岩石学报  2021, Vol. 37 Issue (2): 513-529, doi: 10.18654/1000-0569/2021.02.11   PDF    
流体作用下石榴石溶解-沉淀蠕变过程——以红河-哀牢山剪切带内石榴夕线片麻岩研究为例
冀磊1,2, 刘福来2, 王舫2, 田忠华2     
1. 中国地质科学院, 北京 100037;
2. 自然资源部深地动力学重点实验室, 中国地质科学院地质研究所, 北京 100037
摘要: 石榴夕线片麻岩是中、下地壳主要组成岩石之一,岩石内石榴石和夕线石的结晶学优选方位会显著影响地壳深部流变性质,因此探讨特征变质矿物的变形机制和主要受控因素对构造带深部演化过程有深远意义。本文选取红河-哀牢山韧性剪切带内石榴夕线片麻岩为研究对象,通过定向切片内显微构造、电子探针、X-ray成分扫描、电子背散射衍射(EBSD)和相平衡模拟综合研究,揭示出石榴石在溶解沉淀反应过程中具有明显的粒度敏感性,不同粒径石榴石表现出截然不同的长宽比、成分环带、包裹体排列方式和压力影发育情况。石榴石表面流体活动明显截切早期生长环带。EBSD分析揭示石榴石破碎颗粒以绕〈112〉轴机械旋转为主,溶解过程主要集中于颗粒表面和裂隙内高曲率位置。夕线石的EBSD结果表明基质内夕线石以绕〈010〉轴旋转为主,而流体作用明显区域夕线石则以(100)[001]滑移为主。岩石相平衡模拟限定岩石变质峰期P-T条件达高压麻粒岩相,退变过程中同剪切变形导致大量流体渗入而形成降温降压退变轨迹,由~9.5kbar、760℃演化至~6.0kbar、500~600℃,并在粗粒石榴石内保存早期进变质环带,剪切抬升过程中石榴石内普遍发育垂直剪切方向的裂隙,并在流体作用下进一步改造其形态。此研究揭示红河-哀牢山剪切带内除前人报道的石榴石高温韧性变形外,还存在大量中-上地壳层次同变质反应下的溶解-沉淀蠕变作用。因此,石榴石变质-变形的综合研究有助于揭示变质杂岩带挤压-剪切-伸展多阶段构造演化过程。
关键词: 红河-哀牢山    剪切带    石榴石    溶解-沉淀蠕变    
Fluid-assisted dissolution-precipitation creep of garnet: An example from garnet-sillimanite gneiss in the Red River-Ailao Shan shear zone
JI Lei1,2, LIU FuLai2, WANG Fang2, TIAN ZhongHua2     
1. Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: Garnet-sillimanite gneiss is one of dominate rock types in middle-lower crust and the crystallographic preferred orientation (CPO) of garnet and sillimanite will significantly affect the rheology features in deep site of tectonic zone. Focus on garnet and sillimanite in paragneiss from the Red River-Ailao Shan shear zone, we exhibit detailed petrographic observation, microstructures, X-ray mapping, electron microprobe analysis and electron back scattered diffraction techniques (EBSD) investigation in this study. Our data demonstrated that the deformation of garnet show evident grain-size sensitive and was controlled by local fluid flux. Different grain size porphyroblast exhibit distinct aspect ratios, compositional zoning pattern, inclusions arrangement and pressure shadow styles. Moreover, along the long borders of garnet, part of the growth zoning is truncated by synkinematic fluid activity on the grains surface. EBSD result reveals that the deformation of garnet mainly by subgrains rotation around < 112> axis. The prismatic sillimanite in matrix show grain rotation around < 010> axis, while those sillimanite in strong fluid flux area display the (001)[100] slip systems. Phase equlibria simulation demonstrate the garnet-sillimanite gneiss experienced high-pressure granulite facies metamorphism and followed by a decompression-cooling trajectory due to huge amount fluid infiltrate during synkinematic exhumation and the P-T condition from ~9.5kbar, 760℃ turn to ~6.0kbar, 500~600℃. The fast cooling/exhumation rate also let the coarse garnets preserved prograde growth zoning pattern. In the latest extension stage fluid along permeable cleavage reformed the shape of garnet grains. Our study also demonstrated that, in the Red River-Ailao Shan shear zone, apart from high temperature dislocation deformation in early pure-shear stage, abundant garnets show simultaneous reaction dissolution-precipitation creep at middle-upper crust site. Consequently, combine with deformation and metamorphic study of garnet is crucial to reveal the compressive-strike slip-stretching evolution history of metamorphic complex.
Key words: Red River-Ailao Shan    Shear zone    Garnet    Dissolution-precipitation creep    

石榴石是中-下地壳角闪岩相-麻粒岩相变质过程中最重要的特征变质矿物之一,其内部成分变化携带有岩石物理、化学条件演变的重要信息,是反演变质地体P-T-t轨迹的重要研究对象(Spear et al., 1984; Hickmott et al., 1987; Chamberlain and Conrad, 1991),而石榴石与夕线石的显微变形特征亦会对地壳深部流变学性质产生显著影响(Ji and Martignole, 1994; Kleinschrodt and Duyster, 2002; Mainprice et al., 2004; Voegelé et al., 1998; 徐树桐等, 1999)进而影响深部地震波各向异性(Ji et al., 2003; 刘祥文等, 2005)。因此,石榴石不但是地球深部热动力学过程的忠实记录者亦是连接岩石变质与变形过程的重要桥梁(Prior et al., 2000; Storey and Prior, 2005)。然而,由于石榴石等轴晶系全消光性质及其高对称性导致的滑移系数量较多,使其与其它造岩矿物(如:石英、长石、角闪石、辉石、橄榄石等)相比内部变形特征与变形机制研究相对较少。另外,对于具有明显形态优选方位的石榴石的变形机制亦长期存在高温位错蠕变(Ji and Martignole, 1994; Prior et al., 2000; 刘祥文等, 2005)、各向异性生长(Blackburn and Dennen, 1968)与低温低应力不一致溶解-沉淀(扩散/压溶)蠕变(Azor et al., 1997; Wassmann and Stöckhert, 2013a; Wintsch and Yi, 2002)的不同认识。因此深入研究中-下地壳石榴石夕线片麻岩内主要矿物的变形机制是研究构造剪切带动力学的基础。

对于定向明显的扁圆状石榴石,其中高温韧性变形发育的岩石类型主要为麻粒岩相变质的长英质片麻岩(Ji and Martignole, 1994; Kleinschrodt and Duyster, 2002)和陆壳榴辉岩(Ji et al., 2003),而溶解-沉淀蠕变集中在含水矿物相对丰富的岩石内,如低温高压变质带内的蓝片岩和洋壳榴辉岩(Wassmann et al., 2011; Wassmann and Stöckhert, 2012, 2013a, b)。总体上对于陆内韧性剪切带内具有明显形状优选的石榴石研究相对较少。以红河-哀牢山韧性剪切带为例,在构造带的热演化历史上一个长期争论的焦点在于:(1)剪切生热作用导致地壳岩石深变质发生部分熔融形成大量深熔脉体(Leloup et al., 1995, 2001; Gilley et al., 2003)或是(2)剪切活动发育于变质演化晚期的冷却降温阶段,并叠加改造了早期变质记录(Searle, 2006; Searle et al., 2010; Yeh et al., 2014)。对于上述争论,剪切带内多体系多种类矿物定年研究虽能给出定年矿物的冷却历史但大多具有同剪切阶段的年龄范围(Liu et al., 2015; Chen et al., 2015),并不能全面反映构造带的演化过程,最有效的解决途径是显微构造、岩石组构、矿物成分变化、相平衡模拟分析的综合研究(Liu et al., 2012)。因此,本文通过红河-哀牢山剪切带内石榴夕线片麻岩内石榴石、夕线石和石英的电子背散射衍射分析,薄片尺度和变斑晶尺度的成分面扫描分析与电子探针结果,并应用相平衡模拟方法对岩石所记录的变质-变形方面进行研究,以期对红河-哀牢山剪切带的构造演化进行成因矿物学和显微构造方面的限定。

