岩石学报  2021, Vol. 37 Issue (4): 1196-1212, doi: 10.18654/1000-0569/2021.04.14   PDF    
滇东南都龙超大型锡锌多金属矿床黄铁矿LA-ICPMS微量元素组成研究
刘仕玉1,2, 刘玉平1, 叶霖1, 王大鹏1     
1. 中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳 550081;
2. 中国科学院大学, 北京 100049
摘要: 滇东南马关都龙是一个以锡锌为主,共-伴生铟、铜、铅、钨、铁、银等多种元素的锡锌多金属超大型矿床。虽然前人从矿物学、矿床地球化学、年代学等不同角度开展了较多的研究,该矿床锡锌多金属矿化为燕山晚期岩浆热液活动的产物已是不争的事实,但关于该矿床是否存在热水沉积作用及其与锡锌多金属成矿作用的关系依然存在较大争议。本文选取都龙矿区广泛存在的黄铁矿作为主要研究对象,在矿相学基础上利用LA-ICPMS对不同阶段黄铁矿的微量元素组成开展了系统的研究。野外及显微鉴定结果表明,矿区存在四种类型(期次)的黄铁矿,即:鲕状黄铁矿Py1;穿切或交代Py1的细脉状黄铁矿Py2;与闪锌矿等硫化物共生的自形黄铁矿Py3;包裹早期黄铁矿或闪锌矿等硫化物的他形黄铁矿Py4。LA-ICPMS分析结果表明,该矿床黄铁矿中富集多种微量元素,其中Co、Ni、As、Ge等元素以类质同象的形式存在黄铁矿晶格中,而其余元素多以显微矿物包体形式赋存于黄铁矿中。上述四期黄铁矿微量元素组成存在较大差别,Py1相对富集Zn和As,而其余微量元素含量较低,Co与Ni含量较低,Co/Ni比值远低于1.00,其微量元素组成与典型沉积作用形成黄铁矿基本一致;Py2与Py1具有相似的微量元素组成特征,其Co/Ni比值接近Py1变化范围;Py3和Py4除富集Zn、As外,Mn、Co、Ni、Cu、Sb、Pb、Bi元素含量也相对较高,其Co/Ni比值相对较高,多大于1,与典型岩浆热液型黄铁矿微量元素组成相似,而与沉积型黄铁矿差异明显。结合各阶段黄铁矿产出地质特征,对比不同类型黄铁矿微量元素组成,本研究认为:Py1鲕状黄铁矿为热水沉积作用形成;Py2为Py1变质改造形成的细脉状黄铁矿,其微量元素继承了Py1;Py3为岩浆热液活动形成的自形黄铁矿;Py4为岩浆热液活动晚期形成的他形黄铁矿,Ag和Bi组成作为区分不同成因类型黄铁矿的化学指标的潜力。矿区早期沉积作用形成鲕状黄铁矿过程可能为后期成矿作用提供了部分硫源及少量Zn等成矿物质,海西-印支期区域变质改造作用对矿区成矿作用影响不大,而燕山晚期岩浆热液活动才是矿区锡多金属大规模成矿作用的主导因素。
关键词: 微量元素    黄铁矿    LA-ICPMS    都龙锡锌多金属矿床    
LA-ICPMS trace elements of pyrite from the super-large Dulong Sn-Zn polymetallic deposit, southeastern Yunnan, China
LIU ShiYu1,2, LIU YuPing1, YE Lin1, WANG DaPeng1     
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The Dulong Sn-Zn polymetallic deposit, located in the southeastern Yunnan Province, is a super-large Sn-Zn polymetallic deposit with by-products of In, Cu, Pb, W, Fe, Ag, etc. Many studies on mineralogy, ore deposit geochemistry and chronology have been carried out on this deposit, confirming a genetical relationship of its Sn-Zn mineralization to the Late Yanshanian magmatic activity. However, whether the deposit underwent exhalative sedimentary Sn-Zn mineralization is still controversial. Based on detailed petrographic observation, the LA-ICPMS trace element compositions of pyrite that widely occur in the Dulong deposit are investigated systematically in this paper. Field and microscopic observations show that four types of pyrite have been identified in Dulong, including the oolitic pyrite (Py1), fine vein pyrite (Py2) crosscutting and/or replacing Py1, euhedral pyrite (Py3) coexisting with sphalerite and other sulfides, anhedral pyrite (Py4) enclosing early generated pyrite and sphalerite. LA-ICPMS analysis results suggest that pyrite is enriched in Co, Ni, As and Ge, which are mainly incorporated into the pyrite lattice in the form of isomorphism. Other elements occur mostly as mineral micro-inclusions in pyrite. The trace element compositions of the four types' pyrite exhibit significant difference from each other: Py1 is enriched in Zn and As but depleted in Co, Ni and Cu with low Co/Ni ratios (< 1.0), which share similar features with typical sedimentary pyrite; Py2 is similar in its trace element compositions and Co/Ni ratios to those in Py1; while Py3 and Py4 have elevated Zn, As, Mn, Co, Ni, Cu, Sb, Pb and Bi contents with high Co/Ni ratios (mostly >1.0), which is consistent with that of euhedral pyrite formed by magmatic-hydrothermal activity rather than sedimentary pyrite. Comparing with the trace element compositions of pyrite in different types, we consider that Py1 is of sedimentary origin, Py2 that inherits the trace element features of Py1 is formed by metamorphic reworking of Py1, while Py3 and Py4 are formed by late magmatic-hydrothermal activity. Ag and Bi in pyrite display potential probobilities as a geochemical indicator to distinguish pyrite of different genetic types. Oolitic pyrite formed in the depositional diagenesis stage may provide some sulfur and a small amount of Zn for the later Sn-Zn mineralization. The regional metamorphic reworking in the Hercynian to Indosinian displays a limited effect on the Sn-Zn mineralization, while Late Yanshanian magmatic-hydrothermal activity is the controlling factor for the formation of the super-large scale Dulong Sn-Zn polymetallic deposit.
Key words: Trace elements    Pyrite    LA-ICPMS    The Dulong Sn-Zn polymetallic deposit    

黄铁矿在自然界中分布广泛,是热液矿床中最常见的硫化物之一。已有的研究表明,黄铁矿的化学组成与形成环境密切相关,通过其微量元素组成能够有效的限定矿石成因类型、判断成矿物质来源以及成矿流体演化过程(Large et al., 2009)。黄铁矿中富含微量元素Au、Ag、Cu、Pb、Zn、Co、Ni、As、Sb、Hg、Bi、Se、Te、Tl等(Basori et al., 2018),这些元素主要以类质同象或亚显微包裹体的形式存在于黄铁矿中(Cook and Chryssoulis, 1990Fleet et al., 1993Barker et al., 2009Large et al., 2009Sung et al., 2009Koglin et al., 2010Ulrich et al., 2011Duran et al., 2019Chen et al., 2020)。近年来,激光剥蚀电子耦合等离子体质谱(LA-ICP-MS)测试技术已经发展成为一种高效、准确的分析硫化物中微量元素分布的方法,LA-ICPMS原位分析具有检出限低,精确度高等特点,近十年已经有大量学者运用LA-ICPMS技术对不同类型黄铁矿进行微量元素分析和成因研究,如,造山带卡林型金矿床(如Large et al., 2009Sung et al., 2009Zhang and Li, 2014)、斑岩型铜矿床(Reich et al., 2013)、浅成低温热液矿床(Winderbaum et al., 2012)、VMS型矿床(Basori et al., 2018)和MVT矿床(李珍立等,2019)。

