岩石学报  2021, Vol. 37 Issue (2): 481-496, doi: 10.18654/1000-0569/2021.02.09   PDF    
西南三江杂岩带景洪南部地区晚泥盆世火山岩的发现及意义
谢士稳1,2, 刘福来2, 王舫2     
1. 中国地质科学院地质研究所, 北京离子探针中心, 北京 100037;
2. 中国地质科学院地质研究所, 自然资源部深地动力学重点实验室, 北京 100037
摘要: 本文对西南三江地区景洪南部新发现的晚泥盆世英安质火山岩进行了系统的锆石U-Pb年龄、Hf-O同位素以及全岩地球化学研究。测年结果显示,该英安质火山岩形成于362.3±3.4Ma。火山岩的SiO2含量为62.87%~66.29%,MgO含量为2.15%~2.49%,Mg#值为44~47,富集Na2O(4.77%~5.51%),高Na2O/K2O比值(2.1~3.3),低Y(12.5×10-6~15.3×10-6)和Yb(1.38×10-6~1.70×10-6),具有高硅埃达克岩的地球化学特征,表明它们由俯冲的洋壳部分熔融而成。低的锆石εHft)(+0.87~+3.27),相对较高的锆石δ18O(6.31‰~7.64‰),以及高的全岩Th/Yb(4.86~7.78)和(La/Sm)N(3.62~4.56)比值,指示岩浆中混染了大洋沉积物或混入了大洋沉积岩起源的熔体。综合区域岩浆岩和沉积岩资料,本文认为南澜沧江带晚泥盆世时经历了板片的俯冲,该俯冲作用很可能代表的是由大中河、大平掌火山岩以及火山块状硫化物矿床(VHMS)指示的弧后洋盆的俯冲消减过程。
关键词: 南澜沧江带    景洪    英安质火山岩    板块俯冲    特提斯洋    
Petrogenesis of Late Devonian volcanic rocks in the Jinghong area, southwestern Sanjiang region and its geological implications
XIE ShiWen1,2, LIU FuLai2, WANG Fang2     
1. Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Key laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract: In this study, SHRIMP zircon U-Pb age, Hf-O isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian dacitic volcanic rocks from the Jinghong area, southwestern Sanjiang region. New dating results reveal that the volcanic rocks were formed at 362.3±3.4Ma. These rocks have moderate SiO2(62.87%~66.29%), MgO (2.15%~2.49%), and Mg# (44~47) values. They are characterized by high Na2O contents (4.77%~5.51%) with Na2O/K2O ratios of 2.1~3.3, and low Y (12.5×10-6~15.3×10-6) and Yb (1.38×10-6~1.70×10-6) contents. These geochemical results are similar to those of high-SiO2 adakites, indicating that they were derived by partial melting of the subducted oceanic slab. The low zircon εHf(t) values (+0.87~+3.27) and relatively high zircon δ18O (6.31‰~7.64‰) values, and whole-rock Th/Yb (4.86~7.78) and (La/Sm)N (3.62~4.56) suggest that subducted oceanic sediments were assimilated into or sediment-derived melt incorporated into the magma. In combination with regional Paleozoic magmatism and stratigraphy data, it can be concluded that the southern Lancangjiang belt underwent the Late Devonian oceanic slab subduction, and the process is likely to represent the subduction of the back-arc oceanic basin revealed by Dazhonghe and Dapingzhang volcanic rocks and volcanic-hosted massive sulfide (VHMS).
Key words: Southern Lancangjiang belt    Jinghong    Dacitic volcanic rocks    Slab subduction    Tethys    