1 地质背景

红河-哀牢山韧性剪切带呈北西-南东向展布于青藏高原东南缘,自青藏高原东构造结至红河北部湾出海口,延展>1200km(Liu et al., 2012; Searle et al., 2010),宽约20~50km,呈北窄南宽的扫帚状。构造上作为新生代印度-亚欧板块碰撞印支地体向东南逃逸的东侧边界(图 1a),是重要的物质与能量调节通道(Tapponnier et al., 1990)。带内由西北向东南依次发育有雪龙山、点苍山、哀牢山和大象山变质杂岩(Leloup et al., 1995; Gilley et al., 2003)。哀牢山变质杂岩带作为红河-哀牢山剪切带内出露面积最大构造单元,以哀牢山断裂为界分为东北侧的深变质带和西南侧的浅变质带两个次级单元(图 1b)。

图 1 青藏高原东南缘构造简图及哀牢山变质杂岩带位置(a)和哀牢山变质杂岩带地质简图(b, 据Liu et al., 2012)及采样位置 Fig. 1 Tectonic location of Ailao Shan metamorphic complex on southeastern Tibetan Plateau (a) and simplified geological map of Ailao Shan metamorphic complex (b, modified after Liu et al., 2012)

浅变质带主要为地层层序保存相对较好的古生代沉积岩及构造侵位的蛇绿岩,后者一般认为属古特提斯洋向西俯冲过程中洋壳残余(Jian et al., 2009; Wang et al., 2014)。对于哀牢山深变质带,目前利用锆石U-Pb法获得最老成岩年龄为新元古代,主要来自带内花岗质片麻岩和斜长角闪岩(Cai et al., 2014, 2015; Chen et al., 2017; Wang et al., 2016b; 冀磊等, 2017),指示哀牢山深变质带为华南陆块西缘攀西-汉南陆缘岩浆弧一部分(Wang et al., 2016b),带内变沉积岩石组合在垂直区域构造线的北东-南西方向剖面上呈现明显规律性,以元江清水河剖面为例,靠近红河断裂部位主要由石榴夕线片麻岩、石榴斜长角闪岩、透辉石大理岩、钙镁硅酸盐岩和含电气石/石榴石的深熔脉体组成(Searle et al., 2010; Liu et al., 2012),部分弱变形的含蓝晶石的变沉积岩变质程度可达高压麻粒岩相(Ji et al., 2020)。哀牢山断裂附近则以产出巴罗式变质带为特征,岩性主要有:绿泥石片岩、二云母片岩、石榴十字云母片岩、蓝晶石十字石云母片岩、石榴夕线云母片岩为主(Wang et al., 2016a),局部产出含辉石角闪岩脉或透镜体,变质程度较红河断裂附近明显更低,不同变质程度的岩性单元以断层或韧性剪切带相接触。

上述变沉积岩内碎屑锆石的最小年龄峰值多为早古生代(Ji et al., 2019),指示哀牢山杂岩带内变沉积岩为扬子西南缘古特提斯时期沉积记录,锆石变质增生边可获得印支期和新生代两期变质年龄(Liu et al., 2013; Wang et al., 2016a; Ji et al., 2020),其中印支期变质程度亦可达高压麻粒岩相(Liu et al., 2013)。新生代渐新世-早中新世哀牢山经历强烈折返抬升过程,带内深熔脉体内深熔锆石结晶年龄以及花岗质片麻岩/糜棱岩、斜长角闪岩、黑云斜长片麻岩、二云母片麻岩内大量角闪石、黑云母、白云母Ar-Ar定年揭示哀牢山深变质带冷却时间主要介于30~20Ma (Harrison et al., 1992; Chen et al., 2015; Liu et al., 2013, 2015)。由于强烈剪切活动,红河-哀牢山始新世构造-变质痕迹被大量叠加改造仅有零星残留矿物和锆石年龄记录(Liu et al., 2013; Ji et al., 2019)。

2 分析方法

首先根据标本结构构造磨制垂直面理平行线理方向(XZ面)上的定向探针片。喷碳处理后进行背散射(BSE)显微结构特征观察及单颗粒石榴石成分扫描,此工作于中国地质科学院地质研究所进行,采用蔡司ultra plus场发射扫描电镜观察显微结构特征,工作电压为15kV,电流为250μA,焦距8~10mm。采用英国牛津公司生产50mm2能谱仪对石榴石内部包裹体及基质内部矿物进行半定量测试,并运用英国牛津公司的INCA软件包进行数据处理(版本4.4)。单颗粒石榴石X-ray成分面扫描分析的工作电压为20kV,单点处理时间为2秒,扫描时间为25.5小时。薄片尺度的主量元素面扫描工作于中国钢铁研究院M4 Tornado Micro-XRF上进行,实验加速电压为50kV,电流为600μA,束斑大小为20μm,点分析时间为3秒,并应用ESPRIT软件(版本1.5)进行图像处理。

矿物成分定量测试与石榴石EBSD分析均在中国地质科学院地质研究所自然资源部大陆动力学重点实验室进行,其中电子探针分析应用日本电子株式会社JEOL生产的JXA-8100型号探针,实验条件为电压15kV,束斑大小为2~5μm,每点测试时长为3分钟,所有元素均采用Kα射线探测。夕线石和石英应用丹麦HKL公司CHANNEL5软件进行处理获得的EBSD数据。石榴石EBSD分析在安装有5轴马达台的FEI Quanta 450场发射扫描电镜上进行,EBSD探测器为牛津仪器公司生产的Oxford Nordlys F+,实验在低真空、不喷镀、加速电压为5kV,工作束流100pA,薄片倾斜角度为70°条件下进行。探头伸入距离为164.5mm,工作距离为16.9mm。数据应用Aztec 3.0软件进行分析,文中单颗粒石榴石取向差是应用软件中Large AreaMapping模块进行连续分析20张微区进行拼接构图,其中分析步长为1.3μm,测试时长为30小时,并应用CHANNEL5和AztecCrystal软件共同进行数据处理。

文中矿物符号均采用Whitney and Evans (2010)版本:Grt-石榴石;Sil-夕线石;Bt-黑云母;Kfs-钾长石;Pl-斜长石;Qz-石英;Ms-白云母;Ilm-钛铁矿;Py-黄铁矿;Mnz-独居石。

3 岩相学特征

石榴夕线片麻岩(样品15G47)采自漠沙镇瓦窑村西南约300m处的137乡道旁。野外岩石面理产状主要为65°∠60°和230°∠23°两个方向,线理产状则集中为155°/25°(图 2a)。岩石主要矿物为石榴石、夕线石、黑云母、石英、钾长石、斜长石,次要矿物为蓝晶石、白云母、绿泥石、独居石、锆石、钛铁矿、黄铁矿、磷灰石。岩石中线理主要由夕线石、钾长石和黑云母构成。其中根据产出形式与伴生矿物黑云母明显可分为:包裹于石榴石内,基质内与夕线石紧密共生它形颗粒和石榴石压力影处较自形颗粒三种类型。石榴石粒径约0.5~4.0mm(图 2b),少数可达1cm以上。垂直面理平行线理的定向切片上(图 2c),石榴石长宽比大多介于1:1~5:1,部分可达8:1,石榴石长轴两端多发育由黑云母或钾长石组成的不对称压力影。大颗粒石榴石长宽比一般较小,且多发育明显的净边结构,核部包裹体以石英、斜长石和夕线石为主偶见蓝晶石。部分石英包裹体定向排列记录早期构造线理,薄片内发育明显的S-C-C′组构。根据整个薄片尺度观察,大颗粒石榴石内包裹体的排列与线理方向呈20°~40°夹角(图 2c)。垂直线理方向的石榴石内部发育一组或多组裂隙,其中充填矿物多为白云母,薄片内部分白云母细脉不但贯穿石榴石裂隙亦沿夕线石(001)解理方向切穿柱面。细粒石榴石退变明显,其内部包裹体以石英、黑云母和夕线石为主,且夕线石大多未受到剪切作用改造,细粒化不明显,夕线石包裹体长轴方向与线理平行(图 2d-g)。基质内夕线石与黑云母、钾长石紧密共生,多呈竹节状、棱柱状晶形。