滇东南老君山矿集区是中国重要的多金属成矿区,成矿元素包括锡、锌、铜、铅、钨等。云南马关都龙是该成矿带内代表性超大型锡锌多金属矿床(图 1a),其Sn、Zn和In储量分别为40万吨、400万吨和0.6万吨,是研究该成矿带内锡多金属成矿作用的重要实例。该矿床地质地球化学研究前人已经积累了丰硕研究成果(李文尧,2002张洪培等,2006冯佳睿等, 2010, 2011廖震等,2010林知法,2010)。特别是近年来,随着地质勘探、采矿和地球化学研究的深入,越来越多的研究表明,该矿床锡锌多金属成矿作用与燕山晚期老君山花岗岩浆活动密切相关,其矿床成因为岩浆热液多金属矿床(何芳等, 2014, 2015王小娟等,2014叶霖等, 2016, 2017, 2018)。值得一提的是该矿床地质特征复杂,一些矿体和夕卡岩呈层状产出,被早期研究者认为是热水沉积作用的典型构造(周建平等, 1997, 1998贾福聚等, 2010, 2014)。是否存在热水沉积作用和多成因复合成矿是该矿床地质研究中长期争议的焦点(刘玉平,1998刘玉平等, 2000a, b2006ab2007)。事实上,该矿床存在鲕状黄铁矿,其地质产出特征与晚期岩浆热液形成的黄铁矿差异明显,被认为是矿区热水沉积作用存在的主要证据之一(李忠烜等,2016)。本文利用LA-ICPMS原位微区方法对都龙矿区不同成矿阶段黄铁矿开展微量元素研究,通过对比,以探讨不同期次黄铁矿形成环境及其所蕴含的地球化学信息,为认识该矿床成矿作用提供地质地球化学依据。

图 1 滇东南地区大地构造略图(a)和滇东南老君山矿集区区域地质略图(b)(据刘玉平等,2006b李建康等,2013) Fig. 1 Simplified geological map of southeastern Yunnan Province (a) showing the distribution of major tectonic units and geological map of the Laojunshan orefield in Yunnan Province (b) (modified after Liu et al., 2006; Li et al., 2013)
1 区域及矿区地质概况

滇东南老君山矿集区地处华南褶皱系西端与哀牢山褶皱系、印支地块的交汇部位,右江盆地南缘。此成矿带中的都龙锡锌多金属矿床是一个以锡、锌、铜为主,伴生铅、钨、铁、银、铟等多种元素的超大型矿床,位于此带东南部老君山穹窿构造南西翼(张世涛等,1998)。除都龙锡锌多金属矿床外,此区域著名的矿床还有:个旧超大型锡石硫化物矿床(以锡铜为主,伴生钨、铋、铅、锌等其他多金属元素)和白牛厂银多金属矿床(以银为主,伴生锡、铅、锌多金属元素)位于右江盆地的西南缘;大厂超大型锡多金属矿床(以锡为主,伴生锌、铅、锑、铜、铟等多金属)位于右江盆地东源(图 1a)。成矿区内构造复杂,区域性断裂主要有北北东向弥勒断裂、南盘江断裂,南东东向红河断裂、瑶山断裂文-麻断裂,南北向个旧断裂等(图 1a)。区内地层出露主要为寒武系及部分泥盆系、二叠系、三叠系,早古生界奥陶系上统和整个志留系地层均缺失,侏罗系、白垩系地层也全部缺失。都龙锡锌多金属矿床主要富存于寒武系新寨岩组地层中,其岩性以构造片岩夹大理岩为主。滇东南地区岩浆岩广泛分布,大面积出露南温河花岗岩和老君山花岗岩,岩石类型多样,岩性以酸性-基性火山岩和酸性侵入岩为主,碱性岩和超基性-基性侵入岩零星分布,具多期次多阶段特征(刘玉平等,2007)(图 1b);地质地球化学和锆石SHRIMP年龄结果表明,南温河花岗岩形成于440~420Ma(郭利果,2006),并经历了印支期~237Ma区域动力变质改造(谭洪旗和刘玉平,2017),老君山花岗岩形成于燕山晚期75~124Ma(刘玉平等,2007蓝江波等,2016),老君山矿集区存在印支期钨锡成矿作用(冯佳睿等,2011)以及燕山期锡锌铟多金属成矿作用(刘玉平等,2007王小娟等,2014Liu et al., 2021)。

都龙锡锌多金属矿床,位于老君山花岗岩南侧,矿区由北向南主要由铜街矿段、曼家寨矿段、辣子寨矿段、南当厂矿段、五口硐矿段组成(图 2a)。矿体呈层状、似层状、透镜状、囊状等产出,主要赋存于新元古界-下寒武统的新寨岩组和中寒武统田蓬组之中,在水平方向上呈串珠状南北向延伸,剖面上则以多层叠瓦状形态出现,与围岩产状基本保持一致(图 2b)。区内岩浆岩主要为矿区北部的燕山期老君山花岗岩和东南部的加里东期南温河花岗岩,该岩体向南倾伏于矿区深部,矿区地表可出露多条花岗岩岩脉。南温河花岗岩由于区域变质作用已发生变质变形。受老君山复式背斜的影响,矿区内主要为宽缓褶皱。其轴向与区域褶皱同步,大致呈南北向分布。矿区内发育多期活动的纵向断层,为老君山剥离断层系的组成部分。断层产状基本与地层一致,通常成组出现。其中,规模较大的F0和F1断层是矿区的主要断层,F3及F4断层规模次之。横向断裂规模较小,一般切穿南北向断层(图 2)。

图 2 都龙锡锌多金属矿床矿区地质图(a, 据刘玉平等,2007)和都龙矿区辣子寨(S)-铜街矿段(N)南北向剖面图(b, 据Liu et al., 2021) Fig. 2 Geological map of the Dulong Sn-Zn polymetallic deposit (a, after Liu et al., 2007) and S-N cross section from the Lazizhai ore block (S) to the Tongjie ore block (N) (b, after Liu et al., 2021)

已有的研究表明,该矿床的矿物组成复杂,种类较多。硫化物、氧化物、碳酸盐、硅酸盐等皆有出现。其中,矿石矿物主要有闪锌矿、锡石、辉钼矿、黄铜矿、黄铁矿、磁黄铁矿、毒砂、方铅矿等;脉石矿物主要有石榴子石、透辉石、阳起石、绿泥石、黑云母、金云母、石英、萤石、方解石、白云石、榍石等(刘玉平等,2007叶霖等,2016Zhao et al., 2018)事实上,该矿床的形成可能经历了喷硫沉积阶段、区域变质阶段和燕山晚期热液成矿阶段,形成了多期黄铁矿,它们产出具有不同特征,由早到晚可以分为以下四期。

(1) 鲕状黄铁矿(Py1)主要分布于铜街地表含水矽卡岩Sn-Zn矿石中,其中,鲕状黄铁矿鲕粒直径一般在0.2~5mm之间,主要有正常鲕、复合鲕和偏心鲕等几种类型,其中形态保存较好的鲕粒,由核心和外壳(同心层)两部分构成,核心和外壳均由黄铁矿组成,同心层之间界线明显清楚且无垂直于同心层的裂纹发育,这与热液快速冷凝收缩成因的胶状黄铁矿有明显区别(任云生和刘连登,2006),该类矿物中闪锌矿和磁黄铁矿包裹交代现象明显,且常被晚期黄铁矿细脉(Py2)穿插交代(图 3ade)。

图 3 都龙锡锌多金属矿床四期黄铁矿手标本、矿相及背散射图 (a)鲕状黄铁矿Py1以及脉状黄铁矿Py2手标本照片;(b)自形黄铁矿Py3手标本照片;(c)半自形-他形黄铁矿Py4手标本照片;(d、e)脉状黄铁矿Py2穿切鲕状黄铁矿Py1;(f、h)自形黄铁矿Py3与闪锌矿黄铜矿等硫化物共生,脉石矿物为石英及其他硅酸盐矿物;(g、i)他形黄铁矿Py4包裹闪锌矿黄铜矿等硫化物以及其他硅酸盐矿物. Py-黄铁矿;Po-磁黄铁矿;Sp-闪锌矿;Cp-黄铜矿;Cst-锡石;Fl-萤石;Apy-毒砂;Qtz-石英 Fig. 3 Hand specimen photographs, reflected-light photomicrographs and backscatter images showing four types of pyrite in Dulong Sn-Zn polymetallic deposit (a) hand specimen photograph of oolitic pyrite Py1 and veined pyrite Py2; (b) hand specimen photograph of enhudral pyrite Py3; (c) hand specimen photograph of anhudral pyrite Py4; (d, e) veined pyrite Py2 crosscut oolitic pyrite Py1; (f, h) enhudral pyrite Py3 associated with sulfides such as sphalerite and chalcopyrite, and quartz and other silicate minerals as the companied gangue minerals; (g, i) anhudral pyrite Py4 encloses early sulfides such as sphalerite or chalcopyrite and other silicate minerals. Py-pyrite; Po-pyrrhotite; Sp- sphalerite; Cpy- chalcopyrite; Cst-cassiterite; Fl-fluorite; Apy- arsenopyrite; Qtz-quartz

