2. 中国地质调查局西安地质调查中心, 西安 710054;
3. 中国地质调查局北方古生界油气地质重点实验室, 西安 710054;
4. 中国石油吐哈油田分公司勘探开发研究院, 哈密 839009
2. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China;
3. Key Laboratory of Paleozoic Oil and Gas Geology in North China, China Geological Survey, Xi'an 71005;
4. Research Institute of Exploration and Development, Tuha Oilfield Company, PetroChina, Hami 839009, China
大陆地壳的净生长是指幔源岩浆直接注入到陆壳之中的过程,而初生陆壳与大陆地壳的净生长关系密切(Niu et al., 2013; Iizuka et al., 2017)。初生陆壳(juvenal continental crust)是指由幔源岩浆演化而来的地壳岩石,即壳幔分离产物,明显不同于古老陆壳物质的再循环,通常为玄武质岩石,具有明显的Nd-Hf同位素亏损特征(Hawkesworth and Kemp, 2006; Hawkesworth et al., 2019)。中亚造山带是地球上显生宙大陆地壳生长最显著的区域,尤以高比例的初生地壳组成在全球独一无二(Jahn et al., 2000; Wu et al., 2000; 洪大卫等, 2000; 王涛和侯增谦, 2018; Xiao et al., 2013, 2020)。研究表明,石炭纪-二叠纪是中亚造山带俯冲板片回卷(slab roll-back)及板片窗(slab window)等深部地质作用最活跃的时期(Windley and Xiao, 2018; Xiao et al., 2018),研究程度较高的是发育于西准噶尔一带的板片窗作用(Tang et al., 2010),另在东准噶尔、北山、内蒙古、天山、吉尔吉斯斯坦和阿拉善等地也有报道(Feng et al., 2013; Liu et al., 2017; Zheng et al., 2018a; Wen et al., 2019)。也有学者提出中亚造山带的显生宙地壳增生量可能被过高估算了,他们认为古亚洲洋在约800Ma的闭合过程还伴随有许多微陆块的拼贴,真正的初生地壳体积仅占中亚造山带的20%(Kröner et al., 2014)。但无论如何,石炭纪-二叠纪活跃的俯冲板片回卷和板片窗等深部地质作用揭示有显著的幔源物质向上加注到陆壳中,使造山带产生了某种程度的净生长。因此,中亚造山带是研究增生造山过程中壳幔作用或陆壳净生长的天然实验室。
对晚古生代特别是石炭纪-二叠纪时期,北山-阿拉善北缘地区是否存在洋壳俯冲消减,仍有“洋盆消亡的后碰撞”和“洋盆俯冲增生”两种不同观点。有学者认为,北山南部高分异Ⅰ型花岗岩和A型花岗岩(李舢等, 2011; Li et al., 2013)、A型流纹岩(许伟等, 2018)和壳幔混合成因花岗岩(张文等, 2011; Zhang et al., 2012),是洋盆闭合后的地壳伸展减薄阶段产物,北山南部柳园二叠纪玄武岩则是碰撞造山结束之后的拆沉作用产物(Zhang et al., 2011)。但也有学者认为增生造山过程中俯冲板片回卷及板片窗作用等也可以形成上述相关岩石组合(Xiao et al., 2018, 2020; Zheng et al., 2018a)。综合北山造山带的盆地原型(Guo et al., 2012; Liu et al., 2019a)、构造变形(Cleven et al., 2015; Tian et al., 2016)、榴辉岩(Liu et al., 2011)、片麻岩(Song et al., 2013)和蛇绿岩(Mao et al., 2012; 牛文超等, 2019a)等分析,特别是红石山-蓬勃山洋盆发育时代(297Ma斜长花岗岩)表明晚石炭世北山造山带北部仍处于大洋岩石圈俯冲消减阶段(牛文超等, 2019a)。同样,阿拉善地块北缘晚石炭世也处于增生造山过程中(Song et al., 2018a, b, 2021; Liu et al., 2019b),北山-阿拉善北部均是晚古生代阿拉善地块与南蒙古增生造山带拼贴过程的产物(Xiao et al., 2018, 2020),其中可能也存在微陆块(0.9Ga和1.4Ga)的拼贴(Zong et al., 2017; He et al., 2018; Yuan et al., 2019)。由此可见,争议的焦点在于:对北山地区具有亏损εHf(t)和εNd(t)值特征的花岗质岩石,以及A型花岗岩形成的构造环境的不同理解,增生造山阶段具Nd-Hf同位素亏损特征的岩石成因是解决上述争议的突破口。
北山造山带和阿拉善地块北缘位于中亚造山带中段南缘(图 1a),但是二者衔接部位被巴丹吉林沙漠覆盖,能获取的地质露头信息极少(图 1b)。2007年以来,笔者所在团队以及中石油吐哈油田分公司在内蒙古西部居延海地区,即在巴丹吉林沙漠北侧、北山造山带与阿拉善地块北缘的衔接部位,开展了油气地质调查工作,有4口钻井钻获了晚石炭世花岗质岩浆岩(306~313Ma)(图 1b)。岩相学及锆石Hf同位素特征均指示存在明显的壳幔混合特征,且具备初生陆壳部分熔融和亏损幔源岩浆混合的源区属性,通过对居延海东北、西北、西侧不同区域钻获的晚石炭世花岗质岩石的岩相学、年代学和锆石Hf同位素的系统研究,本文深入分析和探讨了居延海地区晚石炭世软流圈地幔上涌作用及其大地构造背景。
![]() |
图 1 中亚造山带构造格架(a, 据Xiao et al., 2013)和北山-阿拉善北缘晚古生代区域地质简图(b, 据Liu et al., 2019a修改) 北山造山带:A-红石山蛇绿混杂岩带;B-石板井-小黄山蛇绿混杂岩带;C-红柳河-洗肠井蛇绿混杂岩带;D-柳园蛇绿混杂岩带.阿拉善地块北缘:E-雅干断裂带;F-恩格尔乌苏蛇绿混杂岩带;G-特拜-查干楚鲁蛇绿混杂岩带.数据来源:1-郑荣国等, 2016; 2-任云伟等, 2019; 3-李敏等, 2019; 4-徐旭明等, 2018; 5-杨岳清等, 2013; 6-陈圆圆等, 2019; 7-Niu et al., 2018; 8-Liu et al., 2019b; 9-宋博等, 2021 Fig. 1 Tectonic sketch map of CAOB (a, after Xiao et al., 2013) and Late Paleozoic regional tectonic map of northern margin of Beishan-Alxa (b, modified after Liu et al., 2019a) Beishan Orogenic Belt: A-Hongshishan ophiolite mélange; B-Shibanjing-Xiaohuangshan ophiolite mélange; C-Hongliuhe-Xichangjing ophiolite mélange; D-Liuyuan ophiolite mélange. Northern margin of Alxa block: E-Yagan fault; F-Enger Us ophiolite mélange; G-Tepai-Quagan Qulu ophiolite mélange. Data sources: 1-Zheng et al., 2016; 2-Ren et al., 2019; 3-Li et al., 2019; 4-Xu et al., 2018; 5-Yang et al., 2013; 6-Chen et al., 2019; 7-Niu et al., 2018; 8-Liu et al., 2019b; 9-Song et al., 2021 |