图 2 石榴夕线片麻岩野外产状及垂直面理平行线理方向(XZ面)石榴石变形特征 (a)石榴夕线片麻岩野外照片,(b、c)岩石XZ面显微构造特征,(d-g)石榴石内包裹体形态与产状 Fig. 2 Field occurrence of garnet-sillimanite gneiss and garnet deformation features in the plane that perpendicular to foliation and parallel lineation (XZ plane) (a) field picture of garnet-sillimanite gneiss; (b, c) microstructures in XZ plane; (d-g) the shape and occurrence of inclusions in garnet

岩石内长石以钾长石为主(图 3a),斜长石含量小于10%,且长石含量明显大于石英。石榴石不对称压力影的发育常与白云母脉有关,白云母产出的一侧石榴石分解明显(图 3b-d)。另外,值得注意的是石榴石与基质接触位置常发育磁铁矿细脉(图 3b-f),当石榴石粒度较细时,这些铁质物质仅限于石榴石表面,形成极窄的薄膜(图 3d, e),而粗粒石榴石表面脉宽可达50μm,且脉体在石榴石表面处较基质内明显更宽(图 3f)。这些铁质脉体常近平行线理发育,石榴石内部裂隙未见产出。

图 3 石榴夕线片麻岩内不同粒径石榴石变形特征 (a)近等轴石榴石发育垂直线理方向裂隙;(b、c)位于两颗粗粒石榴石之间的,退变更为明显,A-B为电子探针剖面位置;(d)石榴石变斑晶左侧发育黑云母压力影,右侧被白云母脉截切;(e)强变形石榴石发育双侧压力影;(f)流体通道“截切”石榴石至包裹体发育处;(g)石榴石发育强烈的裂理,裂隙内部充填白云母. 蓝框为夕线石和石英EBSD分析范围 Fig. 3 Deformation characters of different grain size garnets in garnet-sillimanite gneiss (a) microfractures perpendicular to lineation in subcircular garnet; (b, c) the garnet between two coarse grains show distinct retrogression and the red line A-B is the location of EPMA profile; (d) the left side of garnet developed biotite pressure shadow and the right part was truncated by muscovite vine; (e) symmetrical press shadow developed on both side of strongly elongated garnet; (f) fluid channel truncated the garnet porphyroblast; (g) muscovite filled fractures in garnet. The blue boxes are EBSD analysis domains of sillimanite and quartz
4 矿物化学 4.1 石榴石

薄片尺度X-ray成分扫描发现大多数石榴石受后期扩散影响成分趋向均一化,无明显成分变化(图 4),仅少数粒度较大(> 2mm),变形较弱的石榴石保留进变质生长环带,表现为由核部向边部Mn、Ca及Fe#值(100×Fe/[Fe+Mg])降低,Mg、Fe升高特征,短轴方向石榴石生长环带被明显截切,垂直线理方向裂隙的发育虽未破坏生长环带(图 5),但会明显改变矿物周边及内部的流体流通特征,特别是当颗粒内发育一到两处主干裂隙(> 50μm)并充填有含水矿物时,即使变斑晶粒径大于3mm,矿物内部仅保留扩散速率较慢的Ca成分变化环带,Mg、Fe元素与其相邻的黑云母发生明显的离子交换,边缘100~200μm位置具有反吸收环带特征,表现为Mg降低、Fe、Mn和Fe#值升高(图 6)。整体上片麻岩内石榴石各端元组分含量具有较大变化范围,其中铁铝榴石为55mol%~79mol%,镁铝榴石为5mol%~23mol%,锰铝榴石为2mol%~13mol%,钙铝榴石为4mol%~22mol%,Fe#值为77~89。但与黑云母接触的石榴石边缘位置除镁铝榴石成分稍有变化外(表 1),其他端元组分变化较小。

图 4 石榴夕线片麻岩平行线理垂直面理切面(XZ面)方向主量元素X-ray面扫描图 Fig. 4 Major elements compositional mapping on XZ section (parallel to the stretching lineation and perpendicular to the foliation) of garnet-sillimanite geneiss

图 5 石榴夕线片麻岩内石榴石典型生长环带与电子探针剖面 Fig. 5 Growth zoning pattern and EPMA profile of garnet in garnet-sillimanite gneiss

图 6 哀牢山变质杂岩带石榴夕线片麻岩内石榴石重吸收环带 Fig. 6 Reabsorption zoning pattern of garnet in garnet-sillimanite gneiss from Ailao Shan metamorphic complex

表 1 哀牢山漠沙地区石榴夕线片麻岩内代表性石榴石和斜长石电子探针成分(wt%) Table 1 Representative garnet and plagioclase electron microprobe analysis (wt%) in garnet-sillimanite gneiss from Ailao Shan metamorphic complex, Mosha area
4.2 斜长石与黑云母

片麻岩内斜长石属于更长石和中长石,其钙长石端元组分(An值)在28~43之间(表 1)。且包裹于石榴石内的斜长石An值较基质内更低。而根据黑云母产出位置可分为:基质内、石榴石包裹体、石榴石压力影三种,三类黑云母的Mg#值变化无明显规律,但TiO2含量具有差别明显(表 2),其中基质黑云母TiO2含量为2.90%~3.49%,单位晶胞内Ti离子数为0.17~0.20,石榴石内被包裹的黑云母TiO2含量为3.28%~3.71%,单位晶胞内Ti离子数为0.19~0.21,石榴石压力影位置黑云母TiO2含量为1.66%~2.38%,单位晶胞内Ti离子数为0.10~0.14。依据岩相学及矿物化学特征,可将石榴石幔部及被包裹体黑云母、蓝晶石、基质内大颗粒黑云母核部、钾长石划分为峰期矿物组合,将石榴石边部、石榴石压力影处黑云母、斜长石归为同剪切变形退变过程矿物组合,而沿石榴石裂隙分布的白云母与绿泥石则为晚期降温时期矿物组合。

表 2 哀牢山漠沙地区石榴夕线片麻岩内代表性黑云母石电子探针成分(wt%) Table 2 Representative biotite electron microprobe analysis (wt%) in garnet-sillimanite gneiss from Ailao Shan metamorphic complex, Mosha area
5 EBSD组构分析

本文重点对石榴石变斑晶及基质内夕线石和石英进行了EBSD分析(图 7图 8图 9)。其中,石榴石为一侧被白云母脉明显改造,另一侧发育黑云母压力影的颗粒(图 3d图 8h)。石榴石形态图揭示靠近压力影一端石榴石大部分保持原先单一晶体状态,但裂隙在颗粒边部和内部分割出多个独立且细小的颗粒(图 7),在石榴石表面、裂隙内部及颗粒内部包裹体边缘处亦存在许多极为细小的颗粒。与压力影发育一侧不同,晚期垂直线理方向裂隙改造明显区域破碎颗粒的粒度相对较大(图 7)。晶体取向图亦揭示流体发育区域颗粒表现出微弱的旋转(图 8a-c),而压力影沉淀区域则无明显晶格优选(图 8d),沿线理方向的晶体取向差剖面揭示颗粒间取向差小于5°,靠近黑云母压力影区域取向差小于3°(图 8e-g)。石榴石极图与反极图分析首先依据三维空间上多点晶胞参数和石榴石{100}极密确立石榴石的空间方位,并将石榴石的所有{111}、{110}、{112}的等效轴在极图上进行标定(图 9a)。研究揭示颗粒左侧受后期白云母脉体改造分解部分和内部被裂隙包围的孤岛状小颗粒石榴石的〈11-1〉轴近平行线理方向,而残留大颗粒则〈43-3〉轴与线理方向平行。垂直线理方向以〈-110〉轴为主,少数为〈-340〉。反极图及{112}面极图揭示原石榴石裂隙化离散出的所有粒径石榴石始终是以〈112〉轴与Y轴方向平行(图 9a)。因而流体活动过程中石榴石内部裂隙分割出的细小颗粒及石榴石附近基质内更为细小的石榴石变形主要是绕〈112〉轴发生微弱旋转。