三江地区位于欧亚板块与印度板块结合部位,自早古生代以来经历了一系列的裂解、汇聚、碰撞和增生等重大地质事件。南澜沧江带位于三江地区南段,带内出露保存比较完整的、典型的蛇绿混杂岩,大量与古特提斯洋洋壳俯冲、陆-陆碰撞有关的岩浆岩以及三叠纪的榴辉岩、蓝片岩等,是研究古特提斯洋演化的重要地区(张旗等,1985莫宣学等, 1993, 1998Peng et al., 2008, 2013Wang et al., 2010, 2013a, 2018b, 2019a, bFan et al., 2015王保弟等,2018)。近年来,南澜沧江带内陆续识别出多处十分重要的奥陶纪-二叠纪的岩浆事件。其中早古生代的岩浆事件普遍被认为与原特提斯洋的演化有关,而晚古生代(晚石炭世-二叠纪)的岩浆岩被认为与古特提斯洋演化有关。例如,昌宁-孟连蛇绿混杂岩中辉长岩、玄武岩的锆石U-Pb年龄为471~439Ma,指示这些蛇绿混杂岩的形成时代可追溯到早古生代(Wang et al., 2013a刘桂春等,2017孙载波等,2017),代表了原特提斯洋壳的残余(王保弟等,2018)。惠民、曼来等地发育的奥陶纪-志留纪岩浆岩被认为与原特提斯洋的俯冲消减过程有关(毛晓长等,2012Lehmann et al., 2013Nie et al., 2015Xing et al., 2017彭智敏等,2018Liu et al., 2019)。与以上早古生代岩浆事件不同,半坡-雅口-南联山晚石炭世-早二叠世(313~282Ma)基性-超基性杂岩被认为形成于与古特提斯洋俯冲作用有关的岛弧环境或弧后拉张环境(Hennig et al., 2009Jian et al., 2009Li et al., 2012Zhai et al., 2019)。少量的二叠纪花岗闪长岩被解释为古特提斯洋俯冲过程中形成的岛弧岩浆岩(284~282Ma,Hennig et al., 2009;261~252Ma,Deng et al., 2018)。除早古生代蛇绿混杂岩外,昌宁-孟连缝合带中还发育267~272Ma的蛇绿混杂岩(Jian et al., 2009王冬兵等,2017)。一些研究人员认为西南三江地区存在连续的原-古特提斯演化,昌宁-孟连洋盆可能在中奥陶世已经打开,并一直延续到晚二叠世(Deng et al., 2014王保弟等,2018)。由于研究对象十分有限,早古生代至晚石炭世之间的演化过程研究程度较低,这也制约了原、古特提斯洋之间关系的研究。尽管景洪东南部出露的南光组沉积岩中保存晚泥盆世(382~366Ma)的凝灰岩夹层,为衔接原、古特提斯洋之间的构造演化提供了重要的研究对象,但由于遭受了强烈的风化改造,无法获取这些火山岩的岩石类型,成因等方面的信息(Nie et al., 2016)。最近,作者在景洪南部的南联山地区新识别出一套新鲜的晚泥盆世英安质火山岩。本研究系统报道了该套火山岩的锆石U-Pb年龄,Hf-O同位素以及全岩地球化学,探讨了岩石的成因、形成环境,并结合前人已发表资料,为南澜沧江带原、古特提斯洋之间的构造演化过程提供一些新的制约。

1 地质概况和样品采集

南澜沧江带从西向东主要可分为昌宁-孟连缝合带、澜沧变质杂岩、临沧花岗岩基以及云县-景洪火山岩带四个地质单元(图 1)。昌宁-孟连缝合带代表古特提斯洋主洋盆闭合的位置,缝合带内的铜厂街、南汀河、牛井山以及曼信等地出露比较完整、典型的奥陶纪-晚二叠世(471~267Ma)的蛇绿混杂岩(张旗等,1985Jian et al., 2009Wang et al., 2013a刘桂春等,2017王冬兵等,2017王保弟等,2018),与蛇绿混杂岩相伴生的泥盆纪-中三叠世硅质岩中含深海放射虫组合(吴浩若和李红生,1989Liu et al., 1991Feng,1992冯庆来和刘本培,1993刘本培等,1993Fang et al., 1994冯庆来等, 1996, 1997Feng et al., 1998方宗杰等,2000)。澜沧变质杂岩主要由崇山群、大勐龙群、澜沧群和西盟群组成,榴辉岩、蓝片岩以透镜体或夹层的形式零星出露在澜沧群中(徐桂香等,2016李静等,2017Wang et al., 2019b)。蓝片岩、榴辉岩以及澜沧群变沉积岩均记录了246~229Ma的高压变质作用(Fan et al., 2015王舫等,2016Wang et al., 2019a, b2020)。澜沧群变沉积岩中碎屑锆石年龄主要分布在600~500Ma和1200~900Ma(Zhao et al., 2017王舫等,2017Wang et al., 2020)。临沧花岗岩基主要由黑云母二长花岗岩和花岗闪长岩组成。黑云母二长花岗岩为主体岩性,属过铝质S型花岗岩,主要形成于235~210Ma(Peng et al., 2006, 2013Hennig et al., 2009孔会磊等,2012Dong et al., 2013王舫等,2014)。花岗闪长岩分布在花岗岩基的边部或呈不规则状、岛弧状或条带状分布在二长花岗岩中(Peng et al., 2006),最近报道的少量花岗闪长岩的锆石U-Pb年龄为261~252Ma(Deng et al., 2018)。此外,临沧花岗岩中还存在奥陶纪S型花岗片麻岩(477~466Ma)(彭智敏等,2018)。云县-景洪火山岩位于临沧花岗岩体东侧,呈南、北向狭长带状分布(图 1),出露安山岩、英安岩、玄武岩、流纹岩、火山角砾岩等多种类型岩石,这些火山岩原来被认为主要形成于二叠纪-三叠纪,目前报道的形成年龄主要集中在249~197Ma之间(图 1Peng et al., 2006, 2008, 2013Wang et al., 2010朱维光等,2011陈莉等,2013韦诚等,2016吕留彦等,2019)。除二叠纪-三叠纪火山岩外,带内还保存少量志留-泥盆纪的火山岩,例如大中河、大平掌地区429~418Ma的基性-酸性火山岩(毛晓长等,2012Lehmann et al., 2013Liu et al., 2019),景洪东南部南光组碎屑沉积岩中382~366Ma的薄层状凝灰岩夹层(Nie et al., 2016)。