北山及阿拉善北部大地构造单元由多条蛇绿混杂岩带所划分,尽管不连续,但北山造山带和阿拉善地块北缘都展现了典型的增生造山带组构特征,是图瓦-蒙古山弯构造南部的组成部分(Xiao et al., 2013, 2018, 2020; Liu et al., 2019a)。北山造山带由北至南分别为红石山、石板井-小黄山、红柳河-洗肠井和柳园等4条蛇绿混杂岩带(于福生等, 2006; 李向民等, 2012; 武鹏等, 2012; 王国强等, 2014; 胡新茁等, 2015; Mao et al., 2012; Zheng et al., 2013; 牛文超等, 2019a),据此Xiao et al. (2010)将北山造山带由北至南划分为雀儿山、旱山(黑鹰山)、马鬃山、双鹰山、石板山等5条增生拼贴的岛弧构造带(图 1b)。阿拉善地块北缘由北向南发育雅干断裂带、恩格尔乌苏蛇绿混杂岩带(Zheng et al., 2014)和特拜-查干础鲁蛇绿混杂岩带(吴泰然和何国琦, 1992; Zheng et al., 2014, 2018b),据此吴泰然和何国琦(1993)将阿拉善地块北缘划分为雅干、珠斯楞-杭乌拉、沙拉扎山、诺尔公-狼山等4个构造带(图 1b)。北山造山带北部的锆石U-Pb年代学和Hf同位素分析工作主体集中于旱山构造带,而雀儿山构造带数据多为年代学工作而缺少对应的锆石Hf同位素数据。旱山构造带的研究包括双井子钾长花岗岩(328Ma; 郑荣国等, 2016)、哈珠花岗质侵入岩(306~299Ma)和中-酸性火山岩(326~314Ma)(任云伟等, 2019; 李敏等, 2019)、交叉沟石英闪长岩(306Ma; 赵志雄等, 2015)、风雷山流纹岩(319Ma; 贾元琴等, 2016)、破城山花岗闪长岩(308Ma)和破城山流纹岩(319Ma)(Tian et al., 2017),雀儿山构造带包括红石山安山岩(322Ma)和安山质角砾晶屑熔结凝灰岩(315~299Ma)(卢进才等, 2013; Shi et al., 2017)、黑红山石英闪长岩(308Ma; 徐旭明等, 2018)、额勒根花岗闪长岩(341Ma; 杨岳清等, 2013)、圆包山英安质凝灰岩(316Ma; 陈圆圆等, 2019)和大狐狸山流纹质晶屑熔结凝灰岩(302Ma; Niu et al., 2018)等。阿拉善地块北缘的晚古生代岩浆岩主要集中于雅干构造带的八道桥流纹岩(311Ma)、珠斯楞-杭乌拉构造带的好比如流纹岩(323Ma)(Liu et al., 2018, 2019b)、亚干花岗闪长岩(271Ma)和切刀黑云母二长花岗岩(380Ma)(史兴俊等, 2020)。
MED2井位于居延海东北部(42°36′6.90″N、100°56′34.26″E),距离中蒙边境约3.5km(图 1b),完钻井深为2360.00m。钻获流纹质熔结凝灰岩和火山角砾岩(井深1890.35~2360.00m)。流纹质熔结凝灰岩呈块状构造,熔结凝灰结构(图 2a),岩屑种类主要为流纹岩碎屑,含少量玄武岩、安山岩碎屑(图 2a),形态多为次棱角状或熔蚀状,另见流纹质浆屑。晶屑为长石和石英,长石晶屑呈次棱角状或熔蚀状,石英晶屑呈港湾穿孔状或浑圆状,胶结物为凝灰质,特别是斜长石晶屑中存在针状磷灰石微晶(图 2b)。火山角砾岩为流纹质,砾石成分主要为流纹岩,少量为安山岩和玄武岩,砾石形态呈次棱角状。同位素样品(D2-1)岩性为流纹质凝灰岩,样品取样井深为1893.44m。
![]() |
图 2 居延海钻获岩浆岩岩心及显微岩相学特征 (a) MED2井流纹质熔结凝灰岩及玄武岩、安山岩岩屑;(b) MED2井斜长石斑晶及针状磷灰石微晶;(c) MED1井花岗闪长岩及闪长质包体;(d) MED1井闪长质包体及与寄主岩石接触关系;(e) MED1井包体斜长石中的针状磷灰石微晶;(f) MED1井包体斜长石的环带及针状磷灰石微晶;(g) ET3井二长花岗岩斜长石中的磁铁矿与磷灰石包裹体;(h) T5井流纹质熔结凝灰岩及玄武岩岩屑.Ap-磷灰石;Amp-角闪石;Pl-斜长石;Qz-石英;Bt-黑云母;Mag-磁铁矿;Andesite-安山岩;Basalt-玄武岩 Fig. 2 Field and photomicrographs of drilling cores in Juyanhai (a) rhyolitic ignimbrite including basalt and andesite lithic fragment of MED2 well; (b) plagioclase phenocryst and acicular apatite crystallites of MED2 well; (c) dioritic enclave in granodiorite of MED1 well; (d) interaction between dioritic enclave and host granodiorite of MED1 well; (e) acicular apatite crystallites in plagioclase of MED1 enclaves; (f) plagioclase visible zoning of MED1 well; (g) magnetite and apatite inclusions in plagioclase of monzonite granite of ET3 well; (h) rhyolitic ignimbrite including basalt lithic fragment of T5 well. Ap-apatite; Amp-amphibole; Pl-plagioclase; Qz-quartz; Bt-biotite; Mag-magnetite |
MED1井位于居延海西北部(42°17′13.13″N、100°9′21.48″E)(图 1b),完钻井深为1481.90m,为全取芯钻井。钻获花岗闪长岩75.35m,其中见大量暗色包体,呈不规则透镜状(1.5cm×5cm)(图 2c)、火焰状和舌状,与寄主花岗闪长岩呈塑性/半塑性接触边界。寄主岩石为花岗闪长岩,块状构造,半自形粒状结构,斜长石55%,碱性长石10%,石英20%,角闪石10%,少量黑云母,副矿物为磷灰石。碱性长石为条纹长石,粒径为0.5~2.2mm之间,石英晶体呈粒状,粒径大小在0.6~2.5mm之间,暗色矿物多成细小团粒状聚集体出现。暗色包体为闪长质包体(MMEs),未见明显的热接触变质或接触交代现象(图 2d),一个显著特征是闪长质包体的斜长石中富含针状磷灰石(图 2e),顺斜长石环带产出(图 2f),包体中的斜长石除具明显环带结构外,还发育熔蚀结构及次生加大边(图 2f)。同位素样品(D1-3)岩性为花岗闪长岩,样品取样井深为1384.52m。
ET3井位于居延海西部(42°10′40.84″N、100°16′36.91″E)(图 1b),完钻井深为3225.43m。钻获碎裂化二长花岗岩,岩石呈碎裂构造,变余粒状-文象交生结构,碱性长石30%,斜长石35%,石英28%,黑云母6%,副矿物为磷灰石。斜长石呈半自形板状,粒径大小在1.2~3.2mm之间,晶体呈轻微绢云母化,碱性长石为条纹长石,多与石英共结呈文象交生结构。斜长石中见磁铁矿包裹磷灰石微晶(图 2g)。同位素样品(ET3-1)岩性为二长花岗岩,样品取样井深为3221.53m。
T5井位于居延海西南部(41°59′37.43″N、100°26′22.99″E)(图 1b),完钻井深为2000.00m。钻获流纹质熔结凝灰岩。流纹质熔结凝灰岩呈似流动构造,熔结凝灰结构(图 2h),物质组分由火山碎屑物与熔岩组成,火山碎屑物约占90%,其种类主要为长石与石英晶屑,少量岩屑,可见玄武岩碎屑(图 2h),长石晶屑多成次棱角状、熔蚀状,石英晶屑多成熔蚀状。同位素样品(T5-1)岩性为流纹质熔结凝灰岩,样品取样井深为1544.62m。
2 分析方法在详细的岩心观察基础上,选择新鲜的样品磨制探针片,同位素样品进行碎样,分选锆石,挑选晶形完好、无明显包裹体的颗粒用环氧树脂固定并抛光。结合锆石阴极发光(CL)图像、透反射光特征,详细分析锆石环带特征及内部结构,挑选无裂隙、岩浆振荡环带发育的点位开展激光剥蚀等离子质谱(LA-ICP-MS)U-Pb和Hf同位素联机测试分析。
锆石原位U-Pb同位素定年、微量元素分析和Hf同位素测定在中国地质调查局西安地质调查中心自然资源部岩浆作用成矿与找矿重点实验室完成。采用Geolas Pro激光剥蚀系统同时耦合加载Neptune Plus多接收ICP MS和7700x四级杆ICP MS进行。其中D2-1、D1-3和T5-1的激光束斑为32μm,ET3-1的激光束斑直径为44μm。激光剥蚀的样品气溶胶由氦气携带,然后通过T型接头与氩气合并,然后引入ICP MS等离子体。经过平滑处理后,样气将分成两条,一条进入四极杆ICP-MS进行锆石U-Pb测年和微量元素分析,另一条进入多收集器ICP-MS进行Hf同位素分析后再加一点氮气(4mL/min)改善灵敏度。使用GLITTER 4.4计算微量元素浓度,U-Pb同位素比率和年龄使用内部软件Hfllow 4.0计算Hf同位素。仪器条件和数据采集程序的详细信息请参照(Yuan et al., 2008)。