图 7 变形后残留石榴石及沿裂隙破裂和流体通道内微量石榴石形态 由冷色向暖色石榴石颗粒长宽比增加 Fig. 7 The grains shape of relic garnet after deformation and garnet in fractures and fluid channels The aspect ratio of garnet increase from cooling color to warm color

图 8 单颗粒石榴石取向差(a-d)红十字为参照点,取向差剖面(e-g)及EBSD扫描区域(h) Fig. 8 Texture component map of single garnet grain (a-d) from the reference point marked by red cross, misorientation profile (e-g) and the EBSD scanning area in BSE image (h)

图 9 石榴夕线片麻岩内石榴石(a)、夕线石(b、c)和石英(d-e)组构图 Fig. 9 Pole figures of garnet (a), sillimanite (b, c) and quartz (d-e) in garnet-sillimanite gneiss

另外,本文分别对基质内竹节状夕线石和石榴石强退变区(图 3b)细小夕线石及对应区域的石英进行了组构分析,两处不同产出位置的夕线石和石英表现出明显不同的组构信息,其中基质内靠近石榴石表面(图 3a)竹节状夕线石表现为〈100〉轴靠近Z轴极密。石榴石强退变区域夕线石主要为表现为〈001〉轴平行X轴极密。基质内石英C轴组构变形为靠近Y轴极密叠加X轴与Z轴之间次极密(图 9d)。石榴石强退变区域石英表现为靠近Z轴极密,(图 9e)。由于XZ切面内观察到的夕线石主要为(010)和(100)切面,因此EBSD石英〈c〉与夕线石〈a〉轴极图皆指示左行剪切的运动方式(图 9b-e)。

6 相平衡模拟

在Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-O2体系下对漠沙地区石榴石夕线片麻岩应用GeoPS软件(Xiang, 2020)进行相平衡模拟。所用岩石成分摩尔百分比为:Na2O:0.57,CaO:0.28,K2O:2.88,FeO:7.14,MgO:3.65,Al2O3:9.23,SiO2:69.24,H2O:6.61,TiO2:0.63,O2:0.05,此全岩成分曾用于岩石风化指数分析(Ji et al., 2019)。矿物活动模型采用目前泥质岩应用最广的P62版本(Holland and Powell, 2011; White et al., 2014)。P-T视剖面图研究揭示,粗粒石榴石保留的进变质环带记录岩石自400℃、4.0kbar经历白云母脱水和黑云母脱水分解,升温升压过程。石榴石内部残留的蓝晶石包裹体(图 10),基质内黑云母的Ti等值线及石榴石内幔部最高镁铝榴石与最低钙铝榴石等值线交点,皆指示岩石峰期变质条件至少为10.5kbar、820℃,达到高压麻粒岩相,但由于岩石峰期熔体成分的部分丢失,石榴石生长环带各端元成分交点并未能形成连贯的进变质轨迹。虽然峰期矿物组合(Grt+Bt+Ky+Kfs)大多退变,矿物成分受剪切构造影响亦发生调整,但不同产出位置的黑云母Ti含量保留了多阶段岩石演化特征。而位于石榴石压力影位置的黑云母Ti等值线和与其接触的石榴石边缘镁铝榴石等值线很好的记录了岩石内黑云母发生滑动反应,并于固相线下形成白云母退变轨迹,即岩石从9.5kbar、760℃退变到6.0kbar、500~600℃。而石榴石摩尔等值线揭示石榴石含量降低变化主要发生在早期退变阶段(Grt-Bt-Sil-Kfs-Qz-Ms-Ilm-Melt域内),当岩石内钾长石大量固结后(< 730℃)石榴石含量基本不变,退变轨迹基本平行于石榴石摩尔等值线。

图 10 哀牢山变质杂岩带漠沙地区石榴石夕线片麻岩相平衡模拟P-T视剖面图 Fig. 10 P-T pseudosection of garnet-sillimanite gneiss from Ailao Shan metamorphic complex, Mosha area
7 讨论 7.1 溶解沉淀蠕变

溶解沉淀蠕变是中地壳变质流体参与下的一种重要的变形机制(Wintsch and Yi, 2002),这种变形机制可广泛发育于深部折返的无水矿物或退变新生的含水矿物中,如石榴石(Azor et al., 1997; Kim, 2006)、夕线石(Leslie et al., 2015)、石英(McPherren and Kuiper, 2013),长石(Brander et al., 2012)、角闪石(Giuntoli et al., 2018; Stokes et al., 2012)等,溶解-沉淀变形涉及榴辉岩相-绿片岩相(McAleer et al., 2017)较广的温压范围,一般认为是由差应力驱动的颗粒表面的化学再平衡过程(Bon and den Brok, 2000; Altree-Williams et al., 2015),因此受颗粒粒径大小和矿物表面流体环境影响极大。矿物间不均匀的相互运动或矿物边界塑性蠕变形成空穴,进而产生压力梯度促使流体排除和纳入从而控制物质迁移(Fusseis et al., 2009; Précigout et al., 2017)。剪切活动中的强应变区亦是流体集中区,当变质反应中反应物具有较大的启动垒值(overstep)时,矿物颗粒表面在应力作用下表现为细粒化和重结晶成核且不产生新矿物,细粒化致使反应物颗粒表面积增大,反应物垒值降低从而形成新矿物(Marti et al., 2018),因此矿物蠕变过程常与流体作用下的溶解-沉淀反应相伴随。

Ji and Martignole (1996)提出鉴定溶解-沉淀蠕变的四条标准:(1)石榴石在扩张位置局部生长,如压力影、空隙、细脉和布丁间隙处;(2)锯齿状、缝合线状的颗粒接触边界;(3)斑晶溶解表面相对富集难容物质;(4)自形斑晶被截切。根据详细的岩相学观察,本文认为漠沙地区石榴夕线片麻岩内石榴石完全符合上述溶解-沉淀蠕变的鉴定标准,且至少存在Grt+Kfs+H2O/Melt→Sil+Bt+Mag及Kfs+Sil+H2O→Ms+Qz两期不同方向的溶解-沉淀过程。另外,在溶解-沉淀蠕变过程中石榴石表现出明显的粒度敏感性和局部流体控制,即不同粒径的石榴石表现出截然不同的长宽比、压力影、成分变化、退变程度和内部包裹体排列方式。其中粗粒石榴石早期进变质生长于富云母的片岩中,挤压过程对其变形影响较小,容易形成自形变斑晶,内部包裹体偶尔可见蓝晶石,部分颗粒发育早期高温剪切形成的钾长石压力影(图 3a, b),剪切过程中斑晶表面流体活动致使石榴石平行应力方向成分被溶解,并直接截切出粗粒变斑晶原核部包裹体,后期伸展对其影响相对较小(图 11a-c)。中粒石榴石成核温度相对较高,剪切隆升晚期垂直剪切方向伸展形成大量的裂隙和流体通道,在同构造退变反应作用下强烈改造石榴石单侧形态,并在颗粒边缘和裂隙内形成机械破裂(图 11d-f)。细粒石榴石内部平行线理方向夕线石指示其同剪切生长过程,与粗粒石榴石相比内部包裹体相对较少,且形态优选方位和退变最为明显,扁度较大颗粒表面流体扰动较小,含水矿物可在斑晶两端形成压力影(图 11g-i)。

图 11 石榴夕线片麻岩内不同粒径石榴石溶解-沉淀蠕变模式图 Fig. 11 Schematic cartoon illustrating different grain size garnet dissolution-precipitation creep in garnet-sillimanite gneiss
7.2 矿物组构分析