(2) 脉状黄铁矿(Py2)呈脉状穿切Py1或形成于Py1边缘交代鲕粒(图 3ade)。细脉通常较小,其形成明显晚于Py1。

(3) 自形黄铁矿(Py3)主要分布于铜街-曼家寨矿段F1附近的矽卡岩Sn-Zn-Cu矿石中,颗粒相对较大,通常在50μm×50μm ~200μm×200μm,常与闪锌矿、黄铜矿、磁黄铁矿、毒砂等矿物共生,黄铁矿内较干净(图 3bfh)。

(4) 他形黄铁矿(Py4)分布位置与Py3一致,呈他形与其他硅酸盐矿物或萤石共生,其内往往包裹闪锌矿、磁黄铁矿等硫化物,部分Py4内锡石沿黄铁矿裂隙呈脉体产出,Py4内孔隙较多(图 3cgi)。

2 分析方法

本次研究共8件样品,分别采于辣子寨矿段(Py1、Py2)和曼家寨矿段(Py3、Py4)。扫描电镜(SEM)在中国科学院地球化学研究所矿床室扫描电镜实验室完成,扫描电镜仪器型号为JEM 1800F,其测试条件为工作电压为15kV,电流为110nA。Py1、Py2黄铁矿微量元素LA-ICPMS分析在澳大利亚塔斯马尼亚大学CODES完成,Py3、Py4黄铁矿微量元素LA-ICPMS分析在中国科学院地球化学研究所矿床地球化学国家重点实验室(SKLODG)完成。SKLODG激光剥蚀系统为为Coherent公司生产的193nm准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪,测试束斑直径为30μm,每个样品至少分析8个点。测试元素包括:Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ge、As、Se、Nb、Mo、Ag、Cd、In、Sn、Sb、Te、W、Au、Tl、Pb、Bi,每个测点分析时间为90s,标样采用USGS参考玻璃(GSC-1G和GSD-1G)和合成硫化物(MASS-1)。其中,GSC-1G和GSD-1G用于校正亲石元素的含量,亲铜和亲铁矿元素校正使用MASS-1。采用多外标-内标法对元素含量进行定量计算。USGS标样中元素含量的推荐值据GeoReM数据库(http://georem.mpchmainz.gwdg.de/),所得结果分析误差 < 10%。CODES测试方法同SKLODG类似,详细分析流程参见Cook et al.(2009)Ye et al.(2011)

3 黄铁矿微量元素组成

都龙锡锌多金属矿床四种黄铁矿微量元素组成结果见表 1。黄铁矿中主要富含的微量元素有Mn、Co、Ni、Cu、Zn、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、W、Pb、Bi,其中Py1、Py2微量元素组成相似,Py3、Py4微量元素组成相似,Py3、Py4相较于Py1、Py2大部分微量元素含量变化很大。(图 4表 1)。

图 4 四种黄铁矿中主要微量元素含量分布图 Fig. 4 Box and whisker plots showing trace elements in four types of pyrite

表 1 都龙锡锌多金属矿床黄铁矿及其他不同成因类型黄铁矿原位(LA-ICPMS)微量元素组成(×10-6) Table 1 In situ trace elements composition (×10-6) of pyrite in the Dulong Sn-Zn polymetallic deposit and other different genetic deposits by LA-ICPMS

Co和Ni是黄铁矿中常见的微量元素之一,我们的研究表明四期黄铁矿中Co、Ni含量变化相对较大。从Py1、Py2→Py3、Py4,Co含量呈明显升高趋势:Py1(0.02×10-6~0.44×10-6)、Py2(<DL~0.41×10-6)→Py3(3.76×10-6~2155×10-6)、Py4(0.33×10-6~672×10-6)。而Ni含量也呈升高趋势,其中Py1(1.73×10-6~6.02×10-6)、Py2(2.22×10-6~3.98×10-6)→Py3(0.41×10-6~242×10-6)、Py4(0.36×10-6~4330×10-6)。早期黄铁矿Co/Ni比值均远小于1.00(Py1:0.01~0.26,Py2:0.01~0.1),而晚期黄铁矿Py3(0.56~35.27)基本都大于1.00,最晚期黄铁矿Py4 Co/Ni比值变化较大(0.16~3.18),仅部分大于1.00。

本矿床不同成矿阶段黄铁矿中含有较高的Zn、As和Pb,Py1→Py3,Zn含量均较高,可达近1000×10-6,而Py4中Zn含量开始降低(低于10×10-6)。从Py1、Py2→Py3、Py4,As含量逐渐升高,Py1(1.16×10-6~396×10-6)、Py2(1.34×10-6~126×10-6)→Py3(60×10-6~9884×10-6)、Py4(492×10-6~10272×10-6);而Pb含量也呈升高趋势,Pb从Py1→Py4分别为:Py1(0.06×10-6~3.47×10-6)、Py2(0.21×10-6~1.56×10-6)、Py3(9.95×10-6~1550×10-6)、Py4(0.58×10-6~474×10-6)。

Cu、Bi在四期黄铁矿中的变化也较大(n×10-7~n×10-4)。从Py1、Py2→Py3、Py4,Cu、Bi含量逐渐升高。

Se在黄铁矿中含量相对较低,多低于10×10-6,从早到晚四个阶段呈升高趋势。

Sb在黄铁矿中含量变化较大(n×10-8~n×10-4)早期(Py1和Py2)中Sb相对较低(多低于1×10-6),晚期黄铁矿中Sb含量相对较高(n×10-5~1×10-4)。

Mn在四期黄铁矿中含量较相近(n×10-6~n×10-4),从早(Py1、Py2)到晚(Py3、Py4)呈升高趋势。

矿区不同成矿阶段黄铁矿中Ge、Ag、Cd、In、Sn、Te、W等微量元素含量均较低,多数含量低于10×10-6,部分含量低于检出线。

选择元素含量相对较高的17种元素Mn、Co、Ni、Cu、Zn、Ge、As、Se、Ag、Cd、In、Sn、Sb、Te、W、Pb、Bi,其含量值基本都在检测线之上,四种黄铁矿中的微量元素组成如图 4所示,结果显示其微量元素组成存在明显差别。四种黄铁矿的微量元素组成,Py3和Py4相对Py1和Py2更富集微量元素Co、Ni、Cu、As、Sb、Pb、Bi,其含量相差数十至数百倍。

4 讨论 4.1 黄铁矿中微量元素赋存机制

黄铁矿中的微量元素通常以类质同象的形式替代Fe或S存在于矿物晶格间隙或者以硫化物、硅酸盐、氧化物包体的形式存在矿物中(Huston et al., 1995Thomas et al., 2011Ciobanu et al., 2012)。干净不含包体的黄铁矿通常显示一个平坦的LA-ICPMS时间分辨率深度剖面图(图 5a),含显微包体的黄铁矿LA-ICPMS时间分辨率深度剖面图会显示包体元素明显的峰(图 5b-f)。多数情况下,矿物显微包体的存在会显著改变黄铁矿中一些元素的组成。黄铁矿的LA-ICPMS时间分辨率深度剖面图显示Zn、Mn主要以矿物显微包体的形式存在黄铁矿中(图 5a-c)。都龙锡锌多金属矿床In储量可达7千吨(Zhao et al., 2018),是中国第二大富铟矿床(Werner et al., 2017),闪锌矿中常常含有较高的以类质同象形式存在的In(徐净和李晓峰,2018),因此,闪锌矿包体的存在会使得某些黄铁矿测点中In含量明显升高(图 5c),都龙锡锌多金属矿床中四期黄铁矿,除了Py3(DL18-112)样品某几个测点含量较高外(图 6c),其余各类样品In含量均较低,因此,都龙锡锌多金属矿床中黄铁矿中In元素主要以存在类质同象的形式存在于黄铁矿中的闪锌矿显微包体中。黄铁矿的LA-ICPMS时间分辨率深度剖面图显示Cu和Ag、Pb和Ag谱线呈明显的显微包体峰且谱线一致(图 5df),此外,四种黄铁矿中Cu和Ag、Pb和Ag组成具有良好的正相关性(图 6ab),这表明Ag可能主要以类质同象的形式存在黄铁矿中的Cu、Pb显微包体矿物中(如黄铜矿、方铅矿)。都龙矿区黄铁矿中Pb含量较高,Bi、Sb与Pb在LA-ICPMS时间分辨率深度剖面图中的谱线一致(图 5d)且正相关性较好(图 6c),黄铁矿的中Sb、Bi可能主要存在于方铅矿等铅矿物显微包体中。黄铁矿中Ag、Bi具有很高的正相关性(图 6f),且含量相近,暗示部分银铋以显微包体矿物共生在黄体矿中。Sn在Py1、Py2中含量极低,而在Py3、Py4中主要以显微包体的形式存在(图 5e)。此外,Co、Ni、As、Ge谱线一致且与Fe、S峰一致(图 5cdf),暗示这三种元素可能以类质同象形式存在于黄铁矿晶格间隙。综上,笔者认为Py1、Py2中存在闪锌矿显微包体而Py3、Py 4中存在闪锌矿、黄铜矿、方铅矿、锡石、辉铋矿显微包体矿物。