本研究中,锆石91500被用作U-Pb同位素分析的主要(校准)参考材料。GJ-1被用作监控标样。对GJ-1的29次分析得出的加权平均206Pb/238U年龄为599.8±4.2Ma,这与通过ID-TIMS测量获得的参考值相符(Jackson et al., 2004)。通过对参考锆石GJ-1和Temora的频繁分析,可以监测Lu-Hf同位素的数据质量。Temora的176Yb/177Hf比率范围很广(0.019~0.079),因此可以最好地表明176Yb的准确性和176Hf上的176Lu干扰校正。分别使用176Lu/175Lu=0.02658和176Yb/173Yb=0.796218的值来校正176Lu和176Yb等压干扰(Chu et al., 2002)。仪器质量偏差是通过使用指数质量分数定律将Yb同位素比标准化为172Yb/173Yb=1.35274(Chu et al., 2002)和将Hf同位素比标准化为179Hf/177Hf=0.7325来解决的。假设Lu的质量偏差行为遵循Yb的质量偏差行为,有关质量偏差校正方案的详细信息,请参见(Iizuka and Hirata, 2005; Wu et al., 2006)。确定的GJ-1和Temora的平均176Hf/177Hf比分别为0.282020±0.000016(n=8,2SD)和0.282703±0.000023(n=9,2SD),这与学者推荐的参考值在误差范围内一致(Woodhead et al., 2004; Morel et al., 2008)。U-Pb谐和图绘制和加权平均计算使用IsoplotR完成(Vermeesch, 2018)。
3 锆石U-Pb定年与Hf同位素 3.1 MED2井流纹质凝灰岩MED2井流纹质凝灰岩(样品D2-1)中的锆石长度约100~200μm,自形-半自形、无色透明、长柱状,长宽比为1:1~1:3,岩浆振荡环带清晰(图 3a)。共计11个测点,结果显示锆石具有较高的Th含量为31×10-6~121×10-6,U含量为65×10-6~154×10-6,Th/U比值介于0.44~0.79之间(表 1),与变质成因锆石Th/U值(通常<0.1, Vavra et al., 1999)明显不同,同阴极发光的岩浆结晶振荡环带特征一致,表明均为岩浆成因锆石。11个测点的数据点均在谐和曲线附近,加权平均年龄为311±2Ma (MSWD=0.75)(图 4a)。
![]() |
图 3 锆石阴极发光图像(红色圈为U-Pb和Lu-Hf联机测试点位) Fig. 3 Scanning electron microscope cathodoluminescence images of zircons (the red circle mark laser beam sampling sites for U-Pb and Lu-Hf analysis) |
![]() |
表 1 锆石U-Pb同位素数据表 Table 1 Zircon U-Pb isotope composition measured by using LA-ICP-MS technique |
![]() |
图 4 居延海钻获晚石炭世花岗质岩浆岩锆石U-Pb年龄 Fig. 4 Zircon U-Pb dating results from Late Carboniferous granitoids in Juyanhai |
锆石206Pb/238U年龄介于303~317Ma,176Hf/177Hf值介于0.282952~0.283033之间,样品的εHf(t)值介于+12.7~+15.7之间,平均值为+14.3,对应二阶段模式年龄tDM2为320~516Ma,平均值为410Ma(表 2)。
![]() |
表 2 锆石Lu-Hf同位素分析结果 Table 2 In situ Lu-Hf isotopic data of zircons |
MED1井花岗闪长岩(样品D1-3)中的锆石长度约150~200μm,自形为主、无色透明、长柱状,长宽比为1:1~1:2,岩浆震荡环带明显(图 3b)。共计15个测点,结果显示锆石Th含量为34×10-6~133×10-6,U含量为114×10-6~354×10-6,Th/U比值介于0.29~0.47之间(表 1),不同于变质成因锆石Th/U比值(Vavra et al., 1999),这与阴极发光的岩浆振荡环带特征相吻合,表明测试分析锆石均为岩浆成因。15个测点的数据点均在谐和曲线附近,加权平均年龄为313±3Ma (MSWD=1.5)(图 4b)。
锆石206Pb/238U年龄介于301~326Ma,176Hf/177Hf值介于0.282924~0.283024之间,样品的εHf(t)值介于+11.9~+15.5之间,平均值为+14.2,对应二阶段模式年龄tDM2为339~568Ma,平均值为420Ma(表 2)。
3.3 ET3井二长花岗岩ET3井二长花岗岩(样品ET3-1)中的锆石长度约150~200μm,自形为主、无色透明、长柱状,长宽比为1:1~1:3,岩浆震荡环带明显(图 3c)。共计19个测点,结果显示锆石具有较高的U和Th含量,Th含量为84×10-6~336×10-6,U含量为215×10-6~495×10-6,Th/U比值介于0.31~0.76之间(表 1),这与阴极发光细窄的岩浆振荡环带特征相吻合,表明测试分析锆石均为岩浆成因(Vavra et al., 1999)。19个测点的数据点均在谐和曲线附近,加权平均年龄为306±3Ma (MSWD=0.47)(图 4c)。
锆石206Pb/238U年龄介于297~318Ma,176Hf/177Hf值介于0.282815~0.282991之间,样品的εHf(t)值介于+9.3~+20.2之间,平均值为+14.0,对应二阶段模式年龄tDM2为413~837Ma,平均值为588Ma(表 2)。
3.4 T5井流纹质熔结凝灰岩T5井流纹质熔结凝灰岩(样品T5-1)中的锆石长度约150~250μm,自形为主、无色透明、长柱状,长宽比为1:2~1:4,岩浆震荡环带明显(图 3d)。共计15个测点,结果显示锆石具有较高的U和Th含量,Th为92×10-6~344×10-6,U含量为62×10-6~333×10-6,Th/U比值介于0.88~2.22之间(表 1),具有细窄的岩浆振荡环带特征,表明测试分析锆石均为岩浆成因(Vavra et al., 1999)。15个测点的数据点均在谐和曲线附近,加权平均年龄为311±2Ma (MSWD=1.3)(图 4d)。
锆石206Pb/238U年龄介于300~321Ma,176Hf/177Hf值介于0.282872~0.283035之间,样品的εHf(t)值介于+9.9~+15.6之间,平均值为+13.0,对应二阶段模式年龄tDM2为332~700Ma,平均值为491Ma(表 2)。
4 讨论 4.1 壳幔岩浆混合作用花岗质岩浆成因主要存在地壳岩石部分熔融、幔源玄武质岩浆的结晶分异和同化混染-分离结晶(AFC)等不同观点(Deering et al., 2011; Lee and Bachmann, 2014; Rooney and Deering, 2014; Sliwinski et al., 2015; Clemens and Stevens, 2016)。岩浆混合则是花岗质岩浆形成演化的重要过程,可以发生在岩浆源区、运移和侵位的多个阶段,这也是造成花岗岩多样性的主要原因之一,备受学界关注(王德滋和谢磊, 2008; Nathwani et al., 2020; Townsend and Huber, 2020)。岩浆混合根据混合后的物理化学完全程度不同分为化学上均一化混合(magma mixing)和机械混合(magma mingling)(王德滋和谢磊, 2008)。其中包体或同深成岩墙(syn-plutonic dike)的出现是机械混合的典型代表(Vernon, 1984; Vernon et al., 1988),即不同岩浆并未实现物理化学上的完全混合。需要指出的是,岩浆混合并不意味着壳源和幔源岩浆的混合,也可以是不同来源壳源岩浆的混合(Yang et al., 2019; 高丽等, 2020)。
花岗岩特别是Ⅰ型花岗岩中常发育暗色微粒包体(MMEs)(Vernon, 1984),其成因有以下认识:(1)岩浆侵位时来自围岩的捕虏体(Xu et al., 2006),捕虏体是指花岗岩所携带外来固体岩石的碎块,可以是沉积岩、变质岩或岩浆岩,通常呈角砾状,与寄主岩之间界限截然,尤其是接触变质会形成重结晶结构和角岩化(莫宣学等,2002);(2)镁铁质源区部分熔融产生的残留体或难熔体(Chappell, 2000),以发育变晶结构(而不是岩浆结构)为特征,常含有白云母、夕线石、红柱石、堇青石、刚玉、石榴子石、尖晶石等富铝矿物和(或)黑云母集合体(莫宣学等, 2002);(3)同源岩浆早期阶段结晶的析离体或堆积体(Schönenberger et al., 2006),通常分为长英质和镁铁质两类,富含早期结晶的矿物,晶粒大小与寄主岩相同,且具有堆晶结构,多数不具截然边界(莫宣学等, 2002);(4)岩浆混合作用的产物,即基性岩浆产物(Barbarin, 1999; Sun et al., 2020; Lu et al., 2020)。暗色微粒包体中的针状磷灰石是岩浆混合的公认指示矿物(Wyllie et al., 1962),花岗岩成因的磷灰石呈短柱状(长宽比3~4),很容易与基性岩浆中快速结晶的磷灰石(长宽比30~40)相区别(Didier, 1987),通常是岩浆快速冷却的产物(Barbarin, 1999; 莫宣学等, 2002; Lu et al., 2020; Sun et al., 2020)。