目前对红河-哀牢山韧性剪切带内矿物组构分析主要集中于对石英、角闪石、斜长石,而石榴石和夕线石的组构分析相对较少,且石榴石仅在越南大象山杂岩带内有相关报道(Liu et al., 2012)。Leloup et al. (1995)在哀牢山变质杂岩带识别出四种石英c轴组构:(1)单一Y轴极密;(2)靠近Y轴极密;(3)XZ面极密;(4)交叉极密。Liu et al. (2012)对红河-哀牢山剪切带内点苍山、哀牢山及越南大象山内花岗质岩石和变沉积岩进行了细致的EBSD组构研究。揭示出石英内部多种复杂的组构叠加样式,并在大象山变质杂岩带变沉积岩的石榴石和夕线石内获得早期高温(> 600℃)纯剪样式。漠沙地区石榴夕线片麻岩内石英c轴组构表现为红河-哀牢山剪切带变沉积岩内最为常见的两种形式(Chen et al., 2016; Leloup et al., 1995; Liu et al., 2012; 王浩博等, 2019; 吴文彬, 2012; Wu et al., 2017; 翟云峰, 2008),皆指示岩石内熔体大量结晶后的亚固相线下的岩石变形过程,其中基质中石英以靠近Y轴的极密为主,并叠加XZ面次级极密为特征,指示基质内石英保留中高温(650~500℃)柱面〈a〉滑移,并叠加晚期低温(450~300℃)底面〈a〉滑移。而石榴石蚀变区域细粒石英的变形结果以低温靠近Z轴极密,指示其滑移系主要为低温底面〈a〉滑移(Stipp et al., 2002; Passchier and Trouw, 2005; Law, 2014)。值得指出的是在哀牢山杂岩带漠沙剖面(Leloup et al., 1995)和靠近哀牢山断裂花岗质超糜棱岩内(Liu et al., 2012)皆有高温(> 650℃)柱面〈c〉滑移的靠近X轴极密报道。目前虽然已有部分学者对更高温度(> 800℃)条件下石英EBSD组构进行研究,但分析样品大多是在缺乏含水矿物的长英质麻粒岩和富铝质超高温麻粒岩内进行(Faleiros et al., 2016),然而岩石由麻粒岩相向角闪岩相过渡过程中会经历强烈水化变形,流变学特征亦发生截然变化,高温石英组构常容易恢复。因此石榴石与夕线石的变形行为研究可弥补石英在固相线之上的缺乏对应滑移系的不足。

研究表明在缺白云母的泥质片麻岩内夕线石是主要的塑性相(Musumeci, 2002; Leslie et al., 2015)。不同产出状态的夕线石可以表现出不同的变形机制(Leslie et al., 2015)。夕线石内存在的滑移系主要有(010)[100]、(100)[010]、(100)[001]、(001)[100]和(010)[001](Doukhan and Christie, 1982; Doukhan et al., 1985; Lambregts and van Roermund, 1990; Goergen et al., 2008)。王浩博等(2019)对哀牢山南段石榴夕线二长片麻岩内夕线石组构进行了初步分析,发现夕线石主要滑移系为(010)[001]。本文采自哀牢山北段漠沙地区的片麻岩内夕线石EBSD组构分析揭示岩石早期退变形成的基质内竹节状夕线石主要以绕〈010〉旋转的方式重结晶。而位于粗粒石榴石之间,剪切过程流体通量显著增加的强退变区,细粒夕线石主要发育(001)[100]滑移系。

石榴石作为广泛存在于中、下地壳和上地幔的矿物,其变形机制的研究尤为重要也极为复杂,作为高对称性和具有66组潜在滑移系的晶体,一般不需要通过晶格旋转就可以使位错有效恢复,这也是为什么石榴石可以发育显著的定向扁长状形态,却不具有晶格优选方位的原因(Mainprice et al., 2004)。因为在变形过程中一个拥有5个或5个以上独立滑移系的晶体,可能发生明显形状的变化,但是晶格却可以几乎不发生旋转(Ji et al., 2003),另外高温塑性位错滑移与低温溶解-沉淀蠕变皆可导致石榴石产生晶格优选(Ji and Martignole, 1994; Bons and Brok, 2000; Ji et al., 2003)也增加了石榴石变形机制的不确定性。例如同样是榴辉岩相变质样品:Terry and Heidelbach (2004)研究了挪威西部哈拉姆地区榴辉岩内同构造生长的细粒石榴石,认为颗粒边界迁移是岩石糜棱岩化过程中石榴石的主要变形方式。章军峰等(2005)Wassmann and Stöckhert, (2013a)对榴辉岩相云母片岩中变形石榴石研究发现溶解-沉淀蠕变是低温状态下起主导作用的变形机制,并且变形过程伴随退变质反应。因此单从是否具有晶格或形态优选不能判定石榴石的变形机制,还需要结合详细的岩相学观察和矿物化学分析,特别是变质反应过程中流体运移对颗粒边界和表面的改造(Prior et al., 2002; Mainprice et al., 2004)。对于石榴石位错变形的支持证据主要来自于透射电镜观察到的大量自由位错、位错环、位错网和位错墙,然而在几乎所有的石榴石TEM观察中无论其变质条件为榴辉岩相还是角闪岩相似乎皆可以发现位错(Ji and Martignole, 1994; 陈晶, 1996; 苏文等, 2001; Prior et al., 2000; 刘祥文等, 2005; 任升莲等, 2011),因此问题在于两种变形机制是否同时存在或流体作用下的溶解-沉淀过程是否遮盖了早期高温韧性变形记录(Ji and Martignole, 1994; den Brok and Kruhl, 1996; Prior et al., 2000; Storey and Prior, 2005; Wassmann and Stöckhert, 2013a, b)。低温条件下石榴石表现为脆性,晶体中微弱的韧性变形主要在裂隙附近发育(Mainprice et al., 2004)。这是由于溶解-沉淀反应过程中含水矿物结晶生长使得应力集中于石榴石裂隙开裂端将矿物斑晶逐渐撑开(Putnis, 2009),并导致与生成物接触的裂隙壁产生变形。

Liu et al. (2012)对大象山变质杂岩带内石榴石EBSD研究发现以〈110〉方向上Z轴极密为主要特征,通过和石榴石粘塑性自洽的数值模拟结果对比作者认为石榴石变形为高温(>700℃)纯剪切作用的结果。与之不同本文侧重研究伴随溶解-沉淀反应具有明显形态优选方位的单颗石榴石的变形过程,背散射观察获得同剪切和晚期伸展阶段流体作用下,石榴石沿颗粒边缘和裂隙发育机械破裂的岩相学特征,EBSD分析揭示其变形是以绕〈112〉轴发生微弱机械旋转为主。因此红河-哀牢山剪切带内石榴石存在多种变形机制,正确区分这些变质-变形过程对深入理解陆内巨型剪切带的演化历史至关重要。

7.3 大地构造意义

渐新世以来红河-哀牢山左行剪切活动强烈叠加改造了构造带内早期岩石,致使新生代早期构造-变质痕迹被大量抹去。在矿物化学成分上,石榴石大多具有同剪切期流体作用下重吸收的环带样式(Leloup and Kienast, 1993; Gilley et al., 2003),若以此成分限定构造带的热演化只能获得部分剪切活动阶段的温压条件。Wang et al. (2016a)首次在元阳地区靠近哀牢山断裂附近的石榴蓝晶石云母片岩内报道了石榴石生长环带,但并未进行年代学研究工作,因此不能排除印支期变质生长的可能。本文首次在红河断裂附近深变质岩石内获得石榴石的进变质生长环带及相应的组构分析,岩石峰期条件可达高压麻粒岩相,且这类矿物强烈定向的含蓝晶石石榴夕线片麻岩与之前变形较弱的同类岩石的近等温降压的退变轨迹具有明显差别(Ji et al., 2020),表现出明显的降温降压的P-T轨迹,快速的冷却过程可能与强剪切变形导致快速的抬升速率及大量流体渗入有关,这也是粗粒变斑晶能保留进变质环带的原因,另外,由于岩石内部锆石变质增生边大多较窄,仅获得一颗深熔锆石年龄为23.2±0.4Ma,这个年龄被认为是岩石退变穿越固相线时间(图 10)。因此综合本文研究结果认为红河-哀牢山左行走滑本身并未导致大量的剪切热使地壳熔融。相反,不均匀变形导致流体更易渗透,致使哀牢山杂岩带在剪切阶段以降温隆升为主。