图 1 东南亚构造格架图(a,据Cawood et al., 2018修改)和南澜沧江带地质简图(b) 图a中主要的缝合带:CMS-昌宁-孟连缝合带; LCSS-龙木错-双湖缝合带; IBRS-因他暖-文冬-劳勿缝合带; JASS-金沙江-哀牢山-松马缝合带. 图b数据来自: (1)本次研究; (2)王冬兵等(2016); (3)彭智敏等(2018); (4)Nie et al.(2015); (5)Xing et al.(2017); (6)Lehmann et al.(2013); (7)毛晓长等(2012); (8)Liu et al.(2019); (9)Nie et al.(2016); (10) Hennig et al.(2009) Fig. 1 Tectonic framework of southeastern Asia(a, modified after Cawood et al., 2018) and simplified geological map of the southern Lancangjiang belt, SW China Main suture zones between major blocks in Fig. 1a: CMS-Changning-Menglian suture; LCSS-Longmu Co-Shuanghu suture; IBRS-Inthanon-Bentong-Raub suture; JASS-Jinshajiang-Ailaoshan-Song Ma suture. Ages of magmatic rocks in Fig. 1b from: (1)this study; (2)Wang et al.(2016); (3)Peng et al.(2018); (4)Nie et al.(2015); (5)Xing et al.(2017); (6)Lehmann et al.(2013); (7)Mao et al.(2012); (8)Liu et al.(2019); (9)Nie et al.(2016); (10) Hennig et al.(2009)

本文研究区位于云县-景洪火山岩带南部的南联山地区(图 1),该地区出露岩石主要为南联山岩体和二叠纪的火山岩、沉积岩。南联山岩体主要由辉长岩和闪长岩组成,形成于298~292Ma(Hennig et al., 2009Li et al., 2012)。二叠纪火山岩由英安岩、玄武岩和凝灰岩等岩石组成,二叠纪沉积岩岩性主要为板岩夹粉砂岩。本文所采样品位于南联山岩体东侧的一处正在施工的隧道附近,该处堆积大量隧道中开采出的新鲜岩石,包括基性-超基性岩、千枚岩,片岩以及英安质晶屑凝灰岩等(图 2a)。碎石堆旁可见二叠纪流纹岩的原地露头,岩石呈紫红色,中等风化(图 2c)。本文研究的火山岩为采自隧道口碎石堆的英安质晶屑凝灰岩,样品新鲜,呈灰白色,片麻状构造,晶屑破碎较严重,主要由石英和斜长石组成,基质主要由细粒的斜长石和石英组成(图 2b, d)。

图 2 野外照片及显微结构照片 (a)采样碎石堆野外照片;(b)英安质晶屑凝灰岩野外照片;(c)碎石堆旁二叠纪流纹岩露头野外照片;(d)英安质晶屑凝灰岩显微照片. Pl-斜长石;Qz-石英;Amph-角闪石 Fig. 2 Representative field and microtexture photographs (a)field photograph of the sampled scree; (b)field photograph of dacitic crystal tuff; (c)field photograph of Permian rhyolite outcrop near the sampled scree; (d)photomicrographs of dacitic crystal tuff. Pl-plagioclase; Qz-quartz; Amph-amphibole
2 分析方法 2.1 全岩地球化学