岩石手标本和岩相学观察是鉴别岩浆混合的重要基础。MED2井钻获一套流纹质熔结凝灰岩和火山角砾岩,火山角砾岩的砾石成分可以有效反映岩浆上升通道捕获围岩的物质信息,其中多数为流纹岩,但是仍有少量的安山岩和玄武岩砾石(图 2a)。流纹质熔结凝灰岩中的斜长石晶屑可见针状磷灰石,同时指示了不同来源岩浆混合淬冷的特征(图 2b)。MED1井富含闪长质暗色微粒包体,粒度明显小于寄主岩石即花岗闪长岩(图 2c),暗色微粒包体呈椭球状、卵状(图 2c, d),部分薄片可以观察到暗色矿物呈团块状聚集现象,其与寄主岩石的接触关系较为截然(图 2d),接触部位的斜长石富含针状磷灰石微晶(图 2e),这种截然关系可能限制了两类岩浆的充分混合,而淬冷作用形成了针状磷灰石,明显不同于寄主岩石中的短柱状磷灰石。暗色微粒包体中的斜长石环带结构发育,发育熔蚀边和他形生长边,针状磷灰石顺环带产出(图 2f),反映了早期结晶的斜长石由于基性岩浆的注入和混合,导致不稳定且被熔蚀,继而以更富钙的斜长石快速结晶,这与电子探针分析结果一致(未发表数据)。ET3井二长花岗岩同样发育暗色微粒包体,不过相较于MED1井而言,暗色微粒包体较小,尺寸多为厘米到毫米级,包体斜长石中可见针状磷灰石微晶和磁铁矿共生(图 2g),同样反映出基性-酸性岩浆混合的特征。T5井流纹质熔结凝灰岩岩屑组分以流纹岩为主,斜长石晶屑中可观察到针状磷灰石微晶。以上地质事实均指示存在壳源和幔源岩浆组分混合的信息。
花岗质岩浆岩的锆石Hf同位素分析是研究壳幔相互作用的有效手段(Iizuka et al., 2017)。居延海MED2井、MED1井、ET3井和T5井分别钻获了流纹质凝灰岩、花岗闪长岩、二长花岗岩和流纹质熔结凝灰岩,锆石原位U-Pb和Lu-Hf同位素联机测试分析结果指示这4口钻井均为晚石炭世花岗质岩石(306~313Ma),锆石Hf同位素则表现出极度亏损的特征,εHf(t)最大值分别为+15.7、+15.5、+20.2和+15.6(图 5a),对应二阶段模式年龄tDM2最小值分别为320Ma、339Ma、413Ma和332Ma,相比同地区不同时代的花岗质岩石而言,这4口钻井的锆石Hf同位素更为亏损(图 5b),这种极度亏损的同位素特征表明该花岗质岩浆壳幔分离时代与锆石结晶年龄接近,均为初生陆壳再次熔融产物,且受到了亏损幔源岩浆的混染。此外,在居延海的ET2井钻获了透辉安山玢岩,锆石结晶年龄为308Ma(未发表数据),也指示晚石炭世居延海地区存在明显的幔源岩浆活动。
![]() |
图 5 北山北部、居延海和阿拉善地块北缘晚石炭世花岗质岩浆岩锆石206Pb/238U年龄-εHf(t)图 Fig. 5 206Pb/238U age vs. εHf(t) plots of the Late Carboniferous granitoids in northern Beishan, Juyanhai and northern margin of Alxa block |
花岗质岩浆是大陆地壳特别是上地壳的重要组成部分,是地球分异演化的产物(吴福元等, 2007),同时是大陆地壳生长过程研究的最佳实体(Hawkesworth et al., 2006, 2019; Clift et al., 2009)。一般而言,自从3.0Ga板块构造出现以来,大陆地壳就进入了此消彼长的阶段,其中会聚板块边缘的弧岩浆作用贡献最大(Clift et al., 2009),强烈的壳幔作用产生了丰富的弧岩浆作用,然而与“正常”的地幔楔水致部分熔融不同,软流圈地幔上涌会形成“板片窗”效应(DeLong et al., 1979; Thorkelson and Taylor, 1989; Santosh and Kusky, 2010),超高温-高温岩浆会引起初生陆壳物质的部分熔融,同时亏损的软流圈地幔物质向上加注,形成具有Hf同位素亏损特征的岩浆(Windley and Xiao, 2018; Tang et al., 2010)。虽然中亚造山带以显著的大陆地壳生长而不同于其他造山带(Jahn et al., 2000; Wu et al., 2000; 王涛和侯增谦, 2018; Xiao et al., 2020),但是作为世界上增生造山作用研究的经典地区,真正的大陆地壳净生长即确切的幔源岩浆直接注入壳源岩浆的作用方式如何,仍有待深入研究。并非亏损的Nd-Hf同位素就是地壳生长(吴福元等, 2007),只有对比同地区不同时代、相同类型岩石(如花岗质岩石)的Nd-Hf同位素数值,若是出现更为亏损的特征,则意味着大陆地壳的净生长(王涛和侯增谦, 2018)。
居延海夹持于西侧的北山造山带和东侧的阿拉善地块北缘造山带之间(图 1b),前人研究为我们提供了北山和阿拉善地区不同时代花岗质岩浆的锆石Hf同位素比对数据,研究揭示北山造山带奥陶纪以来经历了多期地壳生长事件,其中晚石炭世是重要阶段之一(He et al., 2018),阿拉善地块北缘同样在300Ma左右出现明显的地壳生长(Liu et al., 2018),有学者将其称之为伸展的增生型造山带(Extensional accretionary orogen),并认为这一过程与板片回卷(slab roll-back)有关(Song et al., 2021)。居延海这4口钻井所钻获的花岗质岩浆则以初生陆壳部分熔融和亏损幔源岩浆混合为典型特征(图 1b、图 5),相比邻区同时代花岗质岩浆,即北山造山带北部的双井子和哈珠地区,以及阿拉善地块北缘的八道桥、好比如和亚干地区,邻区晚石炭世花岗质岩浆的源区不仅有初生陆壳,而且存在古老陆壳组分,可见北山北部、居延海和阿拉善地块北缘的地壳结构差异巨大(图 1、图 5)。由此可见,就相同时间不同空间而言,居延海迥异于邻区花岗质岩浆源区,那么晚石炭世居延海经历了怎样的特殊地质过程?岩石学以及岩相学特征均指示居延海晚石炭世的花岗质岩浆源区存在明显的壳幔混合特征,尤以暗色微粒包体为典型特征,加以匹配Hf同位素极度亏损的特征,均指示软流圈地幔上涌起到了关键作用,这意味着亏损的幔源岩浆对于晚石炭世岩浆活动而言,不仅供给热源而且直接提供了物质贡献,使得初生陆壳物质迅速“夭折”,壳源与幔源物质的混合共同构筑了居延海晚石炭世花岗质岩浆的源区。
4.3 软流圈地幔上涌的动力学机制就造山过程中的软流圈地幔上涌而言,动力学机制可分为洋中脊俯冲、板片回卷、板片断离等过程。其一,洋中脊俯冲会产生“板片窗”效应,不论现代的南美洲智利(Goddard and Fosdick, 2019),还是古老造山带即中亚造山带西准噶尔(Tang et al., 2010)以及北山中部公婆泉的研究(Zheng et al., 2018b)均表明存在洋中脊俯冲作用。其二,板片回卷会在弧后环境形成伸展并在深部产生类似“涡流”的效应(Schellart and Moresi, 2013),通常被认为与中亚造山带“山弯构造”密切相关(Xiao et al., 2018)。其三,板片断离通常被认为是洋壳消减结束的产物,意味着俯冲洋壳发生断离,进入弧陆碰撞阶段(Faryad and Cuthbert, 2020)。这三者就空间规模而言,洋中脊俯冲的尺度最小,而洋盆存在与否是判别板片回卷和板片断离的重要标准,且洋中脊俯冲通常与俯冲带的走向呈一定的交角,对于古老造山带而言,板片窗的岩石组合通常与造山带走向并不平行,而是存在角度上的相交关系。
前人研究揭示,旱山构造带和雅干构造带存在一条东西走向的晚石炭世大陆边缘弧(郑荣国等, 2016; 任云伟等, 2019; 李敏等, 2019),且旱山和雅干地区获得了0.9Ga的前寒武古老陆壳岩石记录(王涛等, 2001; Zhang et al., 2016; 牛文超等, 2019b),这与旱山、雅干和珠斯楞-杭乌拉地区花岗质岩石的锆石Hf二阶段模式年龄一致,此外居延海的MEC2井的晚石炭世二长花岗岩(312~315Ma)以及Hf同位素特征也有效约束了旱山、雅干、珠斯楞-杭乌拉0.9Ga微陆块的空间展布(宋博等, 2021)。北山造山带北部红石山-百合山-蓬勃山洋盆的形成时代对于判别构造背景尤为重要,百合山蛇绿岩混杂岩带中的斜长花岗岩锆石U-Pb年代学数据为297±2Ma(牛文超等, 2019a),这表明北山北部晚石炭世还存在洋盆且仍处于俯冲消减过程,因此可以排除板片断离模型,那么居延海地区的这4口钻井所钻获的晚石炭世花岗质岩浆为何缺少古老陆壳物质的贡献,取而代之的是软流圈地幔物质?