8 结论

(1) 哀牢山变质杂岩带石榴石、夕线石和石英EBSD分析揭示矿物变形主要发生在中低温阶段(650~300℃),石榴石具有较弱的晶格优选定向,石榴石形态优选方位主要是受控于流体作用下的溶解-沉淀机制,而非高温韧性变形,石榴石变形过程具有明显的粒度敏感性并强烈受控于局部流体活动。基质内棱柱状夕线石变形主要是以绕〈010〉轴旋转为主,强蚀变区细小夕线石则发育(001)[100]滑移系。

(2) 与弱变形的含蓝晶石石榴夕线片麻岩的近等温降压P-T-t轨迹不同,强变形含蓝晶石石榴夕线片麻岩具有降温降压的变质轨迹,且岩石内粗粒石榴石保留进变质生长环带。石榴石压力影处新生黑云母与石榴石边部成分记录岩石于~9.5kbar、760℃演化至~6.0kbar、500~600℃的退变轨迹。

(3) 哀牢山变质杂岩带漠沙地区石榴石夕线片麻岩野外构造解析,岩石内石榴石成分环带、显微构造及变斑晶内部包裹体的排列样式皆表明红河-哀牢山韧性走滑剪切启动前印支陆块与华南陆块接触带经历了强烈的地壳挤压增厚过程。石榴石变质-变形综合研究揭示变质杂岩带挤压-剪切-伸展多阶段构造演化过程。

致谢      中国地质科学院地质研究所周桂生博士和梁风华副研究员在电子探针与电子背散射衍射实验过程中给予了帮助;北京大学张波老师和利物浦大学的John Wheeler教授在显微构造及矿物组构方面进行了交流和指导;两位审稿人提出许多宝贵的修改意见使文章得以进一步提升;在此一并表示诚挚的感谢!

