岩石学报  2021, Vol. 37 Issue (5): 1347-1371, doi: 10.18654/1000-0569/2021.05.03   PDF    
青岛连三岛地区“荆山岩群”高压变质岩的变质时代和变质演化特征
郜源1, 曹玉亭1,2, 王淞杰1, 李旭平1, 孔凡梅1     
1. 山东省沉积成矿作用与沉积矿产重点实验室, 山东科技大学地球科学与工程学院, 青岛 266590;
2. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037
摘要: 青岛连三岛地区原划为古元古界荆山岩群中出露各类片岩、片麻岩。本文在前人研究的基础上,对连三岛地区出露的含榴黑云母斜长片麻岩、含榴云母片岩和含榴黑云母钾长片麻岩,进行详细的岩相学和矿物化学研究,确定其变质温压条件及其P-T演化轨迹,并采用LA-ICP-MS锆石U-Pb定年,获得了3个样品的原岩时代和变质时代,为全面深入认识其变质属性提供了进一步的重要依据。根据岩相学和矿物化学成分可以识别出两期矿物组合:第一期(峰期变质阶段)为Grt1+Kfs+Aln+Ph+Qtz;第二期(退变质阶段)为Grt2+Pl+Ep+Bt+Qtz;依据多硅白云母Si压力计、锆石Ti温度计以及GB-GBPQ矿物温压计,确定其峰期变质和退变质的温压条件分别为T=600~817℃、P=2.4~2.6GPa和T=431~456℃、P=0.48~0.82GPa。结合白云母部分熔融现象,上述两个变质阶段构成了一个折返早期升温降压,后穿过多硅白云母熔融反应线,最后降温降压的顺时针型演化的P-T轨迹。CL图像显示3个样品的锆石均具有典型的岩浆核-变质边结构;结合LA-ICP-MS锆石原位微区U-Pb定年和微量元素分析,3个样品分别获得了769~756Ma、~223Ma和213~216Ma三组年龄,分别与苏鲁造山带其他高压-超高压变质岩的新元古代原岩时代(700~800Ma)、峰期变质时代(240~225Ma)和角闪岩相退变质时代(215~205Ma)一致。对样品含榴黑云母斜长片麻岩(17LSD-1)和含榴云母片岩(18LSD-2)进行锆石Hf同位素分析,获得样品17LSD-1的εHft)=-23.2~2.8、tDM2C(Hf)=1712~2845Ma,表明其原岩主要来源于古元古代陆壳重熔;样品18LSD-2的εHft)=-13.9~8.6、tDM2C(Hf)=1113~2358Ma,表明样品形成时壳源物质成分占主导地位,同时部分幔源或新生地壳物质的加入,导致少部分εHft)偏正值。Hf同位素结果表明连三岛变质岩原岩的形成与扬子板块新太古代-早古元古代的陆壳重熔有关。对比前人的相关数据,无论是原岩时代、变质年龄还是变质演化特征,本文研究的连三岛地区片岩/片麻岩与苏鲁造山带的部分变质岩均具有相似的原岩属性和变质属性,因此推断其应归属为苏鲁超高压变质带的一部分,是三叠纪扬子板块向华北板块俯冲碰撞引发的高压-超高压变质事件的产物,不应再作为岩石地层单元划归为"荆山岩群"。
关键词: 苏鲁造山带    古元古代荆山岩群    变质岩    锆石U-Pb定年    P-T演化轨迹    
Geochronology and metamorphic evolution of the HP metamorphic rocks of "Jingshan Group" from Liansandao area, Qingdao
GAO Yuan1, CAO YuTing1,2, WANG SongJie1, LI XuPing1, KONG FanMei1     
1. Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Minerals, College of Earth Science&Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
2. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Various types of schist and gneiss are exposed in the Liansandao area in Qingdao, which was originally classified as the Paleoproterozoic Jingshan Group. This paper, on the basis of previous studies, conducts detailed studies of petrography, mineral chemistry, LA-ICP-MS zircon U-Pb dating and Hf isotope analysis on the garnet-bearing biotite plagioclase gneiss, garnet-bearing mica schist and garnet-bearing biotite K-feldspar gneiss from the Liansandao area. The results are used to determine the metamorphic P-T-t path and clarify the protolith properties of these metamorphic rocks, which contributes to improve our current understanding on the metamorphic evolution of the rocks from the Liansandao area. Two stages of the mineral assemblages can be identified according to petrography and mineral chemical composition: The peak metamorphic phase is suggested by the occurrence of Grt1+Kfs1+Aln+Ph+Qtz, which is overprinted by a retrograded assemblage of the retrograded metamorphic phase of Grt2+Pl+Ep+Bt+Qtz. According to Si-in-phengite geobarometry, Ti-in-zircon thermometry and GB-GBPQ thermobarometry, the P-T conditions for the peak and retrograde metamorphic stages were constrained to be 2.4~2.6GPa/600~817℃ and 0.48~0.82GPa/431~456℃, respectively. The above two metamorphic stages showing a clockwise P-T path, with early heating and decompression after peak metamorphism, subsequently followed by the dehydration melting reaction of phengite, and finally cooling and decompression. Zircon CL images show that the zircons from the three samples all exhibit the inherited magmatic core-metamorphic rim internal microstructure. Based on LA-ICP-MS U-Pb dating, three groups of ages were yielded, including (I) 769~756Ma; (Ⅱ) c.223Ma; and (Ⅲ) 213~216Ma, which are consistent with the Neoproterozoic protolith ages (700~800Ma), the peak metamorphic and retrograde metamorphic ages of the high pressure/ultra-high pressure metamorphic rocks in the Sulu orogen, respectively. Hf isotope analysis of the Sample 17LSD-1 obtained εHf(t)=-23.2~2.8, tDM2C(Hf)=1712~2845Ma, indicating that the protolith might have derived from Paleoproterozoic continental crust; Sample 18LSD-2 obtained εHf(t)=-13.9~8.6, tDM2C(Hf)=1113~2358Ma, the positive value of εHf(t) suggest a magma mixing between mantle-derived materials and the continental crust. The Hf isotope results indicate that the formation of the protoliths of the three samples from the Liansandao area was related to the re-melting of the Neoarchean-Early Paleoproterozoic continental crust of the Yangtze Plate. Compared with previous studies, the protolithic age, metamorphic age and the metamorphic evolution of the three studied rocks are all identical to those of the Sulu orogenic belt. Therefore, the exposed metamorphic rock in the Liansandao area should be a part of the Sulu UHP orogen, which is the product of the high pressure/ultra-high pressure metamorphic event caused by the collision and subduction of the Triassic Yangtze Plate to the North China Plate, rather than a lithostratigraphic unit belonging to "Jingshan Group".
Key words: Sulu orogen    Paleoproterozoic Jingshan Group    Metamorphic rocks    Zircon U-Pb age    P-T paths    

古元古代荆山岩群作为胶北地块早前寒武纪变质基底的重要组成部分,与中新太古代TTG岩石、粉子山群及少量古元古代晚期的花岗质岩石共同组成前寒武纪变质基底(Wan et al., 2006; 宋明春和李洪奎, 2001; 李旭平等, 2011)。前人利用精确的锆石U-Pb定年方法获得荆山岩群沉积时代在2.38~2.48Ga之间,变质作用发生在1.85~2.22Ga(周喜文等, 2004, 孔凡梅等, 2015, Zhou et al., 2008, Wan et al., 2006)。还有部分年龄数据显示,位于苏鲁造山带上盘的胶北地块的荆山岩群部分地区也卷入了华南陆块与华北陆块俯冲碰撞造山过程,经历了与苏鲁高压-超高压变质带同期的三叠纪变质变形事件的叠加(李广旭等, 2016)。

本文的研究区连三岛,出露一套由长英质片麻岩、含榴黑云母斜长片麻岩和黑云角闪片岩等组成的变形强烈的变质岩石组合,前人根据地层对比等方法,将其归为古元古代荆山岩群,但对该地区变质岩的原岩和变质时代的确定一直缺乏精确地同位素定年资料。最近Song et al. (2019)在该地区的三组变火成岩样品中分别得到了744±11Ma、767±12Ma、762±15Ma的新元古代原岩年龄,结合全岩地球化学特征推断其原岩的形成是Rodinia超大陆裂解时期拉张环境下的岩浆响应。此外,研究区连三岛位于五莲-青岛-烟台断裂的东侧,构造位置上被划分到苏鲁超高压变质带中部(图 1),目前已有的年代学数据显示苏鲁高压-超高压变质带中大多数超高压变质地体均具有新元古代原岩年龄(Ames et al., 1996; Rowley et al., 1997; Hacker et al., 1998, 2006; Zheng et al., 2003, 2004; Chen et al., 2010, 2013c; He et al., 2016; 刘利双等, 2018),且具有双峰式火成岩的组成特征,被认为是Rodinia超大陆裂解期间扬子板块北缘的裂谷岩浆活动所导致(Zheng et al., 2004, 2006; Rumble et al., 2003)。综合上述已有研究,Song et al. (2019)文中提到的三种变火成岩的原岩年龄与苏鲁高压-超高压变质带的部分高压-超高压变质岩的原岩年龄具有一致性,且其形成均与Rodinia超大陆裂解有关。因此,无论从原岩的形成构造背景还是原岩的形成时代分析,其都不应再划分到古元古代荆山岩群,而与苏鲁造山带中高压-超高压变质岩的原岩具有一致的构造属性。然而,目前对连三岛地区出露的变质岩的变质属性并无详细研究,其是否真正属于苏鲁造山带还未可知。因此,仍亟待对以下问题进行进一步的探讨:连三岛地区出露的变质岩的变质时代是否与苏鲁高压-超高压变质带的变质时代一致?其记录的变质演化是否一致?是否也经历了超高压变质作用?