北美科迪勒拉岩基是典型的大陆弧,其低钾花岗质岩石具有相对原始的同位素特征,没有明显的地壳继承证据,这一特征证明了初生陆壳的形成过程(Collins et al., 2020)。科迪勒拉岩基经历了较热的基性岩浆注入而造成对酸性岩浆房的快速加热过程,该基性岩浆注入酸性岩浆房的岩石学证据就是在上地壳深成岩和火山弧岩石中普遍包含铁镁质包体,而这样的基性岩浆注入可能是使酸性岩浆房喷发的导火索(Collins et al., 2020)。但是对于Hf同位素极度亏损特别是接近于亏损地幔演化线的花岗质岩浆而言,则需要洋中脊俯冲、俯冲板片回卷或者板片断离的动力学过程来实现(Li et al., 2020)。就北山造山带北部的百合山晚石炭世洋盆而言(牛文超等, 2019a),我们可以排除板片断离的可能性,但是由于居延海地区还缺少晚石炭世的高镁安山岩、紫苏花岗岩、A型花岗岩等超高温-高温岩浆的特征岩石组合,相比露头区而言,钻井样品容易形成“一孔之见”,幸运地是,居延海地区的ET2井透辉安山玢岩已经提供了重要线索,是否为高镁安山岩还需要深入的研究工作。
综上所述,若要明确居延海这4口钻井钻获的花岗质岩浆是洋中脊俯冲的产物还是板片回卷所致还需要更多的地质证据。软流圈上涌会造成汇聚板块边缘的构造、岩浆、成矿和热效应明显不同于正常弧岩浆作用,相比热隆升和地球物理探测手段,岩石学成为研究古老造山带软流圈上涌过程最为直接的载体(DeLong et al., 1979; Thorkelson and Taylor, 1989; Santosh and Kusky, 2010; Windley and Xiao, 2018; Xiao et al., 2018)。因此,本文以居延海西北、东南和东北区域钻获的具有明显壳幔作用特征的晚石炭世岩浆岩为重点研究对象,并通过与邻区同时代的具有相似特征的岩浆岩对比,探讨了洋中脊俯冲或俯冲板片回卷等不同深部地质过程中的软流圈地幔上涌及壳幔作用方式,也可为中亚增生型造山带中段南缘与幔源物质相关的成矿作用(斑岩型Cu-Au-Mo矿等)提供指导找矿方向的基础地质依据(高俊等, 2019)。
5 结论(1) 北山-阿拉善构造结合部位即居延海地区钻获晚石炭世花岗质岩浆(306~313Ma),为壳幔混合产物,表现为初生陆壳部分熔融和亏损幔源岩浆的混合作用。
(2) 居延海晚石炭世存在软流圈地幔上涌,动力学背景可能为洋中脊俯冲或俯冲板片回卷。
致谢 中国地质调查局西安地质调查中心李艳广、汪双双、靳梦琪在锆石U-Pb、Hf同位素分析中给予了帮助;本文在写作过程中与中国科学院大学侯泉林教授、吴春明教授、孙金凤副教授、郭谦谦副教授、宋国学副教授和陈艺超博士后进行了有益探讨;中国地质调查局西安地质调查中心卢进才教授级高工是本研究团队的“引路人”,自2007年以来带领年轻人进入北山-阿拉善的戈壁荒漠地区开展油气基础地质调查;三位匿名审稿人提出了宝贵的修改意见;在此一并致谢。
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626 DOI:10.1016/S0024-4937(98)00085-1
|
Chappell BW, White AJR, Williams IS, Wyborn D and Wyborn LAI. 2000. Lachlan fold belt granites revisited: High- and low-temperature granites and their implications. Australian Journal of Earth Sciences, 47(1): 123-138 DOI:10.1046/j.1440-0952.2000.00766.x
|
Chen YY, Li J, Bai CD, Li D, Zhang ZX and Lin MY. 2019. Geochemical characteristics and zircon U-Pb age of the intermediate and acid volcanic rocks from Yuanbaoshan area in the northern part of Beishan orogenic belt. Geological Bulletin of China, 38(2-3): 266-275 (in Chinese with English abstract)
|
Chu NC, Taylor RN, Chavagnac V, Nesbitt RW, Boella RM, Milton JA, German CR, Bayon G and Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574 DOI:10.1039/b206707b
|
Clemens JD and Stevens G. 2016. Melt segregation and magma interactions during crustal melting: Breaking out of the matrix. Earth-Science Reviews, 160: 333-349 DOI:10.1016/j.earscirev.2016.07.012
|
Cleven NR, Lin SF and Xiao WJ. 2015. The Hongliuhe fold-and-thrust belt: Evidence of terminal collision and suture-reactivation after the Early Permian in the Beishan orogenic collage, Northwest China. Gondwana Research, 27(2): 796-810 DOI:10.1016/j.gr.2013.12.004
|
Clift PD, Vannucchi P and Morgan JP. 2009. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Science Reviews, 97(1-4): 80-104 DOI:10.1016/j.earscirev.2009.10.003
|
Collins WJ, Murphy JB, Johnson TE and Huang HQ. 2020. Critical role of water in the formation of continental crust. Nature Geoscience, 13(5): 331-338 DOI:10.1038/s41561-020-0573-6
|
Deering CD, Bachmann O, Dufek J and Gravley DM. 2011. Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal-melt dynamics in mush zones with variable mineral assemblages. Journal of Petrology, 52(11): 2243-2263 DOI:10.1093/petrology/egr046
|
DeLong SE, Schwarz WM and Anderson RN. 1979. Thermal effects of ridge subduction. Earth and Planetary Science Letters, 44(2): 239-246 DOI:10.1016/0012-821X(79)90172-9
|
Didier J. 1987. Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. Geologische Rundschau, 76(1): 41-50 DOI:10.1007/BF01820572
|
Faryad SW and Cuthbert SJ. 2020. High-temperature overprint in (U)HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)?. Earth-Science Reviews, 202: 103108 DOI:10.1016/j.earscirev.2020.103108
|
Feng JY, Xiao WJ, Windley B, Han CM, Wan B, Zhang JE, Ao SJ, Zhang ZY and Lin LN. 2013. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids. Journal of Asian Earth Sciences, 78: 114-142 DOI:10.1016/j.jseaes.2013.01.020
|
Gao J, Zhu MT, Wang XS, Hong T, Li GM, Li JL, Xiao WJ, Qin KZ, Zeng QD, Shen P, Xu XW, Zhang ZC, Zhou JB, Lai Y, Zhang XH, Sun JG, Wan B and Wang B. 2019. Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geologica Sinica, 93(1): 24-71 (in Chinese with English abstract)
|
Gao L, Yang ZL and Yu MG. 2020. Self-mingling between Late Cretaceous silicic magmas in East Zhejiang and its geologic significance. Acta Petrologica Sinica, 36(4): 1015-1029 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.04.03
|
Goddard ALS and Fosdick JC. 2019. Multichronometer thermochronologic modeling of migrating spreading ridge subduction in southern Patagonia. Geology, 47(6): 555-558 DOI:10.1130/G46091.1
|
Guo QQ, Xiao WJ, Windley BF, Mao QG, Han CM, Qu JF, Ao SJ, Li JL, Song DF and Yong Y. 2012. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: Implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences, 49: 54-68 DOI:10.1016/j.jseaes.2011.03.013
|
Hawkesworth C, Cawood PA and Dhuime B. 2019. Rates of generation and growth of the continental crust. Geoscience Frontiers, 10(1): 165-173 DOI:10.1016/j.gsf.2018.02.004
|
Hawkesworth CJ and Kemp AIS. 2006. Evolution of the continental crust. Nature, 443(7113): 811-817 DOI:10.1038/nature05191
|
He ZY, Klemd R, Yan LL and Zhang ZM. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt. Earth-Science Reviews, 185: 1-14 DOI:10.1016/j.earscirev.2018.05.012
|
Hong DW, Wang SG, Xie XL and Zhang JS. 2000. Genesis of positive ε(Nd, t) granitoids in the Da Hinggan MTS. -Mongolia orogenic belt and growth continental crust. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract)
|
Hu XZ, Zhao GC, Hu XY, Liao YF and Cheng HF. 2015. Geological characteristics, formation epoch and geotectonic significance of the Yueyashan ophiolitic tectonic mélange in Beishan area, Inner Mongolia. Geological Bulletin of China, 34(2-3): 425-436 (in Chinese with English abstract)
|
Iizuka T and Hirata T. 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology, 220(1-2): 121-137 DOI:10.1016/j.chemgeo.2005.03.010
|
Iizuka T, Yamaguchi T, Itano K, Hibiya Y and Suzuki K. 2017. What Hf isotopes in zircon tell us about crust-mantle evolution. Lithos, 274-275: 304-327 DOI:10.1016/j.lithos.2017.01.006
|
Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69 DOI:10.1016/j.chemgeo.2004.06.017
|
Jahn BM, Griffin WL and Windley B. 2000. Continental growth in the Phanerozoic: Evidence from Central Asia. Tectonophysics, 328(1-2): vii-x DOI:10.1016/S0040-1951(00)00174-8
|
Jia YQ, Zhao ZX, Xu H, Wang XL, Liu Q and and Wang JR. 2016. Zircon LA-ICP-MS U-Pb dating of and tectonic setting of rhyolites from Baishan Formation in Fengleishan area of the Beishan orogenic belt. Geology in China, 43(1): 91-98 (in Chinese with English abstract)
|
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wilde SA, Degtyarev KE and Rytsk E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125 DOI:10.1016/j.gr.2012.12.023
|
Lee CTA and Bachmann O. 2014. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth and Planetary Science Letters, 393: 266-274 DOI:10.1016/j.epsl.2014.02.044