参考文献
Altree-Williams A, Pring A, Ngothai Y and Brugger J. 2015. Textural and compositional complexities resulting from coupled dissolution-reprecipitation reactions in geomaterials. Earth-Science Reviews, 150: 628-651 DOI:10.1016/j.earscirev.2015.08.013
Azor A, Simancas JF, Exposito I, Lodeiro FG and Poyatos DJM. 1997. Deformation of garnets in a low-grade shear zone. Journal of Structural Geology, 19(9): 1137-1148 DOI:10.1016/S0191-8141(97)00040-0
Blackburn WH and Dennen WH. 1968. Flattened garnets in strongly foliated gneisses from the Grenville series of the Ganonoque Area, Ontario. American Mineralogist, 53(7-8): 1386-1393
Bons PD and den Brok B. 2000. Crystallographic preferred orientation development by dissolution-precipitation creep. Journal of Structural Geology, 22(11-12): 1713-1722 DOI:10.1016/S0191-8141(00)00075-4
Brander L, Svahnberg H and Piazolo S. 2012. Brittle-plastic deformation in initially dry rocks at fluid-present conditions: Transient behaviour of feldspar at mid-crustal levels. Contributions to Mineralogy and Petrology, 163(3): 403-425 DOI:10.1007/s00410-011-0677-5
Cai YF, Wang YJ, Cawood PA, Fan WM, Liu HC, Xing XW and Zhang YZ. 2014. Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite. Precambrian Research, 245: 13-28 DOI:10.1016/j.precamres.2014.01.009
Cai YF, Wang YJ, Cawood PA, Zhang YZ and Zhang AM. 2015. Neoproterozoic crustal growth of the southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone. Precambrian Research, 266: 137-149 DOI:10.1016/j.precamres.2015.05.008
Chamberlain CP and Conrad ME. 1991. Oxygen isotope zoning in garnet. Science, 254(5030): 403-406 DOI:10.1126/science.254.5030.403
Chen J. 1996. Plastic microcrack of garnet in metamorphic rock of eclogite facies. Acta Petrologica Sinica, 12(4): 589-593 (in Chinese with English abstract)
Chen XY, Liu JL, Tang Y, Song ZJ and Cao SY. 2015. Contrasting exhumation histories along a crustal-scale strike-slip fault zone: The Eocene to Miocene Ailao Shan-Red River shear zone in southeastern Tibet. Journal of Asian Earth Sciences, 114: 174-187 DOI:10.1016/j.jseaes.2015.05.020
Chen XY, Liu JL, Weng ST, Kong YL, Wu WB, Zhang LS and Li HY. 2016. Structural geometry and kinematics of the Ailao Shan shear zone: Insights from integrated structural, microstructural, and fabric studies of the Yao Shan complex, Yunnan, Southwest China. International Geology Review, 58(7): 849-873 DOI:10.1080/00206814.2015.1136572
Chen XY, Liu JL, Fan WK, Qi YC, Wang W, Chen JF and Burg JP. 2017. Neoproterozoic granitoids along the Ailao Shan-Red River belt: Zircon U-Pb geochronology, Hf isotope analysis and tectonic implications. Precambrian Research, 299: 244-263 DOI:10.1016/j.precamres.2017.06.024
den Brok B and Kruhl JH. 1996. Ductility of garnet as an indicator of extremely high temperature deformation: Discussion. Journal of Structural Geology, 18(11): 1369-1373 DOI:10.1016/S0191-8141(96)00064-8
Doukhan JC and Christie JM. 1982. Plastic deformation of sillimanite Al2SiO5 single crystals under confining pressure and TEM investigation of the induced defect structure. Bulletin de Minéralogie, 105: 583-589 DOI:10.3406/bulmi.1982.7638
Doukhan JC, Doukhan N, Koch PS and Christie JM. 1985. Transmission electron microscopy investigation of lattice defects in Al2SiO5 polymorphs and plasticity induced polymorphic transformations. Bulletin de Minéralogie, 108: 81-96 DOI:10.3406/bulmi.1985.7859
Faleiros FM, Moraes R, Pavan M and Campanha GAC. 2016. A new empirical calibration of the quartz c-axis fabric opening-angle deformation thermometer. Tectonophysics, 671: 173-182 DOI:10.1016/j.tecto.2016.01.014
Fusseis F, Regenauer-Lieb K, Liu J, Hough RM and De Carlo F. 2009. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature, 459(7249): 974-977 DOI:10.1038/nature08051
Gilley LD, Harrison TM, Leloup PH, Ryerson FJ, Lovera OM and Wang JH. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108(B2): 2127 DOI:10.1029/2001JB001726
Giuntoli F, Menegon L and Warren CJ. 2018. Replacement reactions and deformation by dissolution and precipitation processes in amphibolites. Journal of Metamorphic Geology, 36(9): 1263-1286 DOI:10.1111/jmg.12445
Goergen ET, Whitney DL, Zimmerman ME and Hiraga T. 2008. Deformation-induced polymorphic transformation: Experimental deformation of kyanite, andalusite, and sillimanite. Tectonophysics, 454(1-4): 23-35 DOI:10.1016/j.tecto.2008.03.010
Harrison TM, Copeland P, Kidd WSF and Yin A. 1992. Raising Tibet. Science, 255(5052): 1663-1670 DOI:10.1126/science.255.5052.1663
Hickmott DD, Shimizu N, Spear FS and Selverstone J. 1987. Trace-element zoning in a metamorphic garnet. Geology, 15(6): 573-576 DOI:10.1130/0091-7613(1987)15<573:TZIAMG>2.0.CO;2
Holland TJB and Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333-383 DOI:10.1111/j.1525-1314.2010.00923.x
Ji L, Liu FL and Wang F. 2017. Multiple granitic magma events in north-middle segment of Diancang Shan-Ailao Shan complex zone: Implications for tectonic evolution. Acta Petrologica Sinica, 33(9): 2957-2974 (in Chinese with English abstract)
Ji L, Liu FL, Wang F and Tian ZH. 2019. Depositional age, provenance characteristics and tectonic setting of the Ailaoshan Group in the southwestern South China Block. Acta Geologica Sinica, 93(6): 1687-1710 DOI:10.1111/1755-6724.14283
Ji L, Liu FL, Wang F, Santosh M, Tian ZH and Sun ZB. 2020. Mineral phase equilibria and zircon geochronology constrain multiple metamorphic events of high-pressure pelitic granulites in south-eastern Tibetan Plateau. Geological Journal, 55(2): 1332-1356 DOI:10.1002/gj.3488
Ji SC and Martignole J. 1994. Ductility of garnet as an indicator of extremely high temperature deformation. Journal of Structural Geology, 16(7): 985-996 DOI:10.1016/0191-8141(94)90080-9
Ji SC and Martignole J. 1996. Ductility of garnet as an indicator of extremely high temperature deformation: Reply. Journal of Structural Geology, 18(11): 1375-1379 DOI:10.1016/S0191-8141(96)00065-X
Ji SC, Saruwatari K, Mainprice D, Wirth R, Xu ZQ and Xia B. 2003. Microstructures, petrofabrics and seismic properties of ultrahigh-pressure eclogites from Sulu region, China: Implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370(1-4): 49-76 DOI:10.1016/S0040-1951(03)00177-X
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113(3-4): 748-766 DOI:10.1016/j.lithos.2009.04.004
Kim HS. 2006. Deformation-induced garnet zoning. Gondwana Research, 10(3-4): 379-388 DOI:10.1016/j.gr.2006.04.015
Kleinschrodt R and Duyster JP. 2002. HT-deformation of garnet: An EBSD study on granulites from Sri Lanka, India and the Ivrea Zone. Journal of Structural Geology, 24(11): 1829-1844 DOI:10.1016/S0191-8141(01)00167-5
Lambregts PJ and van Roermund HLM. 1990. Deformation and recrystallization mechanisms in naturally deformed sillimanites. Tectonophysics, 179(3-4): 371-378 DOI:10.1016/0040-1951(90)90302-O
Law RD. 2014. Deformation thermometry based on quartz c-axis fabrics and recrystallization microstructures: A review. Journal of Structural Geology, 66: 129-161 DOI:10.1016/j.jsg.2014.05.023
Leloup PH and Kienast JR. 1993. High-temperature metamorphism in a major strike-slip shear zone: The Ailao Shan-Red River, People's Republic of China. Earth and Planetary Science Letters, 118(1-4): 213-234 DOI:10.1016/0012-821X(93)90169-A
Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong DL, Liu XH, Zhang LS, Ji SC and Trinh PT. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4): 3-10, 13-84 DOI:10.1016/0040-1951(95)00070-4
Leloup PH, Arnaud N, Lacassin R, Kienast JR, Harrison TM, Trong TTP, Replumaz A and Tapponnier P. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. Journal of Geophysical Research, 106(B4): 6683-6732 DOI:10.1029/2000JB900322
Leslie SR, Mahan KH, Regan S, Williams ML and Dumond G. 2015. Contrasts in sillimanite deformation in felsic tectonites from anhydrous granulite-and hydrous amphibolite-facies shear zones, western Canadian Shield. Journal of Structural Geology, 71: 112-124 DOI:10.1016/j.jsg.2014.12.002
Liu FL, Wang F, Liu PH and Liu CH. 2013. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Research, 24(1): 429-450 DOI:10.1016/j.gr.2012.10.016
Liu FL, Wang F, Liu PH, Yang H and Meng E. 2015. Multiple partial melting events in the Ailao Shan-Red River and Gaoligong Shan complex belts, SE Tibetan Plateau: Zircon U-Pb dating of granitic leucosomes within migmatites. Journal of Asian Earth Sciences, 110: 151-169 DOI:10.1016/j.jseaes.2014.06.025
Liu JL, Tang Y, Tran MD, Cao SY, Zhao L, Zhang ZC, Zhao ZD and Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. Journal of Asian Earth Sciences, 47: 231-251 DOI:10.1016/j.jseaes.2011.10.020
Liu XW, Jin ZM, Jin SY, Qu J and Xu W. 2005. Differences of deformation characteristics of garnets from two types of eclogites: Evidence from TEM study. Acta Petrologica Sinica, 21(2): 411-420 (in Chinese with English abstract)