图 1 苏鲁造山带地质构造图(据Ye et al., 2000b) Fig. 1 Geological and tectonic map of the Sulu Orogen (after Ye et al., 2000b)

针对这些问题,本文在前人研究的基础上,选取连三岛地区出露的含榴黑云母斜长片麻岩、含榴云母片岩和含榴黑云母钾长片麻岩三种岩石进行详细的岩相学、矿物化学研究,确定其变质温压条件及其P-T演化轨迹,并采用LA-ICP-MS锆石U-Pb定年,明确了三种岩石的变质时代,为全面深入认识连三岛地区变质岩的变质属性提供了进一步的重要依据。

1 区域地质背景

胶北地块处在郯庐断裂与五莲-烟台断裂之间,大地构造位置在华北克拉通的东缘,胶辽吉构造带的南端,紧邻苏鲁超高压变质带(图 1)。荆山岩群位于胶北地块东南部,自下而上划分为禄格庄组、野头组、陡崖组(张增奇和刘明渭, 1996),包含有变质程度较高的泥质麻粒岩、泥质片麻岩、长英质副片麻岩、钙硅酸盐岩、大理岩、石英岩和少量高压泥质麻粒岩(周喜文等, 2004; 王舫等, 2010)。前人利用锆石U-Pb定年方法获得荆山岩群年龄主要分布在1.85~3.34Ga之间,大多认为其沉积时代是在2.38~2.48Ga之间,变质作用发生在1.85~2.22Ga(谢士稳等, 2014; 孔凡梅等, 2015; Zhou et al., 2008; Wan et al., 2006),表明其变质作用时代多集中在古元古代,变质程度为角闪岩相到麻粒岩相。如Wan et al. (2006)用SHRIMP锆石U-Pb年龄测试方法得到了烟台南部荆山岩群二云母夕线石榴片麻岩的变质年龄在1859±11Ma~1902±8Ma之间,加权平均年龄为1882±12Ma;刘平华等(2011)获得栖霞小庄铺荆山岩群孔兹岩的变质年龄为1847±8Ma~1879±5Ma,加权平均年龄为1868±3Ma。除此之外,李广旭等(2016)对烟台回里镇及高家洞村附近的荆山群禄格庄组的云母片岩和石榴云母片岩进行独居石和金红石的U-Pb定年,确定其至少经历了古元古代(1869~1864Ma)及三叠纪(215.1~217.8Ma)两个阶段的变质变形作用。Tang et al. (2006)对莱西南墅、鲁戈庄地区粉子山岩群中的大理岩进行锆石U-Pb定年,揭示其经历了三叠纪的变质作用。这些研究结果指示位于苏鲁造山带上盘的胶北地块粉子山群和荆山岩群部分地区有可能卷入了华南陆块与华北陆块俯冲碰撞造山过程,经历了三叠纪变质变形事件的叠加。

胶北地块南部以五莲-青岛-烟台断裂为界的苏鲁造山带,呈北东-南西走向,宽~180km,长~750km(图 1)。前人在苏鲁造山带榴辉岩及其围岩中发现柯石英包裹体(Okay, 1993; Wang et al., 1989; Zhang et al., 1995),证明苏鲁造山带是一个典型的陆壳深俯冲碰撞造山带,由扬子板块在三叠纪向华北板块俯冲所形成(Carswell and Compagnoni, 2003; Cong, 1996; Ernst et al., 2007; Liou et al., 2012),其俯冲深度大于200km,随后在经历了超高压变质作用后,迅速折返回地表(Wang and Liou, 1991; Okay, 1993; Zhang and Liou, 1996; Cong, 1996; Tabata et al., 1998; Liu et al., 2001)。在造山带西南部,南部是高压变质带,北部是超高压变质带。在造山带东北部则主要为超高压变质带(图 1)。岩石组合以各类片麻岩为主,夹有各类花岗岩、大理岩、云母片岩、石英岩等,并见大量规模不等的榴辉岩和超基性岩的透镜体或团块分布于片麻岩中(Wang et al., 2010a; Ye et al., 2000a, b),这些变质岩被中生代火山碎屑岩及新生代盖层所覆盖,并且出露有中生代花岗岩(Zhang et al., 1995; Liu et al., 2004a; Zheng et al., 2005; Xu et al., 2006)。近年来国内外学者详细的岩石学和地球化学研究,获得了苏鲁高压-超高压变质带内不同类型的变火成岩原岩形成时代多为740~780Ma,同时表示该期岩浆活动所代表的热事件与扬子板块北缘Rodinia超大陆裂解事件有关(Ames et al., 1996; Tang et al., 2008; Hacker et al., 1998; 薛怀民等, 2002; Rowley et al., 1997);同时,也获得了不同类型的高压-超高压变质岩峰期变质时代为235~225Ma,角闪岩相退变质作用发生在215~208Ma(Liu and Liou, 2011; Wu et al., 2006),同时建立了一条顺时针的变质作用P-T-t轨迹(张泽明等, 2005)。

本文研究区连三岛位于山东省青岛市,在地质构造图中位于苏鲁造山带中部(图 1)。根据区域地层对比等方法,区内地层长期被划为古元古界荆山岩群野头岩组,应为胶北地块荆山岩群向东部的地层延伸,露头具有多期变形变质的突出特点。根据显著的地质构造特征可分为三个构造带,即北部为北东向规则片理带,中部为韧性剪切带,南部为倾竖褶皱带(图 2)。

图 2 连三岛地区地质简图 Fig. 2 Geological map of Liansandao area and sample locations

北部的北东向规则片理带主要出露岩性为黑云母片麻岩/片岩、黑云斜长片麻岩、长英质片麻岩、云母石英片岩等,片麻岩中片麻理发育,沿着片理方向还发育石英脉或断续的脉状浅色体(图 3a)。其总体呈NE向分布,片理倾斜角近直立,构成规则的区域深变质片理带。

图 3 连三岛地区变质岩野外露头照片 Fig. 3 Outcrop pictures of the metamorphic rocks in the Liansandao area

中部韧性剪切带主要为强变形的构造片岩构成,倾角陡立,为左行走滑兼有斜冲的剪切带,局部可见岩浆侵入体,岩性为钾长花岗斑岩,岩体呈岩墙出露,宽6~8m,长约50m(图 3b)。主要出露含榴云母片岩和含榴黑云母斜长片麻岩等岩石类型(图 3c, d)。

南部倾竖褶皱带以片理为标志面,形成枢纽近直立的褶皱带,该带的褶皱以相似褶皱为突出特点,褶皱两翼薄,转折端厚,显示深构造层次的固态流变特点(图 3e)。

本文的研究样品18LSD-2和18LSD-4采于中部构造带,岩性分别为含榴云母片岩、含榴黑云母斜长片麻岩,二者互层产出在中部构造带中钾长花岗斑岩侵入体的南侧(图 3c, d)。样品17LSD-1采于南部构造带,岩性为含榴黑云母钾长片麻岩(图 3f)。本文的采样位置与Song et al. (2019)采样地点在同一个剖面(图 2)。

2 岩相学 2.1 含榴黑云母钾长片麻岩(17LSD-1)

岩石为斑状变晶结构,片麻状构造,主要组成矿物为石英(30%~35%)、钾长石(20%~25%)、斜长石(5%~8%)、黑云母(5%~8%)、绿帘石(10%~15%)、褐帘石(5%~10%)、白云母(5%~10%)、石榴子石(< 5%),副矿物为榍石、锆石、磷灰石等。其主要组成矿物特征如下:

石榴子石主要以变斑晶形式存在,粒径大多数为4~5mm,大部分被溶蚀成岛礁状,充填石英等矿物(图 4a)。核部石榴石(Grt1)以残斑形式存在,常见有石英、锆石等包裹体(图 4a),应为早期变质矿物;边部石榴石(Grt2)较自形,与黑云母等退变矿物围绕核部石榴石生长(图 4a, b)。

图 4 连三岛地区含榴黑云母钾长片麻岩显微照片 Grt-石榴石;Kfs-钾长石;Pl-斜长石;Ph-多硅白云母;Bt-黑云母;Aln-褐帘石;Ep-绿帘石;Qz-石英;Ttn-榍石 Fig. 4 Microstructures of garnet-bearing biotite K-feldspar gneiss from Liansandao area Grt-garnet; Kfs-potash feldspar; Pl-plagioclase; Ph-phengite; Bt-biotite; Aln-allanite; Ep-epidote; Qz-quartz; Ttn-titanite

白云母含量较少,边部退变分解成为黑云母+斜长石(图 4c, d);核部残留的白云母,含有褐帘石包体(图 4c),由此推测褐帘石与核部残留的多硅白云母应为早期变质矿物组合。

褐帘石有两种产状,一种以包裹体形式出现在白云母内部(图 4c);另一种以核(褐帘石)-边(绿帘石)的退变结构产出(图 4a, d),表明褐帘石可能为峰期变质残留矿物。黑云母有两种产状,一种以鳞片状、针柱状出现在白云母、石榴石、绿帘石颗粒外部(图 4a-d);另一种以片状分布在基质中,应为后期退变结晶形成。绿帘石有两种产状,一种以大斑晶颗粒形式存在,与黑云母、石榴石边部、斜长石平衡共生(图 4b);另一种以核(褐帘石)-边(绿帘石)的退变结构产出,并分隔早期形成的褐帘石和白云母(图 4a, d),应为后期退变矿物。

斜长石主要与黑云母以退变反应结构分布在白云母外部,组成白云母的退变反应边(图 4c, d)。钾长石有两种产状,第一种为大颗粒钾长石(Kfs1)与核部石榴石(Grt1)共生(图 4a, c, d);第二种为不规则状钾长石(Kfs2)分布在黑云母、斜长石退变反应结构外部,可能为白云母脱水熔融反应产生(图 4c, d)。

2.2 含榴云母片岩(18LSD-2)

岩石为粒状-鳞片状变晶结构,片状构造,主要组成矿物为石英(45%~49%)、白云母(22%~30%)、黑云母(10%~15%)、褐帘石(5%~10%)、绿帘石(5%~8%)、石榴石(1%~3%)、副矿物为锆石等。

白云母整体呈条带状定向分布,具有强烈的韧性剪切变形特征,可能是由片麻岩类经剪切变质变形而来,剪切过程中长石分解形成了白云母类和石英等矿物(图 5a, b),白云母颗粒内包含褐帘石(图 5b),边部退变为黑云母和斜长石(图 5c)。黑云母主要呈针柱状、鳞片状的退变反应结构分布在白云母和石榴石边部(图 5c, d)。

图 5 连三岛地区含榴云母片岩显微照片 Fig. 5 Microstructures of garnet-bearing mica schist from Liansandao area

褐帘石常以两种产状出现,一种以包裹体形式存在于白云母中(图 5b);另一种以残留核形式被绿帘石所包绕,显示核(褐帘石)-边(绿帘石)结构(图 5c)。

石榴石呈变斑晶形式分布在基质中,发育裂纹,内含较多的包裹体,边部退变为黑云母(图 5d)。

2.3 含榴黑云母斜长片麻岩(18LSD-4)

岩石为粒状-鳞片状变晶结构,片麻状构造,主要矿物组合为石英(15%~20%)、斜长石(20%~25%)、黑云母(20%~25%)、绿帘石(15%~20%)、白云母(5%~8%)、石榴石(10%~15%),副矿物主要为榍石、锆石等。与前述两个样品(含榴黑云母钾长片麻岩和含榴云母片岩)相比,缺少褐帘石和钾长石等早期变质矿物。

石榴石多以残斑状形式存在,被溶蚀改造现象明显,形状多为不规则(图 6a)。

图 6 连三岛地区含榴黑云母斜长片麻岩显微照片 Fig. 6 Microstructures of garnet-bearing biotite plagioclase gneiss from Liansandao area