|
Li M, Xin HT, Ren BF, Ren YW, Zhang K, Duan XL, Niu WC and Duan LF. 2019. Petrogenesis and tectonic significance of the Late Palaeozoic granitoids in Hazhu area, Inner Mongolia. Earth Science, 44(1): 328-343 (in Chinese with English abstract)
|
Li S, Wang T, Tong Y, Wang YB, Hong DW and Ouyang ZX. 2011. Zircon U-Pb age, origin and its tectonic significances of Huitongshan Devonian K-feldspar granites from Beishan orogen, NW China. Acta Petrologica Sinica, 27(10): 3055-3070 (in Chinese with English abstract)
|
Li S, Wilde SA and Wang T. 2013. Early Permian post-collisional high-K granitoids from Liuyuan area in southern Beishan orogen, NW China: Petrogenesis and tectonic implications. Lithos, 179: 99-119 DOI:10.1016/j.lithos.2013.08.002
|
Li S, Chung SL, Lai YM, Ghani AA, Lee HY and Murtadha S. 2020. Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia. Geology, 48(10): 1002-1005 DOI:10.1130/G47304.1
|
Li XM, Yu JY, Wang GQ and Wu P. 2012. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance. Geological Bulletin of China, 31(12): 2025-2031 (in Chinese with English abstract)
|
Liu Q, Zhao GC, Han YG, Eizenhöfer PR, Zhu YL, Hou WZ and Zhang XR. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos, 274-275: 19-30 DOI:10.1016/j.lithos.2016.12.029
|
Liu Q, Zhao GC, Han YG, Li XP, Zhu YL, Eizenhöfer PR, Zhang XR, Wang B and Tsui RW. 2018. Geochronology and geochemistry of Paleozoic to Mesozoic granitoids in western Inner Mongolia, China: Implications for the tectonic evolution of the southern Central Asian Orogenic Belt. The Journal of Geology, 126(4): 451-471 DOI:10.1086/697690
|
Liu Q, Zhao GC, Han YG, Zhu YL, Wang B, Eizenhöfer PR and Zhang XR. 2019a. Detrital zircon provenance constraints on the final closure of the middle segment of the Paleo-Asian Ocean. Gondwana Research, 69: 73-88 DOI:10.1016/j.gr.2019.01.001
|
Liu Q, Zhao GC, Han YG, Zhu YL, Wang B, Eizenhöfer PR, Zhang XR and Tsui RW. 2019b. Timing of the final closure of the middle segment of the Paleo-Asian Ocean: Insights from geochronology and geochemistry of Carboniferous-Triassic volcanosedimentary successions in western Inner Mongolia, China. GSA Bulletin, 131(5-6): 941-965 DOI:10.1130/B32023.1
|
Liu XC, Chen BL, Jahn BM, Wu GG and Liu YS. 2011. Early Paleozoic (ca. 465Ma) eclogites from Beishan (NW China) and their bearing on the tectonic evolution of the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42(4): 715-731
|
Lu JC, Niu YZ, Wei XY, Chen GC and Li YH. 2013. LA-ICP-MS zircon U-Pb dating of the Late Paleozoic volcanic rocks from the Hongshishan area of the Beishan orogenic belt and its tectonic significances. Acta Petrologica Sinica, 29(8): 2685-2694 (in Chinese with English abstract)
|
Lu YH, Gao P, Zhao ZF and Zheng YF. 2020. Whole-rock geochemical and zircon Hf-O isotopic constraints on the origin of granitoids and their mafic enclaves from the Triassic Mishuling pluton in West Qinling, central China. Journal of Asian Earth Sciences, 189: 104136 DOI:10.1016/j.jseaes.2019.104136
|
Mao QG, Xiao WJ, Windley BF, Han CM, Qu JF, Ao SJ, Zhang JE and Guo QQ. 2012. The Liuyuan complex in the Beishan, NW China: A Carboniferous-Permian ophiolitic fore-arc sliver in the southern Altaids?. Geological Magazine, 149(3): 483-506 DOI:10.1017/S0016756811000811
|
Mo XX, Luo ZH, Xiao QH, Yu XH, Liu CD, Zhao ZD and Zhou X. 2002. Recognition and Research Method of Magma Mixing in Granite Rocks. Beijing: Geological Publishing House, 53-70 (in Chinese)
|
Morel MLA, Nebel O, Nebel-Jacobsen YJ, Miller JS and Vroon PZ. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231-235 DOI:10.1016/j.chemgeo.2008.06.040
|
Nathwani CL, Loader MA, Wilkinson JJ, Buret Y, Sievwright RH and Hollings P. 2020. Multi-stage arc magma evolution recorded by apatite in volcanic rocks. Geology, 48(4): 323-327 DOI:10.1130/G46998.1
|
Niu WC, Xin HT, Duan LF, Wang GH, Zhao ZL, Zhang GZ and Zheng YL. 2019a. The identification and subduction polarity of the Baiheshan ophiolite mélanges belt in the Beishan area, Inner Mongolia: New understanding based on the geological map of Qinghegou Sheet (1:50000). Geology in China, 46(5): 977-994 (in Chinese with English abstract)
|
Niu WC, Ren BF, Ren YW, Duan XL, Duan LF, Sun LX, Li M and Zhang JH. 2019b. Neoproterozoic magmatic records in the north Beishan Orogenic Belt: Evidence of the gneissic granites from the Hazhu area, Inner Mongolia. Earth Science, 44(1): 284-297 (in Chinese with English abstract)
|
Niu YL, Zhao ZD, Zhu DC and Mo XX. 2013. Continental collision zones are primary sites for net continental crust growth: A testable hypothesis. Earth-Science Reviews, 127: 96-110 DOI:10.1016/j.earscirev.2013.09.004
|
Niu YZ, Liu CY, Shi GR, Lu JC, Xu W and Shi JZ. 2018. Unconformity-bounded Upper Paleozoic megasequences in the Beishan Region (NW China) and implications for the timing of the Paleo-Asian Ocean closure. Journal of Asian Earth Sciences, 167: 11-32 DOI:10.1016/j.jseaes.2018.06.019
|
Ren YW, Ren BF, Niu WC, Sun LX, Li M, Zhang K, Zhang JH and Duan LF. 2019. Carboniferous volcanics from the Baishan Formation in the Hazhu area, Inner Mongolia: Implications for the Late Paleozoic active continental margin magmatism in the northern Beishan. Earth Science, 44(1): 312-327 (in Chinese with English abstract)
|
Rooney TO and Deering CD. 2014. Conditions of melt generation beneath the Taupo Volcanic Zone: The influence of heterogeneous mantle inputs on large-volume silicic systems. Geology, 42(1): 3-6 DOI:10.1130/G34868.1
|
Santosh M and Kusky T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: A ridge subduction and slab window model. Terra Nova, 22(1): 35-42 DOI:10.1111/j.1365-3121.2009.00914.x
|
Schellart WP and Moresi L. 2013. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate. Journal of Geophysical Research: Solid Earth, 118(6): 3221-3248 DOI:10.1002/jgrb.50173
|
Schönenberger J, Marks M, Wagner T and Markl G. 2006. Fluid-rock interaction in autoliths of agpaitic nepheline syenites in the Ilímaussaq intrusion, South Greenland. Lithos, 91(1-4): 331-351 DOI:10.1016/j.lithos.2006.03.024
|
Shi XJ, Zhang L, Zhang CG, Zhang JJ, Ding ZY, Zhang Y, Bao JF and Zhou HS. 2020. Zircon geochronology and geochemistry of the granitoids in Yagan area, northern Alxa and their tectonic implications. Earth Science, 45(7): 2469-2484 (in Chinese with English abstract)
|
Shi YR, Li LL, Kröner A, Ding J, Zhang W, Huang ZB and Jian P. 2017. Carboniferous Alaskan-type complex along the Sino-Mongolian boundary, southern margin of the Central Asian Orogenic Belt. Acta Geochimica, 36(2): 276-290 DOI:10.1007/s11631-017-0145-7
|
Sliwinski JT, Bachmann O, Ellis BS, Dávila-Harris P, Nelson B K and Dufek J. 2015. Eruption of shallow crystal cumulates during explosive phonolitic eruptions on Tenerife, Canary Islands. Journal of Petrology, 56(11): 2173-2194 DOI:10.1093/petrology/egv068
|