Mainprice D, Bascou J, Cordier P and Tommasi A. 2004. Crystal preferred orientations of garnet: Comparison between numerical simulations and electron back-scattered diffraction (EBSD) measurements in naturally deformed eclogites. Journal of Structural Geology, 26(11): 2089-2102 DOI:10.1016/j.jsg.2004.04.008
Marti S, Stünitz H, Heilbronner R, Plümper O and Kilian R. 2018. Syn-kinematic hydration reactions, grain size reduction, and dissolution-precipitation creep in experimentally deformed plagioclase-pyroxene mixtures. Solid Earth, 9(4): 985-1009 DOI:10.5194/se-9-985-2018
McAleer RJ, Bish DL, Kunk MJ, Sicard KR, Valley PM, Walsh GJ, Wathen BA and Wintsch RP. 2017. Reaction softening by dissolution-precipitation creep in a retrograde greenschist facies ductile shear zone, New Hampshire, USA. Journal of Metamorphic Geology, 35(1): 95-119 DOI:10.1111/jmg.12222
McPherren ED and Kuiper YD. 2013. The effects of dissolution-precipitation creep on quartz fabrics within the Purgatory conglomerate, Rhode Island. Journal of Structural Geology, 51: 105-117 DOI:10.1016/j.jsg.2013.03.002
Musumeci G. 2002. Sillimanite-bearing shear zones in syntectonic leucogranite: Fluid-assisted brittle-ductile deformation under amphibolite facies conditions. Journal of Structural Geology, 24(9): 1491-1505 DOI:10.1016/S0191-8141(01)00153-5
Passchier CW and Trouw RAJ. 2005. Microtectonics. Berlin: Springer Verlag, 1-366
Précigout J, Prigent C, Palasse L and Pochon A. 2017. Water pumping in mantle shear zones. Nature Communication, 8: 15736 DOI:10.1038/ncomms15736
Prior DJ, Wheeler J, Brenker FE, Harte B and Matthews M. 2000. Crystal plasticity of natural garnet: New microstructural evidence. Geology, 28(11): 1003-1006 DOI:10.1130/0091-7613(2000)28<1003:CPONGN>2.0.CO;2
Prior DJ, Wheeler J, Peruzzo L, Spiess R and Storey C. 2002. Some garnet microstructures: An illustration of the potential of orientation maps and misorientation analysis in microstructural studies. Journal of Structural Geology, 24(6-7): 999-1011 DOI:10.1016/S0191-8141(01)00087-6
Putnis A. 2009. Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87-124 DOI:10.2138/rmg.2009.70.3
Ren SL, Song CZ, Lin SF, Zhang HR, Li JH, Tu WC, Zhang H and Zhang JJ. 2011. The study of microstructure characters and the condition of metamorphism and deformation of garnets from garnet-mica schist in the Tongbai Mountain, east section of Shangnan-Danfeng fault belt. Geological Review, 57(6): 799-809
Searle MP. 2006. Role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. Journal of the Geological Society, 163(6): 1025-1036 DOI:10.1144/0016-76492005-144
Searle MP, Yeh MW, Lin TH and Chung SL. 2010. Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China. Geosphere, 6(4): 316-338 DOI:10.1130/GES00580.1
Spear FS, Selverstone J, Hickmott D, Crowley P and Hodges KV. 1984. P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes. Geology, 12(2): 87-90 DOI:10.1130/0091-7613(1984)12<87:PPFGZA>2.0.CO;2
Stipp M, Stünitz H, Heilbronner R and Schmid SM. 2002. The eastern Tonale fault zone: A 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24(12): 1861-1884 DOI:10.1016/S0191-8141(02)00035-4
Stokes MR, Wintsch RP and Southworth CS. 2012. Deformation of amphibolites via dissolution-precipitation creep in the middle and lower crust. Journal of Metamorphic Geology, 30(7): 723-737 DOI:10.1111/j.1525-1314.2012.00989.x
Storey CD and Prior DJ. 2005. Plastic deformation and recrystallization of garnet: A mechanism to facilitate diffusion creep. Journal of Petrology, 46(12): 2593-2613 DOI:10.1093/petrology/egi067
Su W, Cong BL, You ZD, Zhong ZQ and Chen DZ. 2002. Plastic mechanism of deformation of garnet: Water weakening. Science in China (Series D), 45(10): 885-892 DOI:10.1360/02yd9087
Tapponnier P, Lacassin R, Leloup PH, Schärer U, Zhong DL, Wu HW, Liu XH, Ji SC, Zhang LS and Zhong JY. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343(6257): 431-437 DOI:10.1038/343431a0
Terry MP and Heidelbach F. 2004. Superplasticity in garnet from eclogite facies shear zones in the Haram Gabbro, Haramsøya, Norway. Geology, 32(4): 281-284 DOI:10.1130/G20157.1
Voegelé V, Cordier P, Sautter V, Sharp TG, Lardeaux JM and Marques FO. 1998. Plastic deformation of silicate garnets: Ⅱ. Deformation microstructures in natural samples. Physics of the Earth and Planetary Interiors, 108(4): 319-338 DOI:10.1016/S0031-9201(98)00111-3
Wang F, Liu FL, Liu PH, Shi JR and Cai J. 2016a. Petrology, geochemistry, and metamorphic evolution of meta-sedimentary rocks in the Diancang Shan-Ailao Shan metamorphic complex, Southeastern Tibetan Plateau. Journal of Asian Earth Sciences, 124: 68-93 DOI:10.1016/j.jseaes.2016.04.014
Wang HB, Cao SY, Li JY, Cheng XM, Lü MX, Manfred B and Neubauer F. 2019. Cenozoic multi-metamorphism, shear deformation and geological significance of Ailaoshan high-grade metamorphic complex, western Yunnan, China. Acta Petrologica Sinica, 35(8): 2573-2596 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.08.15
Wang QF, Deng J, Li CS, Li GJ, Yu L and Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448 DOI:10.1016/j.gr.2013.10.002
Wang YJ, Zhou YZ, Cai YF, Liu HC, Zhang YZ and Fan WM. 2016b. Geochronological and geochemical constraints on the petrogenesis of the Ailaoshan granitic and migmatite rocks and its implications on Neoproterozoic subduction along the SW Yangtze Block. Precambrian Research, 283: 106-124 DOI:10.1016/j.precamres.2016.07.017
Wassmann S, Stöckhert B and Trepmann CA. 2011. Dissolution precipitation creep versus crystalline plasticity in high-pressure metamorphic serpentinites. Geological Society, London, Special Publications, 360(1): 129-149 DOI:10.1144/SP360.8
Wassmann S and Stöckhert B. 2012. Matrix deformation mechanisms in HP-LT tectonic mélanges-Microstructural record of jadeite blueschist from the Franciscan Complex, California. Tectonophysics, 568-569: 135-153 DOI:10.1016/j.tecto.2012.01.009
Wassmann S and Stöckhert B. 2013a. Low stress deformation of garnet by incongruent dissolution precipitation creep. Journal of Structural Geology, 46: 200-219 DOI:10.1016/j.jsg.2012.09.002
Wassmann S and Stöckhert B. 2013b. Rheology of the plate interface-dissolution precipitation creep in high pressure metamorphic rocks. Tectonophysics, 608: 1-29 DOI:10.1016/j.tecto.2013.09.030
White RW, Powell R, Holland TJB, Johnson TE and Green ECR. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261-286 DOI:10.1111/jmg.12071
Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187 DOI:10.2138/am.2010.3371
Wintsch RP and Yi K. 2002. Dissolution and replacement creep: A significant deformation mechanism in mid-crustal rocks. Journal of Structural Geology, 24(6-7): 1179-1193 DOI:10.1016/S0191-8141(01)00100-6
Wu WB. 2012. The characteristic of deformation, metamorphism and geochronology in the south segement of Ailao Shan-Red River shear zone. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-64 (in Chinese with English summary)
Wu WB, Liu JL, Zhang LS, Qi YC and Ling CY. 2017. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone, China. Journal of Asian Earth Sciences, 139: 95-114 DOI:10.1016/j.jseaes.2016.12.026
Xiang H. 2020. GeoPS: An interactive visualization tool for thermodynamic modeling of phase equilibria. Earth and Space Science DOI:10.1002/essoar.10502553.1
Xu ST, Liu YC, Su W, Wu WP, Jiang LL and Wang RC. 1999. Geometry, kinematics and tectonic implication of the deformed garnets in the foliated eclogite from the ultra-high pressure metamorphic belt in the Dabie Mountains, eastern China. Acta Petrologica Sinica, 15(3): 321-337 (in Chinese with English abstract)
Yeh MW, Wintsch RP, Liu YC, Lo CH, Chung SL, Lin YL, Lee TY, Wang YC and Stokes MR. 2014. Evidence for cool extrusion of the North Indochina Block along the Ailao Shan Red River Shear Zone, a Diancang Shan perspective. The Journal of Geology, 122(5): 567-590 DOI:10.1086/677263
Zhai YF. 2008. Structural characteristics and geological implication of the middle to northern segment of Ailao Shan metamorphic belt. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-65 (in Chinese)
Zhang JF, Jin ZM and Green HW Ⅱ. 2005. Hydroxyl induced eclogite fabric and deformation mechanism. Chinese Science Bulletin, 50(7): 685-690 DOI:10.1360/982004-274
陈晶. 1996. 榴辉岩相变质岩中石榴石的塑性微裂隙. 岩石学报, 12(4): 589-593. DOI:10.3321/j.issn:1000-0569.1996.04.007
冀磊, 刘福来, 王舫. 2017. 点苍山-哀牢山变质杂岩带中、北段多期花岗质岩浆事件及其构造意义. 岩石学报, 33(9): 2957-5974.
刘祥文, 金振民, 金属燕, 曲晶, 徐薇. 2005. 两类榴辉岩的石榴石变形特征差异——来自TEM研究的证据. 岩石学报, 21(2): 411-420.
任升莲, 宋传中, 林寿发, 张浩然, 李加好, 涂文传, 张欢, 章骏杰. 2011. 桐柏山商丹断裂带东延段石榴云母片岩中石榴子石显微构造特征及变质-变形环境分析. 地质论评, 57(6): 799-809.
苏文, 从柏林, 游振东, 钟增球, 陈代章. 2001. 石榴石塑性变形的机制: 水解弱化. 中国科学(D辑), 31(12): 999-1005.
王浩博, 曹淑云, 李俊瑜, 程雪梅, 吕美霞, Manfred B, Neubauer F. 2019. 滇西哀牢山深变质杂岩新生代多期变质、剪切变形及地质意义. 岩石学报, 35(8): 2573-2596.
吴文彬. 2012. 哀牢山-红河韧性剪切带南部构造变形变质特征及年代学. 硕士学位论文. 北京: 中国地质大学(北京), 1-64
徐树桐, 刘贻灿, 苏文, 吴维平, 江来利, 王汝成. 1999. 大别山超高压变质带面理化榴辉岩中变形石榴石的几何学和运动学特征及其大地构造意义. 岩石学报, 15(3): 321-337.
翟云峰. 2008. 哀牢山变质带中北段构造特征及其地质意义. 硕士学位论文. 北京: 中国地质大学(北京), 1-65
章军峰, 金振民, Green HW Ⅱ. 2005. 结构水引起的榴辉岩变形组构和变形机制. 科学通报, 50(6): 559-564. DOI:10.3321/j.issn:0023-074X.2005.06.010