白云母含量较少,边部多分解形成黑云母+斜长石(图 6b)。黑云母有两种产状,或以针柱状、鳞片状分布在石榴石、白云母边部(图 6a, b);或与绿帘石和斜长石共同分布在基质中(图 6c)。

斜长石有三种不同的产状,第一种以黑云母+斜长石的退变反应结构产出,分布在白云母外部(图 6b);第二种为基质中大颗粒斜长石,与黑云母、绿帘石、石英共生(图 6c);第三种被基质中片状黑云母所包裹(图 6d)。

绿帘石颗粒较大,晶形较完整,以颗粒状分布在基质中(图 6b, c)。

3 样品分析方法

本文所涉及到的实验测试均在西北大学大陆动力学国家重点实验室完成。

矿物主量元素测试利用JEOL JXA-8230电子探针分析完成。加速电压15kV,电流10nA,分析束斑因分析矿物而定,为防止Na、K的丢失,长石、云母等选用4~5μm的大束斑,石榴石则采用1μm的小束斑。不同元素采用SPI公司提供的不同矿物标样进行校正,石英/硬玉-Si,硬玉/斜长石-Al,硬玉/钠长石-Na,透辉石-Ca,橄榄石-Mg,透长石-K,钛铁矿-Fe,蔷薇辉石-Mn,金红石-Ti。对于岩石中具有元素环带或区域变化的颗粒,如石榴石,使用波谱分析进行元素面扫描。同样在JXA-8230电子探针完成,分析条件为加速电压15kV,电流50nA,分析分辨率和单点信号采集时间依据石榴石颗粒大小选择不同的分辨率和采集时间。

锆石包裹体的激光拉曼光谱分析所用仪器为ReniShaw公司配备514nm氩离子激光的inVia型激光拉曼分析仪,仪器空间分辨率横向为1μm,纵向2μm,激光阻挡水平优于1014。矿物包裹体分析过程所选光谱范围为150~1600cm-1。在样品测试前用标准峰位520.5cm-1的标样单晶硅进行拉曼光谱校正,以确保数据质量。部分出露于寄主矿物表面较大的包裹体(大于5μm)使用JEOLJXA-8230电子探针进行矿物化学成分分析。

本次测试挑选晶型完整,结晶度好的锆石颗粒制成以环氧树脂为基础的样品靶,并抛光至锆石出露最大横截面,在透、反射光的基础上应用装有英国Gatan公司生产的Mono CL3+阴极荧光探测仪的电子显微扫描电镜完成锆石的阴极发光图像的拍摄,并以此为基础选取锆石激光剥蚀微区。锆石的U-Pb年龄测定和单矿物微量元素分析是使用Hewlett packard公司装有Shield Torch的Agilient 7500a ICP-MS和德国Lambda Physik公司的ComPex 102ArF激光器以及MicroLas公司的GeoLas 200M光学系统的联机上进行,微量元素和U-Th-Pb同位素的测定在一个点上同时获得。激光斑束直径为32μm,部分狭窄边部束斑直径24μm,激光剥蚀深度为20μm。实验中采取He气作为剥蚀物质的气体。采样方式为单点剥蚀,数据采集选用一个质量峰一点的跳峰方式(peak jumping),锆石年龄采用国际标准锆石91500作为外标标准物质,元素含量采用NIST610作为外标,29Si作为内标元素(锆石中SiO2的含量为32.8%)。每5个点加测91500标样一次,每10个测点加测NIST610、91500、GJ-1标样各一次。样品的同位素比值以及元素含量计算采用ICPMSDatacal 12.0程序年龄计算及协和图的绘制采用Isoplot 3.0完成详细分析步骤参见参考文献(Yuan et al., 2004),数据处理方法见(Liu et al., 2008c)。单矿物微量元素使用玻璃标准参考物质NIST610作为外标进行仪器的最佳化,使仪器达到最高灵敏度、最小的氧化物产量、最低的背景值和稳定的信号,激光斑束直径为44μm,石榴石、帘石矿物以Ca作为内标,微量元素数据分析使用GLITTER(Ver 4.0)程序进行处理。参照美国地调局玄武岩玻璃标准物BCR-2G和BHVO-2G,其分析误差小于7%。

本研究中锆石微区原位Lu-Hf同位素分析的激光剥蚀系统是193nm准分子激光剥蚀系统(RESOlution M-50,ASI),包含一台193nm ArF准分子激光器,一个双室样品室和电脑控制的高精度X-Y样品台移动、定位系统。双室样品池能有效避免样品间交叉污染,减少样品吹扫时间,同时装载样品能力大大提高,减少了频繁换样过程中人为因素的影响。激光能量密度为6J/cm2,频率为5Hz,斑束为43μm,载气为高纯氦气,为280mL/min。Lu-Hf同位素分析采用多接收等离子体质谱(Nu PlasmaⅡ MC-ICPMS),该设备是Nu Instrument公司的最新一代双聚焦多接收等离子体质谱仪,具有16个法拉第杯(Faraday Cup)和5个全尺寸不连续打拿级电子倍增器(FTP,其中2路具有阻滞过滤器RPQ)。其专利的zoom电子光学透镜系统可实现在不同同位素之间分析时快速切换(只需改变电场而无需改变检测器位置)。法拉第杯H4、H3、H2、H1、Ax、L1、L2、L3、L4、L5分别接收180Hf、179Hf、178Hf、177Hf、176Hf+176Yb+176Lu、175Lu、174Yb、173Yb、172Yb、171Yb。Lu-Hf同位素分馏校正采用指数法则计算,采用176Lu/175Lu=0.02656和176Yb/173Yb=0.78696比值扣除176Lu和176Yb对176Hf的干扰,获得准确的176Hf信号值。Hf和Lu同位素比值采用179Hf/177Hf=0.7325进行仪器质量歧视效应校正,Yb同位素比值采用173Yb/171Yb=1.12346进行仪器质量歧视效应校正。在分析过程中,国际标准锆石样品91500和Mudtank作为监控样品,每8个样品插入一组国际标样,数据采集模式为TRA模式,积分时间为0.2s,背景采集时间为30s,样品积分时间为50s,吹扫时间为40s,详细的分析方法和仪器参数见(Yuan et al., 2008; Bao et al., 2017)。

4 矿物化学

本文重点对样品含榴黑云母钾长片麻岩(17LSD-1)进行了矿物的主微量分析,结果见表 1表 2

表 1 连三岛地区含榴黑云母钾长片麻岩的石榴石矿物化学成分(wt%) Table 1 Garnet composition of garnet-bearing biotite K-feldspar gneiss from Liansandao area (wt%)

表 2 连三岛地区含榴黑云母钾长片麻岩的代表性矿物化学成分(wt%) Table 2 Respectively mineral composition of garnet-bearing biotite K-feldspar gneiss from Liansandao area (wt%)

石榴石  具有显著的核-边生长环带(图 7a),其核部(Grt1)端元组成为Alm17.15-26.31Grs42.89-53.29Sps27.06-38.37Prp0.08-0.28;边部(Grt2)端元组成为Alm26.91-34.78Grs44.99-50.81Sps19.70-22.41Prp0.11-0.61(表 1),石榴石成分从核部到边部呈现出铁铝榴石升高(图 7b, f)、锰铝榴石降低(图 7c, f)、钙铝榴石先降低后升高、镁铝榴石无明显变化(图 7e, f)的特征(图 7d, f),可能与后期变质过程中帘石矿物的分解有关(Greentree et al., 2006)。微量元素分析表明,石榴石核部具有一致高的HREE含量和极低的LREE含量(表 3),轻重稀土分馏明显,显示HREE相对富集的配分模式和中等的Eu负异常(δEu=0.44~0.70)。而边部石榴石稀土总量相对较低,HREE配分模式较为平坦,且显示Eu负异常(δEu=0.44~0.73)特征(图 7g)。

图 7 含榴黑云母钾长片麻岩中石榴石成分环带(a-f)及球粒陨石标准化稀土元素配分图(g)(标准化值据Sun and McDonough, 1989) Fig. 7 Compositional profiles (a-f) and Chondrite-normalized REE patterns (g) of garnet from garnet-bearing biotite K-feldspar gneiss (normalization after Sun and McDonough, 1989)

表 3 含榴黑云母钾长片麻岩中褐帘石、绿帘石、石榴石微量元素分析数据(×10-6) Table 3 LA-ICP-MS trace element (×10-6) data of allanite, epodite, garnet grains from garnet-bearing biotite K-feldspar gneiss

白云母  FeO(3.95%~4.37%),MgO(2.45%~2.53%),Fe/Mg(0.91~0.97)。将电子探针分析得到的结果利用11个氧原子进行计算,得到的Si原子为3.34~3.37(表 2),显示为典型的多硅白云母(Zhang et al., 2006)。

钾长石:分布在基质中的变斑晶钾长石Kfs1成分为Or96-98Ab2-4An0;而分布在黑云母和斜长石退变反应结构外部的周围不规则状钾长石Kfs2相对于Kfs1具有更高的K2O含量,其成分为Or99Ab1An0(表 2)。

褐帘石  在背散射图像上可以看到不同区域的褐帘石具有明显的环带,从核部到边部逐渐变暗(图 8a, c)。其元素含量总体无明显变化,SiO2(32.41%~33.64%)、Al2O3(19.70%~20.32%)、FeO(7.65%~9.37%)和CaO(14.26%~14.93%)(表 2)。微量元素显示褐帘石富集轻稀土元素,轻重稀土强烈分馏,具有显著的Eu负异常特征(图 8b, d, f)。

图 8 含石榴黑云母钾长片麻岩中褐帘石和绿帘石球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough, 1989) Fig. 8 Chondrite-normalized REE pattern of allanite and epidote from garnet-bearing biotite K-feldspar gneiss (normalization after Sun and McDonough, 1989)

绿帘石  以褐帘石的环带边产出,其元素含量为:SiO2(37.78%~38.16%)、Al2O3(23.02%~23.25%)、FeO(11.20%~13.00%)和CaO(22.22%~22.51%);或以大颗粒绿帘石斑晶产出,其元素含量为:SiO2(38.11%~38.56%)、Al2O3(22.60%~23.14%)、FeO(12.31%~12.92%)、CaO(22.31~22.73%)(表 2)。两种产状的绿帘石主量元素无明显差异。围绕褐帘石生长的绿帘石同样富集轻稀土,向外轻稀土含量逐渐降低,陡峭的稀土配分模式逐渐变缓,存在Eu负异常(图 8b, d)。

黑云母  由白云母退变而成,其元素含量为:SiO2(34.90%~35.10%)、Al2O3(17.80%~18.59%)、FeO(20.10%~20.97%)和MgO(8.63%~8.76%)(表 2)。