图 5 都龙锡锌多金属矿床黄铁矿的LA-ICPMS时间分辨率深度剖面图 Fig. 5 Representative time-resolved depth profiles of pyrite from the Dulong Sn-Zn polymetallic deposit

图 6 都龙锡锌多金属矿床黄铁矿微量元素相关图解 (a)Ag-Cu; (b)Ag-Pb; (c)(Sb+Bi)-Pb; (d)In-Zn; (e)(Ge+Se+Cd+In+Sb+Te+Bi)-(Zn+Sn+Cu+Pb); (f)Bi-Ag, SEDEX、VMS、Skarn数据分别引自Li et al., 2019Basori et al., 2018Chen et al., 2020 Fig. 6 The binary plots of trace elements contents of pyrite in the Dulong Sn-Zn polymetallic deposit (a) Ag vs. Cu; (b) Ag vs. Pb; (c) Sb+Bi vs. Pb; (d) In vs. Zn; (e) Ge+Se+Cd+In+Sb+Te+Bi vs. Zn+Sn+Cu+Pb; (f) Bi vs. Ag, the data of pyrite in SEDEX, VMS and Skarn deposits from Li et al., 2019; Basori et al., 2018; Chen et al., 2020, respectively

从Py1-Py4,Co、Ni、Cu、Ag、Pb、Sb、Bi元素含量显著升高(图 4)。显示不同类型黄铁矿中的这些元素组成存在明显差别,主要与形成形成温度有关,黄铁矿形成温度越高,往往微量元素组成的种类越多,含量越高(下一节讨论)。通过对比四种黄铁矿中的主成矿元素与微量元素含量组成(图 6e),Py1、Py2中的微量元素组成较低且变化不大,而Py3、Py4随着成矿元素含量增加,微量元素组成也明显增加,暗示了形成Py3、Py4过程明显温度升高且对成矿作用的贡献较大。都龙矿物发现的四种不同类型(期次)黄铁矿,具有明显的不同的Ag、Bi组成,通过对比VMS、skarn、SEDEX三种类型黄铁矿的Ag和Bi组成,发现从SEDEX→VMS型矿床中的黄铁矿微量元素组成,Ag、Bi含量明显升高且具有良好的区分(图 6f),暗示Ag、Bi组成具有作为区分不同成因类型黄铁矿的一个地球化学指标的潜力。

4.2 黄铁矿成因类型

Co、Ni在黄铁矿中常以类质同象的形式替代Fe、CoS2与FeS2可形成连续固溶体,而NiS2和FeS2则形成不连续固溶体,Co、Ni含量变化主要受黄铁矿沉淀时的物理化学条件控制,这使得不同成因类型的黄铁矿通常具有不同的Co/Ni比值,因此黄铁矿的Co/Ni比值能指示其形成环境(Bralia et al., 1979)。通常黄铁矿的Co/Ni比值较高(Co/Ni>1)指示与岩浆热液流体相关(Zhang et al., 2014Chen et al., 2020),而黄铁矿Co/Ni比值较低(Co/Ni<1)指示沉积成因(Bralia et al., 1979Cook et al., 2009Chen et al., 2020)。

此外,黄铁矿中微量元素的种类及含量受温度控制(傅晓明等,2018李珍立等,2019),不同温度下形成的黄铁矿其微量元素存在差别,通常成矿温度越高,其微量元素的种类越多,含量越高(Craig et al., 1998Genna and Gaboury, 2015Keith et al., 2016)。比较不同成因类型黄铁矿中的微量元素,从SEDEX→Skarn→VMS型黄铁矿微量元素组成,Cu、Mn、Co、Ni、As、Ag、Pb、Bi等元素具有明显升高的趋势(图 7)。都龙锡锌多金属矿床的四种黄铁矿富含的微量元素含量跟种类以及Co/Ni值都存在明显区别(图 7表 1),表明它们成因类型存在差异。

图 7 都龙锡锌多金属矿床微量元素含量范围分布图 数据来源:SEDEX、VMS、Skarn和MVT数据分别引自Li et al., 2019Basori et al., 2018Chen et al., 2020李珍立等,2019 Fig. 7 The composition of trace elements of pyrite in the Dulong Sn-Zn polymetallic deposit Data sources: pyrite in SEDEX, VMS, skarn and MVT deposits from Li et al., 2019; Basori et al., 2018; Chen et al., 2020; Li et al., 2019, respectively

其中,鲕状黄铁矿Py1(图 3ade),其Co/Ni比值范围为0.01~0.26,均小于1(表 1);此外,Py1所含微量元素组成种类较少且含量较低,除Zn、As、Mn元素外,其余元素含量均低于10×10-6(图 4图 7),暗示其形成温度较低;同时,鲕状黄铁矿的核边结构也通常指示其形成于沉积环境(Barrie et al., 2009)。上述特征均表明Py1属于典型沉积成因。观察Py1单颗粒微量元素组成如图 8所示,3颗鲕状黄铁矿Zn含量明显比其他元素(Co、Ni、As、Cu、Ge、Se、Cd、W、Bi、Ag、Sn)高数十至数百倍。从核部到边部,各类元素含量变化基本稳定,个别点元素含量明显升高(如图 8a中的Cd;图 7中的W、As)可能是由于存在显微矿物包裹体的原因。已有的研究表明,沉积型黄铁矿通常富Zn、贫Co、Ni(Mukherjee and Large, 2017Li et al., 2019),都龙锡锌多金属矿床是以Zn、Sn、Cu、Pb为主,伴随Ag、In等多种元素的多金属矿床,鲕状黄铁矿Py1富含Zn,贫Sn、Cu等成矿元素,暗示鲕状黄铁矿形成过程对都龙矿区Sn、Cu等金属成矿贡献不大。但与其他典型沉积黄铁矿相比(图 7)Py1明显更富集Zn,这可能暗示形成Py1的沉积过程有了Zn的初步富集。

图 8 鲕状黄铁矿单颗粒核-边微量元素组成 Fig. 8 Trace elements composition in a single oolitic pyrite grain from core to rim

Py2黄铁矿为脉状,产于Py1的边缘或穿切Py1(图 3de),其Co/Ni比值范围为0.01~0.10,均远小于1.00(表 1图 10a),这指示其可能形成于沉积环境,Py2微量元素组成类似Py1,种类较少且含量较低,这暗示其形成温度较低。前人研究表明都龙地区存在强烈的区域变质作用,经历前加里东期变质作用、加里东期变质作用、印支期变质作用,叠加变质作用明显,主变质期为海西期-印支期(熊家镛,1987),变质程度从低绿片岩相到角闪岩相,局部发生混合岩化。详细的黄铁矿镜下工作表明,Py1部分鲕状黄铁矿颗粒往往被动力挤压变形或破碎错动,而在黄铁矿破碎错动裂隙里面形成脉状黄铁矿Py2(图 9)。Py2的Co/Ni比值特征(Co/Ni值均<1)以及微量元素组成特征(微量元素组成少且含量低)表明其非岩浆热液成因(图 10a)。综合上述分析,Py2应为Py1变质改造形成,其微量元素组成很大程度上继承了Py1的特征。

图 9 脉状黄铁矿Py2穿切鲕状黄铁矿Py1显微结构 Fig. 9 The microphotograghs showing vein Py2 crosscut oolitic Py1