Song B, Zhang HY, Wei DT, Li W, Zhao F and Li WM. 2021. Revelation of the Meso-Neoproterozoic crust on the southern margin of the Central Asian Orogenic Belt: Chronology and Hf isotope tracer from drilling-intersected alkaline granites, northern Beishan-Alxa. Acta Geoscientica Sinica, 42(1): 9-20 (in Chinese with English abstract)
|
Song DF, Xiao WJ, Han CM, Li JL, Qu JF, Guo QQ, Lin LN and Wang ZM. 2013. Progressive accretionary tectonics of the Beishan orogenic collage, southern Altaids: Insights from zircon U-Pb and Hf isotopic data of high-grade complexes. Precambrian Research, 227: 368-388 DOI:10.1016/j.precamres.2012.06.011
|
Song DF, Xiao WJ, Collins AS, Glorie S, Han CM and Li YC. 2018a. Final subduction processes of the Paleo-Asian Ocean in the Alxa tectonic belt (NW China): Constraints from field and chronological data of Permian arc-related volcano-sedimentary rocks. Tectonics, 37(6): 1658-1687 DOI:10.1029/2017TC004919
|
Song DF, Glorie S, Xiao WJ, Collins AS, Gillespie J, Jepson G and Li YC. 2018b. Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology. Tectonophysics, 722: 577-594 DOI:10.1016/j.tecto.2017.11.029
|
Song DF, Xiao WJ, Windley BF and Han CM. 2021. Provenance and tectonic setting of Late Paleozoic sedimentary rocks from the Alxa Tectonic Belt (NW China): Implications for accretionary tectonics of the southern Central Asian Orogenic Belt. GSA Bulletin, 133(1-2): 253-276 DOI:10.1130/B35652.1
|
Sun SJ, Zhang RQ, Cong YN, Zhang LP, Sun WD, Li CY and Ding X. 2020. Analogous diagenetic conditions of dark enclave and its host granite derived by magma mixing: Evidence for a post-mixing magmatic process. Lithos, 356-357: 105373 DOI:10.1016/j.lithos.2020.105373
|
Tang GJ, Wang Q, Wyman DA, Li ZX, Zhao ZH, Jia XH and Jiang ZQ. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300 DOI:10.1016/j.chemgeo.2010.08.012
|
Thorkelson DJ and Taylor RP. 1989. Cordilleran slab windows. Geology, 17(9): 833-836 DOI:10.1130/0091-7613(1989)017<0833:CSW>2.3.CO;2
|
Tian ZH, Xiao WJ, Zhang ZY and Lin X. 2016. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids. Geoscience Frontiers, 7(2): 181-196 DOI:10.1016/j.gsf.2015.11.007
|
Tian ZH, Xiao WJ, Windley BF, Zhang JE, Zhang ZY and Song DF. 2017. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China). International Journal of Earth Sciences, 106(7): 2319-2342 DOI:10.1007/s00531-016-1428-7
|
Townsend M and Huber C. 2020. A critical magma chamber size for volcanic eruptions. Geology, 48(5): 431-435 DOI:10.1130/G47045.1
|
Vavra G, Schmid R and Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404 DOI:10.1007/s004100050492
|
Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5): 1479-1493 DOI:10.1016/j.gsf.2018.04.001
|
Vernon RH. 1984. Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment. Nature, 309(5967): 438-439 DOI:10.1038/309438a0
|
Vernon RH, Etheridge MA and Wall VJ. 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22(1): 1-11 DOI:10.1016/0024-4937(88)90024-2
|
Wang DZ and Xie L. 2008. Magma mingling: Evidence from enclaves. Geological Journal of China Universities, 14(1): 16-21 (in Chinese with English abstract)
|
Wang GQ, Li XM, Xu XY, Yu JY and Wu P. 2014. Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance. Acta Petrologica Sinica, 30(6): 1685-1694 (in Chinese with English abstract)
|
Wang T, Zheng YD, Gehrels GE and Mu ZG. 2001. Chronological evidence of the existence of the southern Mongolian microcontinent: the zircon U-Pb age of the granite gneiss of the Yagan-Wonqiherhan core complex. Chinese Science Bulletin, 46(14): 1220-1223 (in Chinese) DOI:10.1007/BF02900607
|
Wang T and Hou ZQ. 2018. Isotopic mapping and deep material probing (Ⅰ): Revealing the compositional evolution of the lithosphere and crustal growth processes. Earth Science Frontiers, 25(6): 1-19 (in Chinese with English abstract)
|
Wen DJ, He ZY and Zhang ZM. 2019. Geochemistry and tectonic implications of Early Permian granitic rocks in the Xingxingxia area of Chinese Central Tianshan Arc Terrane. Geological Journal, 54(3): 1578-1590 DOI:10.1002/gj.3252
|
Windley BF and Xiao WJ. 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research, 61: 73-87 DOI:10.1016/j.gr.2018.05.003
|
Woodhead J, Hergt J, Shelley M, Eggins S and Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology, 209(1-2): 121-135 DOI:10.1016/j.chemgeo.2004.04.026
|
Wu FY, Jahn BM, Wilde S and Sun DY. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, 328(1-2): 89-113 DOI:10.1016/S0040-1951(00)00179-7
|
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126 DOI:10.1016/j.chemgeo.2006.05.003
|
Wu FY, Li XH, Yang JH and Zheng YF. 2007. Discussions on the petrogenesis of granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
|
Wu P, Wang GQ, Li XM, Yu JY and Kang L. 2012. The age of Niujuanzi ophiolite in Beishan area of Gansu Province and its geological significance. Geological Bulletin of China, 31(12): 2032-2037 (in Chinese with English abstract)
|
Wu TR and He GQ. 1992. Ophiolitic mélange belts in the northern margin of the Alashan block. Geoscience, 6(3): 286-296 (in Chinese with English abstract)
|
Wu TR and He GQ. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alxa block. Acta Geologica Sinica, 67(2): 97-108 (in Chinese with English abstract)
|
Wyllie PJ, Cox KG and Biggar GM. 1962. The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology, 3(2): 238-243 DOI:10.1093/petrology/3.2.238
|
Xiao WJ, Mao QG, Windley BF, Han CM, Qu JF, Zhang JE, Ao SJ, Guo QQ, Cleven NR, Lin SF, Shan YH and Li JL. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science, 310(10): 1553-1594 DOI:10.2475/10.2010.12
|
Xiao WJ, Windley BF, Allen MB and Han CM. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research, 23(4): 1316-1341 DOI:10.1016/j.gr.2012.01.012
|
Xiao WJ, Windley BF, Han CM, Liu W, Wan B, Zhang JE, Ao SJ, Zhang ZY and Song DF. 2018. Late Paleozoic to Early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth-Science Reviews, 186: 94-128 DOI:10.1016/j.earscirev.2017.09.020
|
Xiao WJ, Song DF, Windley BF, Li JL, Han CM, Wan B, Zhang JE, Ao SJ and Zhang ZY. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Science China Earth Sciences, 63(3): 329-361 DOI:10.1007/s11430-019-9524-6
|
Xu W, Xu XY, Niu YZ, Chen GC, Shi JZ, Wei JS, Song B and Zhang YX. 2018. Geochronology, petrogenesis and tectonic implications of Early Permian A-type rhyolite from southern Beishan orogen, NW China. Acta Petrologica Sinica, 34(10): 3011-3033 (in Chinese with English abstract)
|
Xu WL, Gao S, Wang QH, Wang DY and Liu YS. 2006. Mesozoic crustal thickening of the eastern North China craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34(9): 721-724 DOI:10.1130/G22551.1
|
Xu XM, Lu Y, Xin HT, Zhang Y, Zhang ZP and Feng YP. 2018. The constraint of closing time of Paleo-Asian ocean in the north edge of Beishan, Inner Mongolia: Evidence from the Late Carboniferous quartz dioritein in Heihongshan. Journal of Mineralogy and Petrology, 38(4): 66-75 (in Chinese with English abstract)