斜长石:由白云母退变形成,主要为更长石,其成分为Ab76-79An20-23Or0.66-1.08(表 2)。

5 锆石U-Pb定年结果 5.1 锆石CL图像

含榴黑云母钾长片麻岩(17LSD-1)  CL图像显示该岩石的锆石具有典型的核-边结构(图 9a),大部分核部显示明亮的阴极发光,且具有明显的振荡环带;边部锆石发光较弱,无环带结构。从结构上来看,其核部为原岩继承锆石,暗色弱发光边部可能为后期变质作用所引起(吴元保和郑永飞, 2004)。

图 9 连三岛地区含榴黑云母钾长片麻岩(a)、含榴云母片岩(b)和含榴黑云母斜长片麻岩(c)锆石阴极发光CL图像 Fig. 9 Cathodoluminescent (CL) images of zircons from garnet-bearing biotite K-feldspar gneiss (a), garnet-bearing mica schist (b) and garnet-bearing biotite plagioclase gneiss (c) in Liansandao area

含榴云母片岩(18LSD-2)  CL图像显示锆石多为长柱状、浑圆状,直径约为50~120μm,总体显示出明显的核-边结构(图 9b)。黑色弱发光的岩浆核周围围绕一圈灰白色变质边,大部分核部显示微弱的振荡环带,灰白色边部无分带或面状分带,并且受溶蚀呈港湾状(图 9b),符合变质锆石的基本特征。由此可见,核部应为片麻岩原岩残留下来的继承锆石,边部应为变质成因锆石(吴元保和郑永飞, 2004)。

含榴黑云母斜长片麻岩(18LSD-4)  CL图像显示锆石多为自形,长柱状,结构特征总体表现为岩浆锆石核围绕着暗色的幔部和薄的变质亮边,显示出明显的核-幔-边结构,亮边结构不明显(图 9c)。大部分锆石核部显示明亮的阴极发光以及明显的振荡环带,为原岩继承下来的残留锆石;幔部具有最弱的阴极发光,与含榴黑云母钾长片麻岩的边部锆石特征类似,无明显分带结构;而围绕着幔部发育的狭窄亮边具有最强的阴极发光(图 9c)。从结构上可以看出,黑色弱发光幔部和狭窄的亮边可能为后期变质作用引起(吴元保和郑永飞, 2004)。

5.2 锆石U-Pb年龄

对含榴黑云母钾长片麻岩(17LSD-1)进行了16个测试点分析(图 10a;电子版附表 1),在协和曲线上形成了2个年龄密集区。6个核部岩浆锆石给出年龄范围为697~812Ma,加权平均值为764±35Ma;9个边部变质锆石年龄范围为210~236Ma,加权平均年龄为223±5.2Ma;1个数据点给出了略低的变质年龄为195Ma。

图 10 连三岛含榴黑云母钾长片麻岩、含榴云母片岩、含榴黑云母斜长片麻岩的锆石U-Pb年龄协和图(a、c、e)及球粒陨石标准化稀土配分图(b、d、f,标准化值据Sun and McDonough, 1989) Fig. 10 Concordia diagrams (a, c, e) and chondrite-normalized REE patterns (b, d, f, normalization after Sun and McDonough, 1989) of zircons from garnet-bearing biotite K-feldspar gneiss, garnet-bearing mica schist and garnet-bearing biotite plagioclase gneiss in Liansandao area

附表 1 连三岛地区变质岩锆石U-Th-Pb同位素数据 Appendix Table 1 LA-ICP-MS U-Th-Pb isotopic data of representative zircons from metamorphic rocks in Liansandao area

样品含榴云母片岩锆石(18LSD-2)进行了30个测试点分析,此组锆石具有明显的核-边结构,锆石核部和边部显示了两组不同的U-Pb年龄(图 10c附表 1),数据点在协和曲线上形成了2个密集区。其中21个核部残留岩浆锆石的206Pb/238U年龄范围为752~781Ma,加权平均年龄为769±3.7Ma;9个锆石边部形成了另一个年龄密集区,其206Pb/238U年龄范围为207~226Ma,加权平均年龄为213±5.3Ma。另有3个年龄位于这两组年龄之间,考虑到锆石内部结构的复杂性,可能包含了不同比例的锆石残核和边部,为混合年龄,不具有明确的地质意义。

样品含榴黑云母斜长片麻岩(18LSD-4)共进行了12个测点的分析(图 10e附表 1),由于锆石边部太窄,测点斑束为24μm,7个核部岩浆锆石集中于协和线上交点206Pb/238U年龄范围分别为730~767Ma,加权平均年龄为756±9.6Ma;5个边部点位年龄集中于协和线下交点,206Pb/238U范围为186~216Ma,边部年龄可以分为两组,2个点位显示三叠纪变质年龄216±3.8Ma,其余3个点位给出了略低的加权平均年龄为191±3.3Ma。

5.3 锆石微量元素特征

含石榴石黑云母钾长片麻岩(17LSD-1)的锆石微量元素含量结果显示(图 10b;电子版附表 2),核部具有轻稀土(LREE)亏损,重稀土(HREE)富集(∑REE=803×10-6~1947×10-6,∑HREE=760×10-6~1848×10-6),Ce正异常和Eu负异常(0.301~0.567)的特点,其(Gd/Lu)N=0.019~0.036,表现为HREE富集的配分模式;具有较高的Th/U比值(0.695~1.060),均大于0.4,符合岩浆锆石的特征(Vavra et al., 1996; Hoskin and Ireland, 2000)。锆石边部稀土总量和重稀土含量总体比锆石核部低(∑REE=394×10-6~1121×10-6,∑HREE=391×10-6~1067×10-6),同样显示轻稀土(LREE)亏损,重稀土(HREE)富集,Ce正异常和Eu负异常(0.261~0.633)的特点,其(Gd/Lu)N=0.001~0.016,相比于锆石核部边部锆石具有低的Th/U(0.006~0.074),且均小于0.1,表明边部锆石可能是变质成因(Rubatto, 2002)。

附表 2 连三岛地区变质岩锆石微量元素含量(×10-6) Appendix Table 2 Trace element compositions of representative zircons from metamorphic rocks in Liansandao area (×10-6)

含榴云母片岩(18LSD-2)的微量元素分析结果显示,锆石的核部和边部稀土元素组成也具有不同特征(图 10d附表 2):锆石继承核的稀土总量和重稀土含量较高(∑REE=455×10-6~2438×10-6,∑HREE=435×10-6~2271×10-6),轻稀土(LREE)明显亏损,重稀土(HREE)明显富集,具有极低的(Gd/Lu)N(0.016~0.099),显示重稀土明显陡倾的稀土配分模式;具有强烈的Ce正异常和Eu负异常(0.020~0.235)的特征,Th/U比值较高(0.470~1.424),且均大于0.4,仅有1个点位Th/U为0.100,可能包含了不同比例的锆石残核和边部,不具有明确地质意义,结合其岩浆振荡环带特征,进一步证明继承核为岩浆结晶锆石(Vavra et al., 1996; Hoskin and Ireland, 2000)。与继承核相比较,锆石边部测试点稀土总量和重稀土含量明显降低(∑REE=126×10-6~502×10-6,∑HREE=121×10-6~499×10-6),同时也具有轻稀土(LREE)亏损、重稀土(HREE)富集和极低的(Gd/Lu)N(0.004~0.033),显示重稀土明显上翘的稀土配分模式;同时显示Ce正异常和Eu负异常(0.074~0.331)的特征,以及Th/U(0.017~0.108)基本都小于0.1,结合CL图像面状结构特征,说明18LSD-2含榴云母片岩锆石的边部为变质成因锆石(Corfu et al., 2003)。

含榴黑云母斜长片麻岩(18LSD-4)锆石微量元素含量结果显示(图 10f附表 2),其继承核部(∑REE=945×10-6~1607×10-6,∑HREE=889×10-6~1534×10-6)具有轻稀土(LREE)亏损,重稀土(HREE)明显富集,强烈的Ce正异常和Eu负异常(0.307~0.689)的特征,(Gd/Lu)N比值为0.027~0.070,表现为HREE富集的稀土配分模式;具有较高的Th/U(1.16~2.03),为典型的岩浆成因锆石(Vavra et al., 1996; Hoskin and Ireland, 2000)。边部锆石(∑REE=549×10-6~2376×10-6,∑HREE=523×10-6~2350×10-6)同样显示轻稀土(LREE)亏损,重稀土(HREE)富集,强烈的Ce正异常和Eu负异常(0.402~0.743)的特征,(Gd/Lu)N(0.001~0.029)较锆石继承核更低,显示HREE更为陡峭的稀土配分模式,但Th/U比值(0.005~0.101)基本都小于0.1,结合CL图像说明锆石边部为变质成因锆石(Rubatto, 2002)。

5.4 锆石Hf同位素组成

本文选取2个样品含榴黑云母钾长片麻岩(17LSD-1)与含榴云母片岩(18LSD-2)进行Hf同位素测试,由于部分锆石边部较窄,实验过程中尽量避免测点打在核边混合区域,在计算过程中分别选取样品的加权平均年龄:样品17LSD-1锆石核部年龄归一化为t=764Ma,边部锆石年龄归一化为t=223Ma;样品18LSD-2锆石核部年龄归一化为t=769Ma,边部锆石年龄归一化为t=213Ma,其分析结果见图 11和电子版附表 3

图 11 含榴黑云母钾长片麻岩和含榴云母片岩锆石εHf(t)值(a、c、e)及二阶段Hf模式年龄(b、d、f)柱状图 Fig. 11 εHf(t) values (a, c, e) and two-stage Hf model ages (b, d, f) histograms for zircon grains from garnet-bearing biotite K-feldspar gneiss and garnet-bearing mica schist

附表 3 连三岛地区变质岩锆石Hf同位素组成 Appendix Table 3 Hf isotopic data of zircons from metamorphic rocks in Liansandao area

17LSD-1共计29个分析点位,13个分析点位来自核部岩浆锆石,16个点位来自边部变质锆石,位于锆石核部的测试点其176Hf/177Hf为0.281791~0.282281,εHf(t)=-19.2~-1.1(图 11a),tDM2C(Hf)=1720~2845Ma(图 11b);位于锆石边部的测试点其176Hf/177Hf为0.281998~0.282727,εHf(t)=-23.2~2.8(图 11c),其中只有1个分析点位的εHf(t)显示是正值,对应tDM2C(Hf)为1048Ma,其余15个测试点tDM2C(Hf)=1712~2688Ma(图 11d)。