图 10 都龙锡锌多金属矿床黄铁矿Co-Ni(a, 据Bajwah et al., 1987)和Co/Sb-Se/As(b, 据Duran et al., 2019)图解 Fig. 10 Binary plots of Co vs. Ni (a, modified after Bajwah et al., 1987) and Co/Sb vs. Se/As (b, modified after Duran et al., 2019) of pyrite from the Dulong Sn-Zn polymetallic deposit

自形半自形黄铁矿Py3(图 3bfh),往往与闪锌矿、黄铜矿、雌黄铁矿等矿物共生形成于石英脉或与其他硅酸盐矿物共生。其微量元素组成较Py1和Py2有显著差别,所含Mn、Co、Ni、Cu、Ge、As、Ag、Sb、Pb、Bi等元素含量增加了几十至几百倍,表明其形成温度高于Py1和Py2;Py3的Co/Ni比值范围为0.56~35.27(均值8.7,n=33)(图 10a),指示其为岩浆热液成因。此外,与报道的SEDEX、VMS、Skarn、MVT这几种成因类型黄铁矿微量元素组成对比,Py3的微量元素组成与Skarn最吻合(图 7),这也再次为Py3岩浆热液成因提供佐证。通过对比不同成因黄铁矿,Sn元素在各种成因黄铁矿中的含量均比较低(图 7),这表明Sn不易存在于黄铁矿中。

矿床中最晚形成的他形黄铁矿Py4(图 3cgi),其内常包裹闪锌矿等硫化物,表明其形成晚于Py3。其所含微量元素组成与Py3类似,但微量元素含量较Py3低,暗示其形成温度较Py3低。Py4的Co/Ni比值范围为0.16~3.18(均值0.81,n=15),大部分Co/Ni值小于1(图 10a),综合其微量元素组成以及矿物产出特征,Py4应形成于岩浆热液晚期,可能为岩浆热液对沉积期形成的黄铁矿改造形成。

此外,在不同的成矿体系,黄铁矿的微量元素组成不同,因此,Co/Ni比值作为一种有效区分黄铁矿成因的指标。除此之外,在岩浆体系形成的黄铁矿通常富Co、Se,贫Sb、As元素(Dare et al., 2011Djon and Barnes, 2012Duran et al., 2015),而在热液体系形成的黄铁矿通常相对更富Sb、As而贫Co、Se(Large et al., 2009Thomas et al., 2011Revan et al., 2014Patten et al., 2016)。因此,Duran et al.(2015)提出了Co/Sb vs Se/As图解,并且能够有效的区分黄铁矿成因来源。都龙矿区Py3和Py4黄铁矿Co/Sb-Se/As图解如图 10b所示,其投影点均落入热液区域,综合黄铁矿Co/Ni值特征等分析结果,都龙锡锌多金属矿床中晚期黄铁矿应为岩浆热液成因。

4.3 黄铁矿微量元素组成对成矿过程的启示

黄铁矿在热液成矿体系中往往富集一些重要的微量元素如Cu、Pb、Zn、As、Ag、Au、Co、Ni、Sb、Se、Te、Tl以及Bi(Cook et al., 2009Large et al., 2009Reich et al., 2005Reich et al., 2013),这些元素直接记录了成矿流体的性质。因此研究不同阶段黄铁矿微量元素组成变化能够反演整个成矿过程(Chouinard et al., 2005Zwahlen et al., 2014Franchini et al., 2015Genna and Gaboury, 2015)。

通过上述讨论表明都龙锡锌多金属矿床存在四种不同类型(期次)的黄铁矿Py1→Py4,这四种黄铁矿形成于沉积过程(Py1)、变质改造过程(Py2)、岩浆热液过程(Py3、Py4),通过四期黄铁矿微量元素组成变化反演都龙锡锌多金属矿床的成矿过程如下(图 11):

图 11 黄铁矿成矿过程演化示意图 Cal-方解石;Si-硅酸盐矿物 Fig. 11 The evolution of different pyrite during the ore-forming process Cal-calcite; Si-silicate minerals

沉积作用 早期沉积作用在寒武系地层中形成鲕状黄铁矿Py1,所含微量元素组成种类较少,主要为Zn、As、Mn,与其他典型沉积黄铁矿相比(图 7)Py1明显更富集Zn,这可能暗示形成Py1的沉积过程有了Zn的初步富集。根据前述分析讨论,结合鲕状黄铁矿在都龙矿区的分布特征,假设鲕状黄铁矿分布面积5km2、平均厚度10m、Zn质量占比0.10%,且全部析出富集成矿(假设鲕状黄铁矿层比重为5×103kg/m3),可以提供约25万吨Zn。这一数值相对于都龙矿区千万吨级Zn金属资源/储量(保有+消耗+潜力+剥蚀等)占比很小,即热水沉积作用形成的初始富集,可能不是成矿金属的主要来源。另一方面,鲕状黄铁矿还可能为岩浆热液携带的大量金属元素提供结合硫,析出的硫(~108吨)可以结合~2×108吨Zn,按富集成矿率为10%可结合2000万吨Zn,与都龙矿区Zn金属资源/储量为同一量级。因此,如果鲕状黄铁矿具有一定规模的话,可以在燕山晚期岩浆热液作用下发生交代改造而作为矿石硫的重要来源之一。

变质作用 前人对滇东南猛洞岩群斜长角闪岩成因及其构造研究表明,滇东南老君山地区发育猛洞岩群前寒武系斜长角闪岩,呈港湾状分布在片岩及片麻岩中,并被后期变质-变形作用叠加改造,榍石U-Pb年代学及南温河片麻岩状花岗岩变质增生锆石均为230Ma左右,代表印支期构造-热事件(谭洪旗和刘玉平,2017)。海西-印支期区域变质活动使得都龙矿区经受区域变质作用,早期鲕状黄铁矿Py1经受变质改造作用,在Py1破碎裂隙或边缘形成脉状黄铁矿Py2,此时Py2微量元素组成继承了Py1的特征,除Zn、As元素含量相对较高,Sn、Cu等主成矿元素以及其他微量元素组成含量均较低,黄铁矿微量元素组成与Py1相比变化不大,即微量元素未发生明显的带入带出。且Py2仅在Py1裂隙及Py鲕粒边缘存在,其规模较小,暗示此过程对都龙锡锌多金属矿床大规模矿化贡献不大。

岩浆热液作用 都龙矿区内岩浆岩主要为矿区北部的燕山期老君山花岗岩和东南部的加里东期南温河花岗岩以及矿区深部呈岩脊状分布的隐伏花岗岩,前人研究表明隐伏花岗岩为老君山岩体向南部侵伏延伸(苏航等,2016),成矿时代与深部岩体形成时间一致(刘玉平等,2007王小娟等,2014),这表明燕山晚期老君山岩体侵入是造成都龙矿区大规模的岩浆热液活动,从而形成大规模锡锌矿化的关键。此过程形成大量闪锌矿、黄铜矿、雌黄铁矿、Py3、Py4等硫化物以及锡石矿化。Py3形成过程Cu、Ag、Pb等主要成矿元素含量显著提高,Mn、Co、Ni、Ge、In、Sb、Pb、Bi这些微量元素含量相对Py1、Py2均升高,此后Py4形成过程微量元素含量相对Py3呈降低的趋势,这应该是随着成矿作用的进行在成矿后期温度降低的结果,但相对Py1、Py2,Py4中大部分微量元素含量仍然高出数倍至数十倍。

5 结论

通过对都龙锡锌多金属矿床的LA-ICPMS原位微量元素特征研究,本文获得以下主要认识:

(1) 都龙锡锌多金属矿床存在四种不同类型(期次)黄铁矿,不同类型(期次)黄铁矿微量元素组成存在较大差别。Py1和Py2主要富集微量元素Zn、As,其余微量元素含量均较低;Py3、Py4除Zn、As含量较高外,Mn、Co、Ni、Cu、Zn、As、Sb、Pb、Bi等元素均有富集。

(2) 黄铁矿中的Zn、Cu、Sn、Pb均以显微包体的形式存在,Ag以类质同象的形式存在黄铜矿、方铅矿显微包体中,In以类质同象的形式存在闪锌矿显微包体中,Sb、Bi部分以类质同象的形式存在方铅矿显微包体中,Co、Ni、As、Ge以类质同象的形式存在黄铁矿晶格中,黄铁矿中的Ag、Bi组成具有作为区分不同成因类型黄铁矿的一个地球化学指标的潜力。

