sandstone reservoir, Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 65: 103-113 DOI:10.1016/j.marpetgeo.2015.03.025
Zhu GY, Zhang ZY, Zhou XX, Yan L, Sun CH and Zhao B. 2018. Preservation of ultradeep liquid oil and its exploration limit. Energy & Fuels, 32(11): 11165-11176
Zhu GY, Li JF, Zhang ZY, Wang M, Xue N, He T and Zhao K. 2020. Stability and cracking threshold depth of crude oil in 8000m ultra-deep reservoir in the Tarim Basin. Fuel, 282: 118777 DOI:10.1016/j.fuel.2020.118777
鲍洪志, 孙连环, 于玲玲. 2009. 利用岩石声发射Kaiser效应求取地应力. 断块油气田, 16(6): 94-96.
陈子炓, 寿建峰, 张惠良, 沈安江, 斯春松, 王少依, 皮学军, 蔡振忠, 徐峰. 2001. 库车坳陷吐格尔明下侏罗统阿合组储层沉积非均质性. 石油与天然气地质, 22(1): 60-63. DOI:10.3321/j.issn:0253-9985.2001.01.014
高志勇, 崔京钢, 冯佳睿, 罗忠, 黄贤营, 李小陪, 赵雪松, 郭美丽. 2013. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制. 石油学报, 34(5): 867-876.
顾家裕, 朱筱敏, 贾进华. 2004. 塔里木盆地沉积与储层. 北京: 石油工业出版社, 36-150.
韩登林, 赵睿哲, 李忠, 李维锋. 2015. 不同动力学机制共同制约下的储层压实效应特征——以塔里木盆地库车坳陷白垩系储层研究为例. 地质科学, 50(1): 241-248.
何宏, 郭建华, 高云峰. 2002. 塔里木盆地库车坳陷侏罗系层序地层与沉积相. 江汉石油学院学报, 24(4): 1-3. DOI:10.3969/j.issn.1000-9752.2002.04.001
黄克难, 詹家镇, 邹义声, 王智, 周春梅, 肖继南. 2003. 新疆库车河地区三叠系和侏罗系沉积环境及古气候. 古地理学报, 5(2): 197-208. DOI:10.3969/j.issn.1671-1505.2003.02.008
季宗镇, 戴俊生, 汪必峰. 2010. 地应力与构造裂缝参数间的定量关系. 石油学报, 31(1): 68-72.
贾承造, 顾家裕, 张光亚. 2002. 库车拗陷大中型气田形成的地质条件. 科学通报, 47(增1): 49-55.
李军, 张超谟, 王贵文, 肖承文, 欧阳健. 2004. 前陆盆地山前构造带地应力响应特征及其对储层的影响. 石油学报, 25(3): 23-27. DOI:10.3321/j.issn:0253-2697.2004.03.004
李军, 张超谟, 李进福, 肖承文, 袁仕俊. 2011. 库车前陆盆地构造压实作用及其对储集层的影响. 石油勘探与开发, 38(1): 47-51.
李忠, 张丽娟, 寿建峰, 韩登林, 沈杨, 张惠良. 2009. 构造应变与砂岩成岩的构造非均质性——以塔里木盆地库车坳陷研究为例. 岩石学报, 25(10): 2320-2330.
邱小平. 1993. 构造动力成岩成矿模拟实验成果分析及其地质意义. 地球化学, (3): 237-240. DOI:10.3321/j.issn:0379-1726.1993.03.004
寿建峰, 斯春松, 朱国华, 王少依, 皮学军, 李启明. 2001. 塔里木盆地库车坳陷下侏罗统砂岩储层性质的控制因素. 地质论评, 47(3): 272-277. DOI:10.3321/j.issn:0371-5736.2001.03.009
寿建峰, 朱国华, 张惠良. 2003. 构造侧向挤压与砂岩成岩压实作用——以塔里木盆地为例. 沉积学报, 21(1): 90-95. DOI:10.3969/j.issn.1000-0550.2003.01.014
寿建峰, 斯春松, 张达. 2004. 库车坳陷下侏罗统岩石古应力场与砂岩储层性质. 地球学报, 25(4): 447-452. DOI:10.3321/j.issn:1006-3021.2004.04.010
寿建峰, 张惠良, 斯春松, 王鑫, 陈子炓, 王少依. 2005. 砂岩动力成岩作用. 北京: 石油工业出版社, 1-153.
寿建峰, 张惠良, 沈扬. 2007. 库车前陆地区吐格尔明背斜下侏罗统砂岩成岩作用及孔隙发育的控制因素分析. 沉积学报, 25(6): 869-875. DOI:10.3969/j.issn.1000-0550.2007.06.008
孙宝珊, 丁原辰, 邵兆刚, 周新桂, 汪西海, 张大权. 1996. 声发射法测量古今应力在油田的应用. 地质力学学报, 2(2): 11-17.
汪新, 王招明, 谢会文, 李世琴, 唐鹏程, 尹宏伟, 李勇, 黄少英. 2010. 塔里木库车坳陷新生代盐构造解析及其变形模拟. 中国科学(地球科学), 40(12): 1655-1668.
王招明. 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153-166. DOI:10.11764/j.issn.1672-1926.2014.02.0153
魏红兴, 黄梧桓, 罗海宁, 黎立, 史玲玲, 王佐涛. 2016. 库车坳陷东部断裂特征与构造演化. 地球科学, 41(6): 1074-1080.
杨帆, 邸宏利, 王少依, 孙玉善, 申银民. 2002. 塔里木盆地库车坳陷依奇克里克构造带侏罗系储层特征及成因. 古地理学报, 4(2): 46-55. DOI:10.3969/j.issn.1671-1505.2002.02.006
杨开庆. 1986. 动力成岩成矿理论的研究内容和方向. 中国地质科学院地质力学研究所所刊, 7: 1-14.
杨宪彰, 毛亚昆, 钟大康, 李勇, 能源, 孙海涛, 刘云龙. 2016. 构造挤压对砂岩储层垂向分布差异的控制——以库车前陆冲断带白垩系巴什基奇克组为例. 天然气地球科学, 27(4): 591-599.
张惠良, 寿建峰, 陈子炓, 王少依, 杨晓宁, 皮学军, 蔡振忠. 2002. 库车坳陷下侏罗统沉积特征及砂体展布. 古地理学报, 4(3): 47-58. DOI:10.3969/j.issn.1671-1505.2002.03.007
张惠良, 张荣虎, 杨海军, 姚根顺, 马玉杰. 2012. 构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例. 岩石学报, 28(3): 827-835.
张妮妮, 刘洛夫, 苏天喜, 戴琦雯, 赵园园. 2015. 库车坳陷东部下侏罗统致密砂岩储层特征及主控因素. 沉积学报, 33(1): 160-169.
张荣虎, 张惠良, 寿建峰, 沈扬, 李昌. 2008. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析. 地质科学, 43(3): 507-517.
张荣虎, 姚根顺, 寿建峰, 张惠良, 田继强. 2011. 沉积、成岩、构造一体化孔隙度预测模型. 石油勘探与开发, 38(2): 145-151.
张荣虎, 杨海军, 王俊鹏, 寿建峰, 曾庆鲁, 刘群. 2014. 库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义. 石油学报, 35(6): 1057-1069.
张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 2019. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义. 天然气地球科学, 30(9): 1243-1252.