18LSD-2共计35个分析点位,18个分析点位来自核部岩浆锆石,17个点位来自边部变质锆石,位于锆石岩浆核部的分析点176Hf/177Hf为0.282038~0.282545,εHf(t)=-11.3~8.6(图 11e),其中只有4个分析点位εHf(t)显示是正值,对应tDM2C(Hf)为1113~1620Ma,其余14个测试点tDM2C(Hf)=1657~2358Ma(图 11f)。位于锆石边部的分析点位176Hf/177Hf为0.282262~0.282568,其εHf(t)=-13.9~-2.9(图 11g),tDM2C(Hf)=1406~2098Ma(图 11h)。这些数据显示,大部分εHf(t)显示负值,少部分显示正值,表明样品18LSD-2壳源物质成分占主导地位,部分幔源或新生地壳物质的加入导致少部分εHf(t)偏正值。

5.5 锆石矿物包裹体的拉曼光谱

利用激光拉曼光谱对锆石内的包裹体进行分析,发现边部变质成因锆石的矿物包裹体有钾长石(Kfs)典型谱峰为513cm-1、多硅白云母(Phe)典型谱峰为702cm-1、石英(Qtz)典型谱峰为467cm-1、金红石(Ru)典型谱峰为607cm-1、磷灰石(Ap)典型谱峰为964cm-1、榍石(Ttn)典型谱峰为877cm-1图 12展示了典型的锆石包裹体矿物类型、拉曼峰谱图特征。同时对出露在锆石边部的多硅白云母包裹体进行了矿物成分分析,其成分与薄片中的多硅白云母成分接近,其Si含量为3.44(表 2),指示其为多硅白云母。多硅白云母、钾长石包裹体在锆石边部的出现,进一步说明边部锆石所测得的U-Pb年龄即为峰期变质年龄,同时表明利用多硅白云母压力计、锆石Ti温度计计算所得的温压条件即可代表峰期温压条件。

图 12 含榴黑云母钾长片麻岩(17LSD-1)锆石中矿物拉曼光谱特征及包裹体显微照片 Fig. 12 Microphotographs and Raman spectra of mineral inclusions in metamorphic zircons of garnet-bearing biotite K-feldspa gneiss (17LSD-1)
6 讨论 6.1 原岩时代探讨

本次研究的连三岛地区3个样品的CL图像均具有明显的核-边结构(图 9),其锆石核部都具有陡峭的重稀土富集配分模式。与边部锆石相比,具有更高的稀土总量,核部锆石Th/U比值均大于0.4,说明核部锆石具有典型的岩浆锆石特征,同时LA-ICP-MS锆石U-Pb定年给出3个样品新元古代的协和年龄分别为:(1)17LSD-1:764±35Ma(2)18LSD-4:756±9.6Ma(3)18LSD-2:769±3.7Ma。前人已对大别-苏鲁造山带不同类型变质火成岩中锆石进行大量的锆石U-Pb定年,得到了原岩的岩浆结晶年龄范围为600~800Ma,但主要集中在700~800Ma(峰期为750±20Ma)的年龄数据(Zheng et al., 2004; Ames et al., 1996; Tang et al., 2008; Hacker et al., 1998; Rowley et al., 1997; Zhao et al., 2016),并推断其原岩为扬子板块北缘新元古代大规模岩浆活动事件的产物。新近,Song et al. (2019)对连三岛地区的3个变火成岩样品进行LA-ICP-MS锆石定年,分别得出744±11Ma、767±12Ma和762±15Ma的原岩年龄。本文获得的原岩年龄750~770Ma(图 13a)与Song et al. (2019)的定年结果在误差范围内基本一致(图 13b),且与苏鲁超高压变质带中大多数超高压变质地体(如仰口、威海等地区)的原岩时代(700~800Ma)基本一致(图 13c-e)。扬子板块新元古岩浆活动主要形成于830~820Ma前裂谷阶段和780~740Ma同裂谷阶段(Rowley et al., 1997; Hacker et al., 1998, 2000; Ames et al., 1996),这些新元古代岩浆活动同样被认为与地幔柱引起的Rodinia超大陆的裂解有关(Li et al., 1999, 2003a, b; Zheng et al., 2004, 2006)。因此,本文推测连三岛地区变质岩原岩的形成与扬子板块新元古代北缘大规模岩浆活动事件有关,且形成于同裂谷阶段。

图 13 连三岛地区变质岩体与苏鲁造山带内典型超高压变质地体的原岩年龄直方图 (a)本次研究区连三岛片岩/片麻岩原岩年龄直方图;(b)连三岛地区片麻岩原岩年龄直方图;(c)苏鲁造山带正片麻岩原岩年龄直方图;(d)仰口地区片麻岩原岩年龄直方图;(e)威海地区斜长角闪岩原岩年龄直方图 Fig. 13 Histogram of protolith ages for metamorphic rocks in the Liansandao area and typical UHP metamorphic terrane in the Sulu orogenic belt (a) ages of inherited magmatic zircons from Liansandao schist/gneiss (this study); (b) ages of inherited magmatic zircons from Liansandao gneiss; (c) ages of inherited magmatic zircons from the Sulu orthogneiss; (d) ages of inherited magmatic zircons from Yangkou gneiss; (e) ages of inherited magmatic zircons from Weihai plagioclase amphibolites

当锆石初始εHf(t)值为正值,说明变质岩原岩形成时有较多幔源或新生地壳物质的加入,而初始εHf(t)偏负值时,说明变质岩原岩形成时,壳源物质成分占主导地位(李向辉等, 2007)。如前所述,样品17LSD-1、18LSD-2的Hf同位素成分进一步提供了源区信息(图 14)。17LSD-1核部岩浆锆石与边部变质锆石εHf(t)除一个边部分析点外,均显示负值,表明其为陆壳成因。同时tDM2C(Hf)大部分集中在1.8~2.5Ga,表明其原岩主要来源于古元古代陆壳重熔。18LSD-2核部岩浆锆石和边部变质锆石的εHf(t)大部分显示负值,少数核部岩浆锆石εHf(t)为正值,对应tDM2C(Hf)为1113~1620Ma,其余14个测试点tDM2C(Hf)=1657~2358Ma;边部变质锆石tDM2(Hf)为1406~2098Ma。本文测定值与陈道公等(2007)在双河片麻岩样品CSH7得出的数据相似,表明样品18LSD-2形成时壳源物质成分占主导地位,同时除了形成幔源岩浆活动产物外还与不同年龄的地壳物质发生了广泛的混合作用。因此,结合上述原岩U-Pb定年结果和Lu-Hf同位素特征的分析,推断本文研究的这三种岩石的原岩主要是扬子板块新太古代-早古元古代陆壳在新元古代重熔的产物,也有少部分幔源岩浆的贡献,且与苏鲁高压-超高压变质带部分变质岩石的原岩具有相似的源区和成因(Zhang et al., 2006; Liu et al., 2008b; Wang et al., 2010b)。

图 14 连三岛含榴黑云母钾长片麻岩和含榴云母片岩锆石Lu-Hf同位素组成演化示意图 亏损地幔的演化曲线根据Nowell et al. (1998), Corfu and Noble (1992)Vervoort and Blichert-Toft (1999)绘制而成 Fig. 14 Shematic diagrams for zircon Lu-Hf isotopic evolution of garnet-bearing biotite K-feldspar gneiss and garnet-bearing mica schist The growth curve for depleted mantle (DM) is drawn following Nowell et al. (2018), Corfu and Noble (1992), Vervoort and Blichert-Toft (1999)
6.2 变质时代的意义

前人对苏鲁高压-超高压变质带中不同类型变质岩进行了大量的年代学研究,如,Liu and Liou (2011)对苏鲁超高压变质带正片麻岩、副片麻岩、石英岩进行详细的SHRIMP U-Pb定年得到了232±4Ma~226±6Ma、233±3Ma ~227±7Ma、234±4Ma~231±5Ma的超高压变质年龄(图 15a, b);曾令森等(2011)对仰口地区副片麻岩进行SHRIMP U-Pb定年得到233±3Ma的超高压变质年龄(图 15c);雷恒聪(2015)对威海地区斜长角闪岩进行LA-ICP-MS定年得到230±5Ma的超高压变质年龄(图 15d);Yang et al. (2003)对威海地区含柯石英橄榄岩、榴辉岩进行SHRIMP U-Pb定年得到228~221Ma的超高压变质年龄,从而确定其超高压变质事件确切年龄为240~225Ma(Hacker et al., 1998, 2006; Liu and Liou, 2011; Liu et al., 2004b; Xu et al., 2006; Zhao et al., 2006; Zheng et al., 2003, 2009; Zheng, 2009)。此外,还对苏鲁超高压变质带正片麻岩、副片麻岩、石英岩定年得到了215±3Ma~209±3Ma、213±6Ma~208±4Ma、215±3~214±3Ma的角闪岩相退变质年龄(图 15a, b)(Liu and Liou, 2011);仰口地区副片麻岩进行定年得到214±4Ma的角闪岩相退变质年龄(图 15c)(曾令森等, 2011);威海地区斜长角闪岩定年得到214±7Ma的角闪岩相退变质年龄(图 15d)(雷恒聪, 2015);苏鲁造山带斜长角闪岩中角闪石和片麻岩中黑云母的Ar-Ar定年结果为218~205Ma,同样代表了构造折返角闪岩相退变质时代(Eide et al., 1994; Webb et al., 1999; Hacker et al., 2000; Faure et al., 2003; Liu et al., 2008a),这些年代学数据表明苏鲁高压-超高压变质带的角闪岩相退变质作用发生在215~205Ma。

图 15 连三岛地区变质岩和苏鲁造山带内典型超高压变质地体退变质、峰期变质年龄直方图 Fig. 15 Histograms of retrograde metamorphic and peak metamorphic ages for metamorphic rocks in the Liansandao area and typical UHP metamorphic terrane in the Sulu orogenic belt

本文3个样品的边部锆石都显示陡峭的稀土配分模式,但稀土总量低于核部岩浆锆石,其Th/U比值均小于0.1,结合其边部锆石的均匀面状结构的CL图像特征,确定边部锆石为典型的变质成因锆石(吴元保和郑永飞, 2004)。对边部变质成因的锆石进行LA-ICP-MS定年,得到的年龄分别为:(1)17LSD-1:223±5.2Ma;(2)18LSD-4:216±3.8Ma;(3)18LSD-2:213±5.3Ma。激光拉曼分析识别出样品17LSD-1锆石边部含有钾长石和白云母包裹体,利用电子探针确定其白云母包裹体的成分(Si=3.44)与基质中的白云母一致(表 2),都属于多硅白云母的范畴,说明该样品的锆石边部为峰期高压变质条件下形成,因此推断其年龄223±5.2Ma即为峰期变质年龄。此外,还在18LSD-2和18LSD-4两个样品的边部变质锆石中分别获得213±5.3Ma和216±3.8Ma的变质年龄,与目前已获得的苏鲁高压-超高压变质带的角闪岩相退变质时代吻合(图 13a-d),因此推断这两个样品记录了峰期后的退变质年龄。