(3) Py1为沉积成因形成的鲕状黄铁矿,Py2为Py1变质改造形成的脉状黄铁矿,Py3为岩浆热液活动形成的自型黄铁矿,Py4为岩浆热液活动晚期形成的它型黄铁矿。

(4) 矿区早期沉积作用形成鲕状黄铁矿过程可能为后期成矿作用提供了部分硫源及少量Zn等成矿物质,海西-印支期区域变质改造作用对矿区成矿作用影响不大,而燕山晚期岩浆热液活动才是矿区锡多金属大规模成矿作用的主导因素。

参考文献
Bajwah ZU, Seccombe PK and Offler R. 1987. Trace element distribution, Co/Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineralium Deposita, 22(4): 292-300 DOI:10.1007/BF00204522
Barker SLL, Hickey KA, Cline JS, Dipple GM, Kilburn MR, Vaughan JR and Longo AA. 2009. Uncloaking invisible gold: Use of NanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits. Economic Geology, 104(7): 897-904 DOI:10.2113/econgeo.104.7.897
Barrie CD, Boyce AJ, Boyle AP, Williams PJ, Blake K, Ogawara T, Akai J and Prior DJ. 2009. Growth controls in colloform pyrite. American Mineralogist, 94(4): 415-429 DOI:10.2138/am.2009.3053
Basori MBI, Gilbert S, Large RR and Zaw K. 2018. Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. Journal of Asian Earth Sciences, 158: 173-185 DOI:10.1016/j.jseaes.2018.02.012
Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems: Evidences from southern Tuscany pyritic deposits. Mineralium Deposita, 14(3): 353-374
Chen FC, Deng J, Wang QF, Huizenga JM, Li GJ and Gu YW. 2020. LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes. Ore Geology Reviews, 117: 103309 DOI:10.1016/j.oregeorev.2020.103309
Chouinard A, Paquette J and Williams-Jones AE. 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile Argentina. Canadian Mineralogist, 43(3): 951-963 DOI:10.2113/gscanmin.43.3.951
Ciobanu CL, Cook NJ, Utsunomiya S, Kogagwa M, Green L, Gilbert S and Wade B. 2012. Letter: Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97(8-9): 1515-1518 DOI:10.2138/am.2012.4207
Cook NJ and Chryssoulis SL. 1990. Concentrations of invisible gold in the common sulfides. Canadian Mineralogy, 28(1): 1-16
Cook NJ, Ciobanu CL and Mao JW. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264: 101-121 DOI:10.1016/j.chemgeo.2009.02.020
Craig JR, Vokes FM and Solberg TN. 1998. Pyrite: Physical and chemical textures. Mineralium Deposita, 34(1): 82-101 DOI:10.1007/s001260050187
Dare SAS, Barnes SJ, Prichard HM and Fisher PC. 2011. Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Mineralium Deposita, 46(4): 381-407 DOI:10.1007/s00126-011-0336-9
Djon MLN and Barnes SJ. 2012. Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High Grade Zones of the Lac des Iles Complex, Ontario, Canada. Mineralium Deposita, 47(8): 875-896 DOI:10.1007/s00126-012-0401-z
Duran CJ, Barnes SJ and Corkery JT. 2015. Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. Journal of Geochemical Exploration, 158: 223-242 DOI:10.1016/j.gexplo.2015.08.002
Duran CJ, Dubé-Loubert H, Pagé P, Barnes SJ, Roy M, Savard D, Cave BJ, Arguin JP and Mansur ET. 2019. Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada. Journal of Geochemical Exploration, 196: 105-130 DOI:10.1016/j.gexplo.2018.10.006
Feng JR, Mao JW, Pei RF, Zhou ZH and Yang ZX. 2010. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis. Acta Petrologica Sinica, 26(3): 845-857 (in Chinese with English abstract)
Feng JR, Mao JW, Pei RF and Li C. 2011. A tentative discussion on Indosinian ore-forming events in Laojunshan area of southeastern Yunnan: A case study of Xinzhai tin deposit and Nanyangtian tungsten deposit. Mineral Deposits, 30(1): 57-73 (in Chinese with English abstract)
Fleet ME, Chryssoulis SL, MacLean PJ, Davidson R and Weisener CG. 1993. Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. Canadian Mineralogist, 31(1): 1-17
Franchini M, McFarlane C, Maydagán L, Reich M, Lentz DR, Meinert L and Bouhier V. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66: 366-387 DOI:10.1016/j.oregeorev.2014.10.022
Fu XM, Zhang DX, Dai TG and Gao JF. 2018. Trace element record of pyrite from diverse deposits: Examples from the Dabaoshan polymetallic deposit of Northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505-519 (in Chinese with English abstract)
Genna D and Gaboury D. 2015. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-mcleod deposits, Abitibi, Canada, and implications for exploration. Economic Geology, 110(8): 2087-2108 DOI:10.2113/econgeo.110.8.2087
Guo LG. 2006. Primary research on geochemistry, geochronology of the Laojunshan metamorphic core complex, southeastern Yunnan. Master Degree Thesis. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences: 1-126 (in Chinese)
He F, Zhang Q, Wang DP, Liu YP, Ye L, Bao T, Wang XJ, Miao YL, Zhang SK, Su H and Wei WB. 2014. Ore-forming materials sources of the Dulong Sn-Zn polymetallic deposit, Yunnan, Evidences from S-C-O stable isotopes. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 900-907 (in Chinese with English abstract)
He F, Zhang Q, Liu YP, Ye L, Miao YL, Wang DP, Su H, Bao T and Wang XJ. 2015. Lead isotope compositions of Dulong Sn-Zn polymetallic deposit, Yunnan, China: Contraints on ore-forming metal sources. Acta Mineralogica Sinica, 35(3): 309-317 (in Chinese with English abstract)
Huston DL, Sie SH, Suter GF, Cooke DR and Both RA. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90(5): 1167-1196 DOI:10.2113/gsecongeo.90.5.1167
Jia FJ, Qin DX, Zhang WY, Wu W and Yang XK. 2010. Trend and regularity of mineralization in Dulong tin-zinc polymetallic deposit in Yunnan Province. Nonferrous Metals, 62(1): 84-87 (in Chinese with English abstract)
Jia FJ, Nian HL, Li X, Wu W, Yan YF, Liu XW and Guo YJ. 2014. REE geochemistry of each metallogenic series in Laojunshan tin polymetallic metallogenic region, southeastern Yunnan Province, China. Geological Journal of China Universities, 20(4): 549-557 (in Chinese with English abstract)
Keith M, Häckel F, Haase KM, Schwarz-Schampera U and Klemd R. 2016. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geology Reviews, 72: 728-745 DOI:10.1016/j.oregeorev.2015.07.012
Koglin N, Frimmel HE, Minter WEL and Brätz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3): 259-280 DOI:10.1007/s00126-009-0272-0
Lan JB, Liu YP, Ye L, Zhang Q, Wang DP and Su H. 2016. Geochemistry and age spectrum of Late Yanshanian granites from Laojunshan area, southeastern Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 441-454 (in Chinese with English abstract)
Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B and Foster J. 2009. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits. Economic Geology, 104(5): 635-668 DOI:10.2113/gsecongeo.104.5.635
Li DF, Chen HY, Sun XM, Fu Y, Liu QF, Xia XP and Yang Q. 2019. Coupled trace element and SIMS sulfur isotope geochemistry of sedimentary pyrite: Implications on pyrite growth of Caixiashan Pb-Zn deposit. Geoscience Frontiers, 10(6): 2177-2188 DOI:10.1016/j.gsf.2019.05.001
Li JK, Wang DH, Li HQ, Chen ZH and Mei YP. 2013. Late Jurassic-Early Cretaceous mineralization in the Laojunshan ore concentration area, Yunnan Province. Earth Science (Journal of China University of Geosciences), 38(5): 1023-1036 (in Chinese with English abstract) DOI:10.3799/dqkx.2013.100
Li ZL, Ye L, Hu YS, Wei C, Huang ZL, Nian HL, Cai JJ and Danyushevsky L. 2019. The trace (dispersed) elements in pyrite from the Fule Pb-Zn deposit, Yunnan Province, China, and its genetic information: A LA-ICPMS study. Acta Petrologica Sinica, 35(11): 3370-3384 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.11.07
Li ZX, Liu YP, Ye L, Liao Z, Zhang Q and Wang B. 2016. Microanalysis of oolitic pyrite in Dulong Sn-Zn polymetallic deposit, Maguan, Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 510-518 (in Chinese with English abstract)
Li WY. 2002. Geophysical and geochemical characteristics of Xinzhai tin ore deposit of Malipo. Yunnan Geology, 21(1): 72-82 (in Chinese with English abstract)
Liao Z, Liu YP, Li CY, Ye L, Liu SR and Zheng WQ. 2010. Characteristics of chlorites from Dulong Sn-Zn deposit and their metallogenic implications. Mineral Deposits, 29(1): 169-176 (in Chinese with English abstract)
Lin ZF. 2010. Structural ore-controlling characteristics and ore genesis of Maguan-Dulong zinc-indium polymetallic super-large deposit in Yunnan. Master Degree Thesis. Kunming: Kunming University of Science and Technology: 1-64 (in Chinese)
Liu SY, Liu YP, Ye L, Wei C, Cai Y and Chen WH. 2021. Genesis of Dulong Sn-Zn-In polymetallic deposit in Yunnan Province, South China: Insights from cassiterite U-Pb ages and trace element compositions. Minerals, 11(2): 199 DOI:10.3390/min11020199
Liu YP. 1998. Geochemistry of Dulong superlarge tin-zinc-polymetallic deposit, Yunnan. Bulletin of Mineralogy Petrology and Geochemistry, 17(1): 22-24 (in Chinese with English abstract)
Liu YP, Li CY, Gu T and Wang JL. 2000a. Isotopic constraints on the source of ore-forming materials of Dulong Sn-Zn polymetallic deposit, Yunnan. Geology-Geochemistry, 28(4): 75-82 (in Chinese with English abstract)
Liu YP, Li CY and Liu JJ. 2000b. Characteristics and genesis of stratiform skarn from Dulong tin-zinc polymetallic deposit, Yunnan. Acta Mineralogica Sinica, 20(4): 378-384 (in Chinese with English abstract)
Liu YP, Li CY, Ye L and Liu SR. 2006a. SEM study of oolitic pyrite and its genetic significance in Dulong tin-zinc polymetallic super-large deposit in Yunnan. Bulletin of Mineralogy. Petrology and Geochemistry, 25(S1): 165-167 (in Chinese)
Liu YP, Ye L, Li CY, Song B, Li TS, Guo LG and Pi DH. 2006b. Discovery of the Neoproterozoic magmatics in southeastern Yunnan: Evidence from SHRIMP zircon U-Pb dating and lithogeochemistry. Acta Petrologica Sinica, 22(4): 916-926 (in Chinese with English abstract)
Liu YP, Li ZX, Li HM, Guo LG, Xu W, Ye L, Li CY and Pi DH. 2007. U-Pb geochronology of cassiterite and zircon from the Dulong Sn-Zn deposit: Evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract)
Mukherjee I and Large R. 2017. Application of pyrite trace element chemistry to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern Territory, Australia. Ore Geology Reviews, 81: 1249-1270 DOI:10.1016/j.oregeorev.2016.08.004
Patten CGC, Pitcairn IK, Teagle DAH and Harris M. 2016. Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D. Geochimica et Cosmochimica Acta, 193: 132-159 DOI:10.1016/j.gca.2016.08.009
Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL and Ewing RC. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796 DOI:10.1016/j.gca.2005.01.011
Reich M, Deditius A, Chryssoulis S, Li JW, Ma CQ, Parada MA, Barra F and Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42-62 DOI:10.1016/j.gca.2012.11.006
Ren YS and Liu LD. 2006. Hydrothermal colloidal pyrite in Tongling area, Anhui Province, and its metallogenic significance. Mineral Deposits, 25(Suppl.1): 95-98 (in Chinese)
Revan MK, Genç Y, Maslennikov VV, Maslennikova SP, Large RR and Danyushevsky LV. 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geology Reviews, 63: 129-149 DOI:10.1016/j.oregeorev.2014.05.006
Su H, Wei WB, Tao ZH, Dao XQ and Li TJ. 2016. Geological and geochemical characteristics of later Yanshanian concealed granite and its relation with Sn-Zn polymetallic mineralization. Acta Mineralogica Sinica, 36(4): 488-496 (in Chinese with English abstract)
Sung YH, Brugger J, Ciobanu CL, Pring A, Skinner W and Nugus M. 2009. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 44(7): 765-791 DOI:10.1007/s00126-009-0244-4
Tan HQ and Liu YP. 2017. Genesis of amphibolite in Mengdong Group-Complex in southeastern Yunnan and its tectonic significance. Journal of Jilin University (Earth Science Edition), 47(6): 1763-1783 (in Chinese with English abstract)
Thomas HV, Large RR, Bull SW, Maslennikov V, Berry RF, Fraser R, Froud S and Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Economic Geology, 106(1): 1-31 DOI:10.2113/econgeo.106.1.1
Ulrich T, Long DG, Kamber BS and Whitehouse MJ. 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Economic Geology, 106(4): 667-686 DOI:10.2113/econgeo.106.4.667
Wang XJ, Liu YP, Miao YL, Bao T, Ye L and Zhang Q. 2014. In-situ LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrologica Sinica, 30(3): 867-876 (in Chinese with English abstract)
Werner TT, Mudd GM and Jowitt SM. 2017. The world's by-product and critical metal resources: Part Ⅲ, A global assessment of indium. Ore Geology Reviews, 86: 939-956 DOI:10.1016/j.oregeorev.2017.01.015
Winderbaum L, Ciobanu CL, Cook NJ, Paul M, Metcalfe A and Gilbert S. 2012. Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Mathematical Geosciences, 44(7): 823-842 DOI:10.1007/s11004-012-9418-1