|
Yang YQ, Zhao JH, Meng GX, Yan JY, Lü B, Wang SG, Jia LL and Han JG. 2013. Rock-forming and ore-forming ages as well as formation environments of porphyry molybdenum deposits in Beishan area, Inner Mongolia. Acta Geoscientica Sinica, 34(4): 401-412 (in Chinese with English abstract)
|
Yang ZY, Wang Q, Yang JH, Dan W, Zhang XZ, Ma L, Qi Y, Wang J and Sun P. 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos, 350-351: 105199 DOI:10.1016/j.lithos.2019.105199
|
Yu FS, Li JB and Wang T. 2006. The U-Pb isotopic age of zircon from Hongliuhe ophiolites in East Tianshan Mountains, Northwest China. Acta Geoscientica Sinica, 27(3): 213-216 (in Chinese with English abstract)
|
Yuan HL, Gao S, Dai MN, Zong CL, Günther D, Fontaine GH, Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology, 247(1-2): 100-118 DOI:10.1016/j.chemgeo.2007.10.003
|
Yuan Y, Zong KQ, Cawood PA, Cheng H, Yu YY, Guo JL, Liu YS, Hu ZC, Zhang W and Li M. 2019. Implication of Mesoproterozoic (~1.4Ga) magmatism within microcontinents along the southern Central Asian Orogenic Belt. Precambrian Research, 327: 314-326
|
Zhang W, Feng JC, Zheng RG, Wu TR, Luo HL, He YK and Jing X. 2011. LA-ICP MS zircon U-Pb ages of the granites from the south of Yin'aoxia and their tectonic significances. Acta Petrologica Sinica, 27(6): 1649-1661 (in Chinese with English abstract)
|
Zhang W, Wu TR, Zheng RG, Feng JC, Luo HL, He YK and Xu C. 2012. Post-collisional southeastern Beishan granites: Geochemistry, geochronology, Sr-Nd-Hf isotopes and their implications for tectonic evolution. Journal of Asian Earth Sciences, 58: 51-63 DOI:10.1016/j.jseaes.2012.07.004
|
Zhang W, Pease V, Meng QP, Zheng RG, Thomsen TB, Wohlgemuth-Ueberwasser C and Wu TR. 2016. Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: Its age, petrogenesis and tectonic significance. Geological Magazine, 153(3): 512-523 DOI:10.1017/S0016756815000631
|
Zhang YY, Dostal J, Zhao ZH, Liu C and Guo ZJ. 2011. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: Implications for crust-mantle interaction. Gondwana Research, 20(4): 816-830 DOI:10.1016/j.gr.2011.03.008
|
Zhao ZX, Jia YQ, Xu H, Wang JR, Wang XL and Liu Q. 2015. LA-ICP-MS zircon U-Pb age of quartz diorite from the Jiaochagou area in Beishan Orogenic Belt, Inner Mongolia, and its tectonic significance. Acta Geologica Sinica, 89(7): 1210-1218 (in Chinese with English abstract)
|
Zheng RG, Wu TR, Zhang W, Xu C and Meng QP. 2013. Late Paleozoic subduction system in the southern Central Asian Orogenic Belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt. Journal of Asian Earth Sciences, 62: 463-475 DOI:10.1016/j.jseaes.2012.10.033
|
Zheng RG, Wu TR, Zhang W, Xu C, Meng QP and Zhang ZY. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites. Gondwana Research, 25(2): 842-858 DOI:10.1016/j.gr.2013.05.011
|
Zheng RG, Wu TR, Xiao WJ, Meng QP and Zhang W. 2016. Geochronology, geochemistry and tectonic implications of the Shuangjizi composite pluton in the northern Beishan. Acta Geologica Sinica, 90(11): 3153-3172 (in Chinese with English abstract)
|
Zheng RG, Xiao WJ, Li JY, Wu TR and Zhang W. 2018a. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China. Journal of Asian Earth Sciences, 153: 75-99 DOI:10.1016/j.jseaes.2016.12.008
|
Zheng RG, Li JY, Xiao WJ and Wang LJ. 2018b. A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB. Geoscience Frontiers, 9(5): 1355-1367 DOI:10.1016/j.gsf.2018.02.014
|
Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC and Zhang ZM. 2017. The assembly of Rodinia: The correlation of Early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48 DOI:10.1016/j.precamres.2016.12.010
|
陈圆圆, 李杰, 白春东, 李典, 张子轩, 林月明. 2019. 北山北带园包山地区中酸性火山岩地球化学特征及锆石U-Pb年龄. 地质通报, 38(2-3): 266-275. |
高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24-71. DOI:10.3969/j.issn.0001-5717.2019.01.004 |
高丽, 杨祝良, 余明刚. 2020. 浙东晚白垩世酸性岩浆的自混合作用及其意义. 岩石学报, 36(4): 1015-1029. |
洪大卫, 王式洸, 谢锡林, 张季生. 2000. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长. 地学前缘, 7(2): 441-456. DOI:10.3321/j.issn:1005-2321.2000.02.012 |
胡新茁, 赵国春, 胡新悦, 廖云峰, 程海峰. 2015. 内蒙古北山地区月牙山蛇绿质构造混杂岩带地质特征、形成时代及大地构造意义. 地质通报, 34(2-3): 425-436. |
贾元琴, 赵志雄, 许海, 王新亮, 刘强, 王金荣. 2016. 北山风雷山地区白山组流纹岩LA-ICP-MS锆石U-Pb年龄及构造环境. 中国地质, 43(1): 91-98. DOI:10.3969/j.issn.1000-3657.2016.01.006 |
李敏, 辛后田, 任邦方, 任云伟, 张阔, 段霄龙, 牛文超, 段连峰. 2019. 内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义. 地球科学, 44(1): 328-343. |
李舢, 王涛, 童英, 王彦斌, 洪大卫, 欧阳志侠. 2011. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义. 岩石学报, 27(10): 3055-3070. |
李向民, 余吉远, 王国强, 武鹏. 2012. 甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 31(12): 2025-2031. DOI:10.3969/j.issn.1671-2552.2012.12.011 |
卢进才, 牛亚卓, 魏仙样, 陈高潮, 李玉宏. 2013. 北山红石山地区晚古生代火山岩LA-ICP-MS锆石U-Pb年龄及其构造意义. 岩石学报, 29(8): 2685-2694. |
莫宣学, 罗照华, 肖庆辉, 喻学惠, 刘成东, 赵志丹, 周肃. 2002. 花岗岩类岩石中岩浆混合作用的识别与研究方法. 北京: 地质出版社, 53-70.
|
牛文超, 辛后田, 段连峰, 王根厚, 赵泽霖, 张国震, 郑艺龙. 2019a. 内蒙古北山地区百合山蛇绿混杂岩带的厘定及其洋盆俯冲极性——基于1:5万清河沟幅地质图的新认识. 中国地质, 46(5): 977-994. |
牛文超, 任邦方, 任云伟, 段霄龙, 段连峰, 孙立新, 李敏, 张家辉. 2019b. 北山北带新元古代岩浆记录: 来自内蒙古哈珠地区片麻状花岗岩的证据. 地球科学, 44(1): 284-297. |
任云伟, 任邦方, 牛文超, 孙立新, 李敏, 张阔, 张家辉, 段连峰. 2019. 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物. 地球科学, 44(1): 312-327. |
史兴俊, 张磊, 张辰光, 张建军, 丁自源, 张勇, 包峻帆, 周红升. 2020. 阿拉善北部亚干地区花岗岩锆石年代学、地球化学特征及其构造意义. 地球科学, 45(7): 2469-2484. |
宋博, 张慧元, 魏东涛, 李渭, 赵飞, 李文明. 2021. 中亚造山带南缘中-新元古代地壳的揭示: 来自北山-阿拉善北部钻遇碱性花岗岩的年代学和Hf同位素示踪研究. 地球学报, 42(1): 9-20. |
王德滋, 谢磊. 2008. 岩浆混合作用: 来自岩石包体的证据. 高校地质学报, 14(1): 16-21. DOI:10.3969/j.issn.1006-7493.2008.01.002 |
王国强, 李向民, 徐学义, 余吉远, 武鹏. 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义. 岩石学报, 30(6): 1685-1694. |
王涛, 郑亚东, Gehrels GE, 穆治国. 2001. 南蒙微大陆存在的年代学证据: 亚干-翁奇海尔罕核杂岩花岗质片麻岩的锆石U-Pb年龄. 科学通报, 46(14): 1220-1223. DOI:10.3321/j.issn:0023-074X.2001.14.020 |
王涛, 侯增谦. 2018. 同位素填图与深部物质探测(Ⅰ): 揭示岩石圈组成演变与地壳生长. 地学前缘, 25(6): 1-19. |
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001 |
武鹏, 王国强, 李向民, 余吉远, 康磊. 2012. 甘肃北山地区牛圈子蛇绿岩的形成时代及地质意义. 地质通报, 31(12): 2032-2037. DOI:10.3969/j.issn.1671-2552.2012.12.012 |
吴泰然, 何国琦. 1992. 阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义. 现代地质, 6(3): 286-296. |
吴泰然, 何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征. 地质学报, 67(2): 97-108. |
许伟, 徐学义, 牛亚卓, 陈高潮, 史冀忠, 魏建设, 宋博, 张宇轩. 2018. 北山南部早二叠世A型流纹岩地球化学特征及其地球动力学意义. 岩石学报, 34(10): 3011-3033. |
徐旭明, 鲁扬, 辛后田, 张永, 张正平, 冯翼鹏. 2018. 内蒙古北山北缘古亚洲洋闭合时间制约: 来自黑红山晚石炭世石英闪长岩的证据. 矿物岩石, 38(4): 66-75. |
杨岳清, 赵金花, 孟贵祥, 严加永, 吕博, 王守光, 贾玲珑, 韩建刚. 2013. 内蒙古北山地区斑岩型钼矿的成岩成矿时代和形成环境探讨. 地球学报, 34(4): 401-412. |
于福生, 李金宝, 王涛. 2006. 东天山红柳河地区蛇绿岩U-Pb同位素年龄. 地球学报, 27(3): 213-216. DOI:10.3321/j.issn:1006-3021.2006.03.004 |
张文, 冯继承, 郑荣国, 吴泰然, 罗红玲, 贺元凯, 荆旭. 2011. 甘肃北山音凹峡南花岗岩体的锆石LA-ICP MS定年及其构造意义. 岩石学报, 27(6): 1649-1661. |
赵志雄, 贾元琴, 许海, 王金荣, 王新亮, 刘强. 2015. 北山交叉沟石英闪长岩锆石LA-ICP-MS U-Pb年龄及构造意义. 地质学报, 89(7): 1210-1218. DOI:10.3969/j.issn.0001-5717.2015.07.005 |
郑荣国, 吴泰然, 肖文交, 孟庆鹏, 张文. 2016. 北山北部双井子复式岩体年代学、地球化学及其大地构造意义. 地质学报, 90(11): 3153-3172
|