根据锆石内部结构特征、矿物包裹体和年代学数据得出,本文研究的3个样品的峰期变质作用和退变质作用分别发生在223±5.2Ma和213±5.3Ma~216±3.8Ma,与苏鲁造山带中部分高压-超高压变质岩石具有一致的峰期变质时代和退变质时代(图 15a-e)。因此,推断其应与苏鲁高压-超高压变质带的形成机制一致,都是在三叠纪扬子板块向华北板块俯冲引发的高压-超高压变质事件的产物,应当属于苏鲁高压-超高压变质带的一部分。

6.3 变质期次及P-T演化轨迹 6.3.1 变质期次及温压条件

依据上述岩相学观察和矿物化学成分分析,连三岛地区变质岩可以划分出两个阶段的变质矿物组合:

第一阶段(峰期变质阶段):以钾长石变斑晶与核部石榴石(图 4a)、褐帘石与多硅白云母共生为特点(图 4d)。峰期矿物组合应为Grt1+Kfs1+Aln+Ph+Qtz。由于多硅白云母包裹体出现在边部变质锆石中,且其成分与薄片中的多硅白云母一致,利用多硅白云母Si压力计(Caddick and Thompson, 2008)和锆石Ti温度计(Ferry and Watson, 2007)计算获得的温压条件能够限制其变质峰期温压条件。因此,利用多硅白云母Si压力计计算,获得压力为2.4~2.6GPa(Si含量为3.34~3.37);利用锆石Ti温度计对3个样品边部锆石进行温度计算,该温度计是在1.0GPa条件下进行校定,且与压力呈~50℃/GPa的正相关(Ferry and Watson, 2007),故将锆石Ti温度计校正到2.5GPa,得到变质温压条件为T=600~817℃、P=2.4~2.6GPa(表 4),达到榴辉岩相变质(Spear, 1995)。

表 4 含榴黑云母钾长片麻岩的温压计算 Table 4 P-T calculation for the garnet-bearing biotite K-feldspar gneiss

第二阶段(退变质阶段):结合岩相学和石榴石环带特征,该阶段以退变质矿物围绕着峰期斑晶矿物所生长为特点:多硅白云母分解成黑云母+斜长石退变反应结构;绿帘石环绕褐帘石生长,表明其退变质矿物组合为Grt2+Pl+Ep+Bt+Qtz,代表了峰期之后的退变质阶段矿物组合。利用石榴石-黑云母(GB) 温度计和石榴石-黑云母-斜长石-石英(GBPQ)压力计(Wu et al., 2004)对变斑晶石榴石边部成分以及分布在白云母外部退变质的黑云母、斜长石成分进行计算,得到退变质温压条件为T=431~456℃、P=0.48~0.82GPa(表 4),达到绿帘角闪岩相变质(Spear, 1995)。

6.3.2 P-T演化轨迹

大量研究表明,大别-苏鲁超高压变质带在折返过程中都经历了不同程度的部分熔融(Skjerlie and Douce, 2002; Zheng et al., 2011; Chen et al., 2013a, b; Li et al., 2014, 2016; Xia et al., 2016),含水矿物的脱水反应是导致岩石在折返过程中发生部分熔融的重要因素(Song et al., 2014; Xu et al., 2013; Li et al., 2016)。本次研究的样品岩相学特征表明多硅白云母发生了脱水反应:多硅白云母普遍分解形成黑云母+斜长石退变反应结构(图 4c-d图 5c图 6b),在其外围还环绕一圈钾长石细脉(图 4c-d图 5b),因此推断这些岩石在达到峰期变质作用之后,在折返初期发生短时的增温作用,穿过白云母固相线发生了白云母脱水部分熔融,从而形成细脉状钾长石。硅白云母的残留,表明在脱水熔融过程中并未被完全消耗。

因此,综合上述岩相学特征、温压条件计算以及获得的多阶段年龄数据,确定本文研究的连三岛地区出露的变质岩的新元古代原岩于~223Ma发生俯冲碰撞并经历榴辉岩相高压变质作用;随后开始折返,在折返过程中首先经历了升温降压的“热折返”过程,穿过多硅白云母熔融反应线(图 16,A→B区域),并伴随着多硅白云母发生变质脱水导致部分熔融;之后继续降温降压,于~213Ma发生绿帘-角闪岩相退变质作用,最终抬升到地表。据此建立一条早期快速升温降压,后期又降压降温顺时针型的P-T-t演化轨迹(图 16)。将苏鲁造山带典型地区P-T轨迹总结对比后,发现完整的苏鲁地区超高压变质岩的变质演化均显示顺时针P-T演化轨迹,然而不同地区可能具有不同的变质演化历史(张泽明等, 2005)。连三岛地区变质岩P-T轨迹整体上都显示在折返过程中经历了显著的升温,符合碰撞型造山带的变质演化过程(魏春景等, 1996; 金维浚和石耀霖, 1998),且与苏鲁超高压变质带中威海片麻岩、桃行地区榴辉岩具有相似的P-T演化轨迹(图 16)(Zong et al., 2010; Yao et al., 2000)。进一步证明本文研究的3个样品应属于苏鲁高压-超高压变质带。

图 16 连三岛地区片麻岩变质演化P-T-t轨迹及部分熔融记录及苏鲁造山带典型高压-超高压变质地体P-T-t演化轨迹 黑色断线为多硅白云母固相线(Hermann, 2002; Vielzeuf and Holloway, 1988; Auzanneau et al., 2006),花岗岩湿固相线(Huang and Wyllie, 1981; Holtz et al., 2001) Fig. 16 P-T-t path and phengite dehydration melting for Liansandao gneiss and the P-T-t path from typical HP-UHP terranes in the Sulu orogenic belt Dehydration melting due to phengite decomposition could take place at point A to B (break line), following the experimental data (Hermann, 2002; Vielzeuf and Holloway, 1988; Auzanneau et al., 2006). Wet solidus for the system granite+H2O (Huang and Wyllie, 1981; Holtz et al., 2001)
6.4 构造意义

研究区连三岛地区出露的变质变形强烈的一套变质岩石,前人通过地层对比,将其归为古元古界荆山岩群野头组祥山变粒岩段,可能为胶北地块早前寒武纪变质基底向东部的延伸或是卷入苏鲁造山带的俯冲变质过程。但详细年代学数据的缺乏对其构造属性和变质属性一直无确定结论。本文结合前人的研究结果,分析了连三岛地区变质岩的原岩时代、变质时代和变质作用演化历史,为进一步确定其原岩属性和变质属性提供了重要证据。

本文利用高精度的LA-ICP-MS定年,对连三岛地区3个变质岩样品进行详细的锆石年代学研究,结合其锆石CL图像、微量元素特征,得到新元古代原岩年龄764±35Ma、769.3±3.7Ma和756.3±9.6Ma;峰期变质年龄223±5.2Ma和退变质年龄213±5.3Ma、216±3.8Ma。这3个样品的原岩年龄与苏鲁造山带超高压变质岩原岩形成时代一致,其峰期变质时代、退变质时代也与苏鲁造山带超高压变质时代(240~225Ma)、角闪岩相退变质时代(215~205Ma)一致(Hacker et al., 1998, 2006; Liu and Liou, 2011; Liu et al., 2004b; Xu et al., 2006; Zhao et al., 2006; Zheng et al., 2003, 2009; Zheng, 2009)。此外,通过详细的岩相学观察和矿物化学分析,划分了含榴黑云母钾长片麻岩的变质期次,并结合锆石U-Pb定年建立了一条顺时针P-T-t演化轨迹,通过对比确定其与苏鲁高压-超高压变质带典型地区变质岩的变质演化轨迹相似(Zong et al., 2010; Yao et al., 2000)。因此,无论是原岩时代、变质年龄还是变质演化特征,本文研究的连三岛地区的变质岩均与苏鲁造山带的变质岩具有一定的相似性,因此其不应再作为岩石地层单位划分为“古元古代荆山岩群”,而应当属于苏鲁超高压变质带的一部分,该结论将为研究区内荆山岩群的分布及划分范围提供重要依据。

7 结论

(1) 岩石学、矿物化学研究表明,连三岛地区片岩/片麻岩显示两期变质矿物共生组合:峰期变质组合为石榴石+多硅白云母+褐帘石+钾长石+石英;退变质矿物组合为石榴石+黑云母+绿帘石+斜长石+石英。估算其温压条件分别为T=600~817℃、P=2.4~2.6GPa和T=431~456℃、P=0.48~0.82GPa,分别对应于榴辉岩相和绿帘角闪岩相变质,从而构成一条折返初期首先降压升温而后降压降温的顺时针P-T-t轨迹。

(2) 通过LA-ICP-MS锆石定年获得连三岛地区片岩/片麻岩原岩年龄分别为764±35Ma、769±3.7Ma和756±9.6Ma,表明其原岩形成于新元古代;其峰期高压变质作用发生在223±5.2Ma,退变质时间为213±5.3Ma~216±3.8Ma,

(3) 连三岛地区片岩/片麻岩的原岩属性和变质属性均与苏鲁超高压变质带原岩时代和变质年代吻合,故这三种岩石不应再划为古元古界荆山岩群,而属于苏鲁高压-超高压变质带的一部分。