Xiong JY. 1987. Division of metamorphic periods in Yunnan. In: Dong SB and Shen QH (eds. ). Collection of Metamorphic Maps and Research of China (Series 1). Beijing: Geological Publishing House, 138-144 (in Chinese)
Xu J and Li XF. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrologica Sinica, 34(12): 3611-3626 (in Chinese with English abstract)
Ye L, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL and Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geology Reviews, 39(4): 188-217 DOI:10.1016/j.oregeorev.2011.03.001
Ye L, Bao T, Liu YP, Zhang Q, Wang XJ, He F, Wang DP and Lan JB. 2016. Mineralization stages and ore-forming fluid of Dulong Sn-Zn polymetal ore deposit, Yunnan Province, China. Acta Mineralogica Sinica, 36(4): 503-509 (in Chinese with English abstract)
Ye L, Liu YP, Zhang Q, Bao T, He F, Wang XJ, Wang DP and Lan JB. 2017. Trace and rare earth elements characteristics of sphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province. Journal of Jilin University (Earth Science Edition), 47(3): 734-750 (in Chinese with English abstract)
Ye L, Bao T, Liu YP, He F, Wang XJ, Zhang Q, Wang DP and Lan JB. 2018. The trace and rare earth elements in scheelites and their implication for the mineralization in Dulong Sn-Zn polymetal ore deposit, Yunnan Province. Journal of Nanjing University (Natural Sciences), 54(2): 245-258 (in Chinese with English abstract)
Zhang HP, Liu JS, Li XB and Zhang XL. 2006. Relationship of granites to tin, silver, copper, lead, zinc, polymetallic deposits in southeastern Yunnan, China. Contributions to Geology and Mineral Resources Research, 21(2): 87-90 (in Chinese with English abstract)
Zhang J, Deng J, Chen HY, Yang LQ, Cooke D, Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Research, 26(2): 557-575 DOI:10.1016/j.gr.2013.11.003
Zhang K and Li HY. 2014. Migration of trace elements in pyrite from orogenic gold deposits: Evidence from LA-ICP-MS analyses. Acta Geologica Sinica, 88(Suppl.2): 841-842
Zhang ST, Feng MG and Lü W. 1998. Analysis of the Nanwenhe metamorphic core complex in southeastern Yunnan. Regional Geology of China, 17(4): 390-397 (in Chinese with English abstract)
Zhao ZY, Hou L, Ding J, Zhang QM and Wu SY. 2018. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn-dominant polymetallic deposit. Ore Geology Reviews, 93: 268-289 DOI:10.1016/j.oregeorev.2017.12.020
Zhou JP, Xu KQ, Hua RM and Zhao YY. 1997. A discussion on genesis of the tin polymetallic sulfide deposits of southeastern Yunnan. Yunnan Geology, 16(4): 309-349 (in Chinese with English abstract)
Zhou JP, Xu KQ, Hua RM, Zhao YY and Zhu JC. 1998. Characteristics and genesis of exhalative sedimentary massive sulfides in Southeastern Yunnan Province. Acta Mineralogica Sinica, 18(2): 158-168 (in Chinese with English abstract)
Zwahlen C, Cioldi S, Wagner T, Rey R and Heinrich C. 2014. The porphyry Cu-(Mo-Au) deposit at Altar (Argentina): Tracing gold distribution by vein mapping and LA-ICP-MS mineral analysis. Economic Geology, 109(5): 1341-1358 DOI:10.2113/econgeo.109.5.1341
冯佳睿, 毛景文, 裴荣富, 周振华, 杨宗喜. 2010. 云南瓦渣钨矿区老君山花岗岩体的SHRIMP锆石U-Pb定年, 地球化学特征及成因探讨. 岩石学报, 26(3): 845-857.
冯佳睿, 毛景文, 裴荣富, 李超. 2011. 滇东南老君山地区印支期成矿事件初探——以新寨锡矿床和南秧田钨矿床为例. 矿床地质, 30(1): 57-73. DOI:10.3969/j.issn.0258-7106.2011.01.006
傅晓明, 张德贤, 戴塔根, 高剑峰. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505-519.
郭利果. 2006. 滇东南老君山变质核杂岩地球化学和年代学初步研究. 硕士学位论文. 贵阳: 中国科学院地球化学研究所: 1-126.
何芳, 张乾, 王大鹏, 刘玉平, 叶霖, 鲍谈, 王小娟, 缪应理, 张世奎, 苏航, 韦文彪. 2014. 云南都龙Sn-Zn多金属矿床成矿物质来源——硫、碳、氧稳定同位素证据. 矿物岩石地球化学通报, 33(6): 900-907. DOI:10.3969/j.issn.1007-2802.2014.06.020
何芳, 张乾, 刘玉平, 叶霖, 缪应理, 王大鹏, 苏航, 鲍谈, 王小娟. 2015. 云南都龙锡锌多金属矿床铅同位素组成: 成矿金属来源制约. 矿物学报, 35(3): 309-317.
贾福聚, 秦德先, 张文源, 伍伟, 杨晓坤. 2010. 云南都龙锡锌多金属矿床矿化趋势分析及成矿规律. 有色金属, 62(1): 84-87. DOI:10.3969/j.issn.2095-1744.2010.01.021
贾福聚, 念红良, 李星, 伍伟, 燕永锋, 刘晓玮, 郭跃进. 2014. 滇东南老君山成矿区不同成矿系列稀土元素地球化学研究. 高校地质学报, 20(4): 549-557. DOI:10.3969/j.issn.1006-7493.2014.04.006
蓝江波, 刘玉平, 叶霖, 张乾, 王大鹏, 苏航. 2016. 滇东南燕山晚期老君山花岗岩的地球化学特征与年龄谱系. 矿物学报, 36(4): 441-454.
李建康, 王登红, 李华芹, 陈郑辉, 梅玉萍. 2013. 云南老君山矿集区的晚侏罗世-早白垩世成矿事件. 地球科学(中国地质大学学报), 38(5): 1023-1036.
李珍立, 叶霖, 胡宇思, 韦晨, 黄智龙, 念红良, 蔡金君, Danyushevsky L. 2019. 云南富乐铅锌矿床黄铁矿微量(稀散)元素组成及成因信息: LA-ICPMS研究. 岩石学报, 35(11): 3370-3384. DOI:10.18654/1000-0569/2019.11.07
李忠烜, 刘玉平, 叶霖, 廖震, 张乾, 王彪. 2016. 云南马关都龙锡锌多金属矿床鲕状黄铁矿微束分析. 矿物学报, 36(4): 510-518.
李文尧. 2002. 云南麻栗坡新寨锡矿物化探异常特征. 云南地质, 21(1): 72-82. DOI:10.3969/j.issn.1004-1885.2002.01.007
廖震, 刘玉平, 李朝阳, 叶霖, 刘世荣, 郑文勤. 2010. 都龙锡锌矿床绿泥石特征及其成矿意义. 矿床地质, 29(1): 169-176. DOI:10.3969/j.issn.0258-7106.2010.01.015
林知法. 2010. 云南马关都龙锌铟多金属超大型矿床构造控矿特征及矿床成因研究. 硕士学位论文. 昆明: 昆明理工大学: 1-64.
刘玉平. 1998. 一个受后期改造和热液叠加的块状硫化物矿床——都龙超大型锡锌多金属矿床. 矿物岩石地球化学通报, 17(1): 22-24.
刘玉平, 李朝阳, 谷团, 王金良. 2000a. 都龙锡锌多金属矿床成矿物质来源的同位素示踪. 地质地球化学, 28(4): 75-82.
刘玉平, 李朝阳, 刘家军. 2000b. 都龙矿床含矿层状夕卡岩成因的地质地球化学证据. 矿物学报, 20(4): 378-384.
刘玉平, 李朝阳, 叶霖, 刘世荣. 2006a. 云南都龙锡锌多金属超大型矿床鲕状黄铁矿SEM研究及其成因意义. 矿物岩石地球化学通报, 25(S1): 165-167.
刘玉平, 叶霖, 李朝阳, 宋彪, 李铁胜, 郭利果, 皮道会. 2006b. 滇东南发现新元古代岩浆岩: SHRIMP锆石U-Pb年代学和岩石地球化学证据. 岩石学报, 22(4): 916-926.
刘玉平, 李正祥, 李惠民, 郭利果, 徐伟, 叶霖, 李朝阳, 皮道会. 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
任云生, 刘连登. 2006. 铜陵地区热液成因胶状黄铁矿及其成矿意义. 矿床地质, 25(增1): 95-98.
苏航, 韦文彪, 陶志华, 刀学强, 李廷俊. 2016. 云南都龙矿区隐伏花岗岩地质地球化学特征与锡锌成矿作用. 矿物学报, 36(4): 488-496.
谭洪旗, 刘玉平. 2017. 滇东南猛洞岩群斜长角闪岩成因及其构造意义. 吉林大学学报(地球科学版), 47(6): 1763-1783.
王小娟, 刘玉平, 缪应理, 鲍谈, 叶霖, 张乾. 2014. 都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义. 岩石学报, 30(3): 867-876.
熊家镛. 1987. 云南变质期次的划分. 见: 董申保, 沈其韩编. 中国变质地质图编制与研究论文集(第1辑). 北京: 地质出版社, 138-144
徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程. 岩石学报, 34(12): 3611-3626.
叶霖, 鲍谈, 刘玉平, 张乾, 王小娟, 何芳, 王大鹏, 蓝江波. 2016. 云南都龙锡锌多金属矿床成矿阶段与成矿流体. 矿物学报, 36(4): 503-509.
叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 2017. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征. 吉林大学学报(地球科学版), 47(3): 734-750.
叶霖, 鲍谈, 刘玉平, 何芳, 王小娟, 张乾, 王大鹏, 蓝江波. 2018. 云南都龙锡锌矿床中白钨矿微量元素及稀土元素地球化学. 南京大学学报(自然科学版), 54(2): 245-258.
张洪培, 刘继顺, 李晓波, 章霞林. 2006. 滇东南花岗岩与锡、银、铜、铅、锌多金属矿床的成因关系. 地质找矿论丛, 21(2): 87-90. DOI:10.3969/j.issn.1001-1412.2006.02.003
张世涛, 冯明刚, 吕伟. 1998. 滇东南南温河变质核杂岩解析. 中国区域地质, 17(4): 390-397.
周建平, 徐克勤, 华仁民, 赵懿英. 1997. 滇东南锡多金属矿床成因商榷. 云南地质, 16(4): 309-349.
周建平, 徐克勤, 华仁民, 赵懿英, 朱金初. 1998. 滇东南喷流沉积块状硫化物特征与矿床成因. 矿物学报, 18(2): 158-168. DOI:10.3321/j.issn:1000-4734.1998.02.007