参考文献
Ames L, Zhou GZ and Xiong BC. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489 DOI:10.1029/95TC02552
Auzanneau E, Vielzeuf D and Schmidt MW. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contributions to Mineralogy and Petrology, 152(2): 125-148 DOI:10.1007/s00410-006-0104-5
Bao ZA, Chen L, Zong CL, Yuan HL, Chen KY and Dai MN. 2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255-262 DOI:10.1016/j.ijms.2017.07.015
Caddick MJ and Thompson AB. 2008. Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: Mineral compositions in equilibrium. Contributions to Mineralogy and Petrology, 156(2): 177-195 DOI:10.1007/s00410-008-0280-6
Carswell DA and Compagnoni R. 2003. Ultrahigh pressure metamorphism. Italy: EMU: 1-508
Chen DG, Ni T and Xie LW. 2007. Zircon Lu-Hf isotopic compositions of ultra-high pressure metamorphic rocks from Dabie Terrain, China. Acta Petrologica Sinica, 23(2): 331-342 (in Chinese with English abstract)
Chen M, Zheng JP, Sun M and Zhao JH. 2013c. Mid-Neoproterozoic crustal evolution of the northeastern Yangtze Block: Evidence from the felsic-gneiss xenoliths hosted in the Donghai Cenozoic basalts. Journal of Asian Earth Sciences, 66: 108-122 DOI:10.1016/j.jseaes.2012.12.032
Chen RX, Zheng YF and Xie LW. 2010. Metamorphic growth and recrystallization of zircon: Distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos, 144(1-2): 132-154
Chen YX, Zheng YF and Hu Z. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. Journal of Metamorphic Geology, 31(4): 389-413 DOI:10.1111/jmg.12026
Chen YX, Zheng YF and Hu Z. 2013b. Synexhumation anatexis of ultrahigh-pressure metamorphic rocks: Petrological evidence from granitic gneiss in the Sulu orogen. Lithos, 156-159(69): 96
Cong BL. 1996. Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China. Beijing: Science Press, 1224
Corfu F and Noble SR. 1992. Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique. Geochimica et Cosmochimica Acta, 56(5): 2081-2097 DOI:10.1016/0016-7037(92)90331-C
Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500 DOI:10.2113/0530469
Eide EA, McWilliams MO and Liou JG. 1994. 40Ar/39Ar geochronology and exhumation of high-pressure to ultrahigh-pressure metamorphic rocks in east-central China. Geology, 22(7): 601-604 DOI:10.1130/0091-7613(1994)022<0601:AAGAEO>2.3.CO;2
Ernst WG, Tsujimori T, Zhang R and Liou JG. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35: 73-110 DOI:10.1146/annurev.earth.35.031306.140146
Faure M, Lin W, Schärer U, Shu LS, Sun Y and Arnaud N. 2003. Continental subduction and exhumation of UHP rocks: Structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241 DOI:10.1016/S0024-4937(03)00100-2
Ferry JM and Watson EB. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437 DOI:10.1007/s00410-007-0201-0
Greentree MR, Li ZX, Li XH and Wu HC. 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao Orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research, 151(1-2): 79-100 DOI:10.1016/j.precamres.2006.08.002
Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Dong SW. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230 DOI:10.1016/S0012-821X(98)00152-6
Hacker BR, Ratschbacher L, Webb L, McWilliams MO, Ireland T, Calvert A, Dong SW, Wenk HR and Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 105(B6): 13339-13364 DOI:10.1029/2000JB900039
Hacker BR, Wallis SR, Ratschbacher L, Grove M and Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(5): TC5006
He Q, Zhang SB and Zheng YF. 2016. High temperature glacial meltwater-rock reaction in the Neoproterozoic: Evidence from zircon in-situ oxygen isotopes in granitic gneiss from the Sulu orogen. Precambrian Research, 284: 1-13 DOI:10.1016/j.precamres.2016.07.012
Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contributions to Mineralogy and Petrology, 143(2): 219-235 DOI:10.1007/s00410-001-0336-3
Holtz F, Becker A, Freise M and Johannes W. 2001. The water-undersaturated and dry Qz-Ab-Or system revisited: Experimental results at very low water activities and geological implications. Contributions to Mineralogy and Petrology, 141(3): 347-357 DOI:10.1007/s004100100245
Hoskin PWO and Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630 DOI:10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
Huang WL and Wyllie PJ. 1981. Phase relationships of S-type granite with H2O to 35kbar: Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research, 86(B11): 10515-10529 DOI:10.1029/JB086iB11p10515
Jin WJ and Shi YL. 1998. P-T-t path numerical modeling of UHP metamorphic belt in Dabie orogen. Earth Science Frontiers, 5(S1): 127-134 (in Chinese with English abstract)
Kong FM, Liu Y, Liu XP, Guo JH and Zhao GC. 2015. Mineralogical and petrogeochemical characteristics of ultramafic rocks from the metamorphic basement of the Jiaobei terrane. Acta Petrologica Sinica, 31(6): 1549-1563 (in Chinese with English abstract)
Lei HC. 2015. The multiphase of magmatic and metamorphic events in the northern Sulu orogenic belt and their tectonic implications. Master Degree Thesis. Beijing: China University of Geosciences (Beijing) (in Chinese with English summary)
Li GX, Cao H, Wang D and Xu CP. 2016. Deformation and metamorphism of Triassic Fenzishan Group and Jingshan Group in the Jiaobei Massif: Evidence from rutile U-Pb geochronology. Acta Geologica Sinica, 90(11): 3246-3258 (in Chinese with English abstract)
Li WC, Chen RX, Zheng YF and Hu ZC. 2014. Dehydration and anatexis of UHP metagranite during continental collision in the Sulu orogen. Journal of Metamorphic Geology, 32(9): 915-936 DOI:10.1111/jmg.12100
Li WC, Chen RX, Zheng YF, Tang HL and Hu ZC. 2016. Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China. GSA Bulletin, 128(9-10): 1521-1542 DOI:10.1130/B31366.1
Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y and Wingate MTD. 2003b. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825Ma?. Precambrian Research, 122(1-4): 45-83 DOI:10.1016/S0301-9268(02)00207-3
Li XH, Chen FK, Li CF, Zhang HF, Guo JH and Yang YH. 2007. Zircon ages and Hf isotopic composition of gneisses from the Rongcheng ultrahigh-pressure terrain in the Sulu orogenic belt. Acta Petrologica Sinica, 23(2): 351-368 (in Chinese with English abstract)
Li XP, Guo JH, Zhao GC, Li HK and Song ZJ. 2011. Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane, eastern Shandong, China. Acta Petrologica Sinica, 27(4): 961-968 (in Chinese with English abstract)
Li ZX, Li XH, Kinny PD and Wang J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China?. Earth and Planetary Science Letters, 173(3): 171-181 DOI:10.1016/S0012-821X(99)00240-X
Li ZX, Li XH, Kinny PD, Wang J, Zhang S and Zhou H. 2003a. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109 DOI:10.1016/S0301-9268(02)00208-5
Liou JG, Zhang RY, Liu FL, Zhang ZM and Ernst WG. 2012. Mineralogy, Petrology, U-Pb geochronology, and geologic evolution of the Dabie-Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China. American Mineralogist, 97(10): 1533-1543 DOI:10.2138/am.2012.4169
Liu FL, Xu ZQ, Katayama I, Yang JS, Maruyama S and Liou JG. 2001. Mineral inclusions in zircon of para and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59(4): 199-215 DOI:10.1016/S0024-4937(01)00064-0
Liu FL, Xu ZQ and Xue HM. 2004a. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb Dating of mineral inclusion-bearing zircons. Lithos, 78(4): 411-429 DOI:10.1016/j.lithos.2004.08.001
Liu FL, Xu ZQ, Liou JG and Song B. 2004b. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4): 315-326 DOI:10.1111/j.1525-1314.2004.00516.x
Liu FL, Gerdes A, Zeng LS and Xue HM. 2008a. SHRIMP U-Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica et Cosmochimica Acta, 72(12): 2973-3000 DOI:10.1016/j.gca.2008.04.007
Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39 DOI:10.1016/j.jseaes.2010.08.007
Liu LS, Liu FL, Ji L, Wang W, Wang F, Cai J and Liu PH. 2018. The polygenetic meta-granitic rocks and their geological significance, within the North Sulu Ultrahigh-Pressure Belt. Acta Petrologica Sinica, 34(6): 1557-1580 (in Chinese with English abstract)
Liu PH, Liu FL, Wang F and Liu JH. 2011. U-Pb dating of zircons from Al-rich paragneisses of Jingshan Group in Shandong Peninsula and its geological significance. Acta Petrologica et Mineralogica, 30(5): 829-843 (in Chinese with English abstract)
Liu XM, Gao S, Diwu CR and Ling WL. 2008b. Precambrian Crustal Growth of Yangtze craton as revealed by detrital zircon studies. American Journal of Science, 308(4): 421-468 DOI:10.2475/04.2008.02
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008c. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Nowell GM, Kempton PD, Noble SR, Fitton JG, Saunders AD, Mahoney JJ and Taylor RN. 1998. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chemical Geology, 149(3-4): 211-233 DOI:10.1016/S0009-2541(98)00036-9
Okay AI. 1993. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China. European Journal of Mineralogy, 5(4): 659-676 DOI:10.1127/ejm/5/4/0659
Rowley DB, Xue F, Tucker RD, Peng ZX, Baker J and Davis A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191-203 DOI:10.1016/S0012-821X(97)81848-1
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138 DOI:10.1016/S0009-2541(01)00355-2
Rumble D, Liou JG and Jahn BM. 2003. 3.09-continental crust subduction and ultrahigh pressure metamorphism. Treatise on Geochemistry, 3: 293-319
Skjerlie KP and Douce AEP. 2002. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43(2): 291-314 DOI:10.1093/petrology/43.2.291
Song MC and Li HK. 2001. Study on regional geological structural evolution in Shandong Province. Geology of Shandong, 17(6): 12-21, 38 (in Chinese with English abstract)
Song YR, Xu HJ, Zhang JF, Wang DY and Liu ED. 2014. Syn-exhumation partial melting and melt segregation in the Sulu UHP terrane: Evidences from leucosome and pegmatitic vein of migmatite. Lithos, 202-203: 55-75 DOI:10.1016/j.lithos.2014.05.017
Song ZJ, Liu HM, Meng FX, Yuan XY, Feng Q, Zhou DW, Vidal Romaní JR and Yan HB. 2019. Zircon U-Pb ages and Hf isotopes of Neoproterozoic meta-igneous rocks in the Liansandao area, northern Sulu Orogen, eastern China, and the tectonic implications. Journal of Earth Science, 30(6): 1230-1242 DOI:10.1007/s12583-019-1252-7
Spear B. 1995. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington: Mineralogical Society of America
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Tabata H, Yamauchi K, Maruyama S and Liou JG. 1998. Tracing the extent of a UHP metamorphic terrane: Mineral-inclusion study of zircons in gneisses from the Dabie Shan. In: Hacker BR and Liou JG (eds. ). When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht: Springer
Tang J, Zheng YF, Wu YB and Gong B. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: Implication for tectonic affinity. Precambrian Research, 144(1-24): 1-18
Tang J, Zheng YF, Wu YB, Gong B, Zha XP and Liu XM. 2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research, 161(3-4): 389-418 DOI:10.1016/j.precamres.2007.09.008
Vavra G, Gebauer D, Schmid R and Compston W. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 122(4): 337-358 DOI:10.1007/s004100050132
Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556 DOI:10.1016/S0016-7037(98)00274-9
Vielzeuf D and Holloway JR. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 98(3): 257-276 DOI:10.1007/BF00375178
Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb Zircon geochronology of palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271 DOI:10.1016/j.precamres.2006.06.006
Wang F, Liu FL, Liu PH and Liu JH. 2010. Metamorphic evolution of Early Precambrian Khondalite Series in North Shandong Province. Acta Petrologica Sinica, 26(7): 2057-2072 (in Chinese with English abstract)
Wang L, Kusky TM and Li SZ. 2010a. Structural geometry of an exhumed UHP terrane in the eastern Sulu Orogen, China: Implications for continental collisional processes. Journal of structural Geology, 32(4): 423-444 DOI:10.1016/j.jsg.2010.01.012
Wang LJ, Griffin WL, Yu JH and O'Reilly SY. 2010b. Precambrian Crustal Evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 177(1-2): 131-144 DOI:10.1016/j.precamres.2009.11.008
Wang SJ. 2017. Evolution of metamorphic melts/fluids during deep continental subduction and exhumation: A case study from the Sulu UHP belt, China. Ph. D. Dissertation. Wuhan: China University of Geosciences (in Chinese with English summary)
Wang XM, Liou JG and Mao HK. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085-1088 DOI:10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2
Wang XM and Liou JG. 1991. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology, 19(9): 933-936 DOI:10.1130/0091-7613(1991)019<0933:RUPCBE>2.3.CO;2
Webb LE, Hacker BR, Ratschbacher L, McWilliams MO and Dong SW. 1999. Thermochronologic constraints on deformation and cooling history of high- and ultrahigh-pressure rocks in the Qinling-Dabie orogen, eastern China. Tectonics, 18(4): 621-638 DOI:10.1029/1999TC900012
Wei CJ, Wang SG, Zhang LF, Shan ZG, Wang XY and Chang ZG. 1996. Some insights on the P-T path and exhumation of the ultrahigh-pressure eclogites in central China. Acta Petrologica Sinica, 12(1): 70-78 (in Chinese with English abstract)
Wu CM, Zhang J and Ren LD. 2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Journal of Petrology, 45(9): 1907-1921 DOI:10.1093/petrology/egh038
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569 DOI:10.1007/BF03184122
Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761 DOI:10.1016/j.gca.2006.05.011
Xia QX, Wang HZ, Zhou LG, Gao XY, Zheng YF, Van Orman JA, Xu HJ and Hu ZC. 2016. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen. Lithos, 266-267: 158-181 DOI:10.1016/j.lithos.2016.08.043
Xie SW, Wang SJ, Xie HQ, Liu SJ, Dong CY, Ma MZ, Liu DY and Wan YS. 2014. SHRIMP U-Pb dating of detrital zircons from the Fenzishan Group in eastern Shandong, North China Craton. Acta Petrologica Sinica, 30(10): 2989-2998 (in Chinese with English abstract)
Xu HJ, Ye K, Song YR, Chen Y, Zhang JF, Liu Q and Guo S. 2013. Prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane, eastern China. Chemical Geology, 341: 16-37 DOI:10.1016/j.chemgeo.2013.01.002
Xu ZQ, Zeng LS, Liu FL, Yang JS, Zhang ZM, McWilliams M and Liou JG. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. In: Hacker BR, McClelland WC and Liou JG (eds. ). Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Boulder: Geological Society of America, 93-113
Xue HM, Dong SW and Liu XC. 2002. U/Pb zircon dating of granitic gneisses in eastern Dabie Mountains, central China. Chinese Journal of Geology, 37(2): 165-173 (in Chinese with English abstract)
Yang JS, Wooden JL, Wu CL, Liu FL, Xu ZQ, Shi RD, Katayama I, Liou JG and Maruyama S. 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, East China. Journal of Metamorphic Geology, 21(6): 551-560 DOI:10.1046/j.1525-1314.2003.00463.x
Yao YP, Ye K, Liu JB, Cong BL and Wang QC. 2000. A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos, 52(1-4): 109-120 DOI:10.1016/S0024-4937(99)00087-0
Ye K, Cong BL and Ye DN. 2000a. The possible subduction of continental material to depths greater than 200km. Nature, 407(6805): 734-736 DOI:10.1038/35037566
Ye K, Yao YP, Katayama I, Cong BL, Wang QC and Maruyama S. 2000b. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: New implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 52(1-4): 157-164 DOI:10.1016/S0024-4937(99)00089-4
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370 DOI:10.1111/j.1751-908X.2004.tb00755.x
Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118 DOI:10.1016/j.chemgeo.2007.10.003
Zeng LS, Gao LE, Yu JJ and Hu GY. 2011. SHRIMP zircon U/Pb dating on ultrahigh pressure rocks from Yangkou: Implications for the timing of partial melting in the Sulu UHP metamorphic belt. Acta Petrologica Sinica, 27(4): 1085-1094 (in Chinese with English abstract)
Zhang RY, Hirajima T, Banno S, Cong BL and Liou JG. 1995. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. Journal of Metamorphic Geology, 13(6): 659-675 DOI:10.1111/j.1525-1314.1995.tb00250.x
Zhang RY and Liou JG. 1996. Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China: The significance of carbonate minerals in UHPM rocks. American Mineralogist, 81(1-2): 181-186 DOI:10.2138/am-1996-1-222
Zhang SB, Zheng YF, Wu YB, Zhao ZF, Gao S and Wu FY. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288 DOI:10.1016/j.precamres.2006.08.009
Zhang ZM, Zhang JF, You ZD and Shen K. 2005. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrologica Sinica, 21(2): 257-270 (in Chinese with English abstract)
Zhang ZQ and Liu MW. 1996. Stratigraphy (Lithostratic) of Shandong Province. Wuhan: China University of Geosciences Press, 1-310 (in Chinese)
Zhao YJ, Wu YB, Liu XC, Gao S, Wang H, Zheng JP and Yang SH. 2016. Distinct zircon U-Pb and O-Hf-Nd-Sr isotopic behaviour during fluid flow in UHP metamorphic rocks: Evidence from metamorphic veins and their host eclogite in the Sulu Orogen, China. Journal of Metamorphic Geology, 34(4): 343-362 DOI:10.1111/jmg.12184
Zhao ZF, Zheng YF, Gao TS, Wu YB, Chen B, Chen FK and Wu FY. 2006. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology, 24(8): 687-702 DOI:10.1111/j.1525-1314.2006.00662.x
Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161 DOI:10.1016/S0012-8252(02)00133-2
Zheng YF, Wu YB, Chen FK, Gong B, Li L and Zhao ZF. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165 DOI:10.1016/j.gca.2004.01.007
Zheng YF, Zhou JB, Wu YB and Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu Orogenic Belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851-871 DOI:10.2747/0020-6814.47.8.851
Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM and Wu FY. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 231(1-2): 135-158 DOI:10.1016/j.chemgeo.2006.01.005
Zheng YF. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166(4): 763-782 DOI:10.1144/0016-76492008-016R
Zheng YF, Chen RX and Zhao ZF. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475(2): 327-358 DOI:10.1016/j.tecto.2008.09.014
Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342-374 DOI:10.1016/j.earscirev.2011.04.004
Zhou XW, Wei CJ, Geng YS and Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei Massif. Chinese Science Bulletin, 49(18): 1942-1948 DOI:10.1007/BF03184286
Zhou XW, Zhao GC, Wei CJ, Geng YS and Sun M. 2008. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei Massif of the North China Craton. American Journal of Science, 308(3): 328-350 DOI:10.2475/03.2008.06
Zong KQ, Liu YS, Hu ZC, Kusky T, Wang DB, Gao CG, Gao S and Wang JQ. 2010. Melting-induced fluid flow during exhumation of gneisses of the Sulu ultrahigh-pressure terrane. Lithos, 120(3-4): 490-510 DOI:10.1016/j.lithos.2010.09.013
陈道公, 倪涛, 谢烈文. 2007. 大别地体超高压变质岩石锆石Lu-Hf同位素研究. 岩石学报, 23(2): 331-342.
金维浚, 石耀霖. 1998. 大别山超高压变质带P-T-t轨迹数值模拟. 地学前缘, 5(S1): 127-134.
孔凡梅, 刘云, 李旭平, 郭敬辉, 赵国春. 2015. 胶北地块变质基底超镁铁岩的矿物岩石地球化学特征. 岩石学报, 31(6): 1549-1563.
雷恒聪. 2015. 苏鲁造山带北部多期岩浆与变质事件及其构造意义. 硕士学位论文. 北京: 中国地质大学(北京)
李广旭, 曹汇, 王达, 许翠萍. 2016. 胶北粉子山群和荆山群三叠纪变质变形记录: 金红石U-Pb年代学证据. 地质学报, 90(11): 3246-3258. DOI:10.3969/j.issn.0001-5717.2016.11.017
李向辉, 陈福坤, 李潮峰, 张华锋, 郭敬辉, 杨岳衡. 2007. 苏鲁造山带荣成超高压地体片麻岩锆石年龄和铪同位素组成特征. 岩石学报, 23(2): 351-368.
李旭平, 郭敬辉, 赵国春, 李洪奎, 宋召军. 2011. 胶北地块早元古代钙硅酸盐岩与高压基性麻粒岩成因及地质意义. 岩石学报, 27(4): 961-968.
刘利双, 刘福来, 冀磊, 王伟, 王舫, 蔡佳, 刘平华. 2018. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义. 岩石学报, 34(6): 1557-1580.
刘平华, 刘福来, 王舫, 刘建辉. 2011. 山东半岛荆山群富铝片麻岩锆石U-Pb定年及其地质意义. 岩石矿物学杂志, 30(5): 829-843. DOI:10.3969/j.issn.1000-6524.2011.05.007
宋明春, 李洪奎. 2001. 山东省区域地质构造演化探讨. 山东地质, 17(6): 12-21, 38.
王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057-2072.
王淞杰. 2017. 大陆深俯冲和折返过程变质熔流体演化——苏鲁造山带研究为例. 博士学位论文. 武汉: 中国地质大学
魏春景, 王式洸, 张立飞, 单振刚, 王晓燕, 常宗广. 1996. 对中国中部超高压榴辉岩的P-T轨迹及回返机制的新认识. 岩石学报, 12(1): 70-78. DOI:10.3321/j.issn:1000-0569.1996.01.006
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
谢士稳, 王世进, 颉颃强, 刘守偈, 董春艳, 马铭株, 刘敦一, 万渝生. 2014. 华北克拉通胶东地区粉子山群碎屑锆石SHRIMP U-Pb定年. 岩石学报, 30(10): 2989-2998.
薛怀民, 董树文, 刘晓春. 2002. 大别山东部花岗片麻岩的锆石U-Pb年龄. 地质科学, 37(2): 165-173. DOI:10.3321/j.issn:0563-5020.2002.02.004
曾令森, 高利娥, 于俊杰, 胡古月. 2011. 苏鲁仰口超高压岩石SHRIMP锆石U/Pb定年与部分熔融时限. 岩石学报, 27(4): 1085-1094.
张泽明, 游金凤, 游振东, 沈昆. 2005. 苏鲁造山带超高压变质作用及其P-T-t轨迹. 岩石学报, 21(2): 257-270.
张增奇, 刘明渭. 1996. 山东省岩石地层. 武汉: 中国地质大学出版社, 1-310.
周喜文, 魏春景, 耿元生, 张立飞. 2004. 胶北栖霞地区泥质高压麻粒岩的发现及其地质意义. 科学通报, 49(14): 1424-1430. DOI:10.3321/j.issn:0023-074X.2004.14.015