全岩主量元素、微量元素在澳实分析检测(广州)有限公司完成。首先将新鲜、均匀的岩石样品细碎至200目。主量元素分析将粉末样品与硼酸锂-硝酸锂混合熔融,采用熔片-X射线荧光光谱法(XRF)测试,FeO采用酸消解-重铬酸钾滴定法分析,主量元素分析精度优于5%。微量元素分析将粉末样品消解后,采用美国Perkin Elmer公司生产的Elan9000型电感耦合等离子质谱仪(ICP-MS)测定,分析精度优于5%。

2.2 锆石SHRIMP定年

锆石U-Pb定年在北京离子探针中心SHRIMP Ⅱ上完成。详细分析方法见Williams(1998)。测试时一次流O-2强度为3~5nA,束斑直径为25~30μm。标样M257(U=840×10-6Nasdala et al., 2008)和Plešovice(年龄为337.1Ma,Sláma et al., 2008)分别用于锆石U含量和年龄校正。每分析3~4个未知样品数据,分析1次标准锆石Plešovice。每个分析点采用5组扫描。数据处理采用SQUID和ISOPLOT程序(Ludwig,2001)。根据实测204Pb含量校正普通铅,采用206Pb/238U年龄为锆石年龄,同位素比值和单点年龄误差均为1σ。加权平均年龄误差为95%置信度。

2.3 锆石O同位素

锆石原位氧同位素分析在北京离子探针中心多接收的SHRIMP IIe上完成。氧同位素均在与测年位置具有相同内部结构的区域分析,其中已测年的颗粒,氧同位素分析在原测年点位附近。采用强度为~13.5nA的一次Cs+离子束通过加速电压15keV轰击锆石表面,束斑的直径为~25μm。分析过程中,18O和16O由两个法拉第杯同时接收,每个测试点进行两组扫描,每组扫描6次,单次扫描积分时间为10秒,总积分时间约为120秒。在两组扫描之间,仪器自动优化一次离子流和二次离子流参数。在每个分析点测试之前,调整二次离子流和测定静电计的背景噪声150秒。标准锆石Penglai(δ18O=5.31±0.10‰,Li et al., 2010)用于校正仪器的质量分馏(IMF)。每分析3个未知样品,分析1次标准锆石。本次分析Penglai的δ18O=5.29±0.10‰(n=37)。详细的分析流程见Ickert et al.(2008)

2.4 锆石Hf同位素

锆石Hf同位素测试在南京聚谱检测科技有限公司完成。锆石Hf同位素在原O同位素点位上分析。分析仪器为配备193nm ArF准分子激光剥蚀系统(型号为RESOlution LR)的多接收器型号电感耦合等离子体质谱仪(MC-ICP-MS,型号为Nu Plasma Ⅱ)。激光频率为9Hz,束斑直径为44μm,能量密度为3.5J/cm2,剥蚀时间为40秒。气溶胶由氦气送出剥蚀池,与氩气混合后进入MC-ICP-MS。测试过程中,标准锆石GJ-1、91500、Plešovice、Mud Tank以及Penglai用于检验锆石Hf同位素比值的数据质量。本次分析的GJ-1、91500、Plešovice、Mud Tank、Penglai的176Hf/177Hf比值分别为0.282008±0.000013(n=7)、0.282303±0.000019(n=5)、0.282480±0.000008(n=4)、0.282516±0.000013(n=2)和0.282904±0.000014(n=2),与推荐值一致。计算εHf(t)值采用176Lu衰常数为1.867±10-11yr-1(Söderlund et al., 2004),现今的球粒陨石176Hf/177Hf=0.282772、176Lu/177Hf=0.0332(Blichert-Toft and Albarède,1997)。Hf亏损地幔模式年龄(tDM1)的计算采用现今的亏损地幔176Hf/177Hf=0.28325和176Lu/177Hf=0.0384(Griffin et al., 2000)。两阶段Hf模式年龄(tDM2)计算,采用大陆地壳平均的176Lu/177Hf=0.015(Griffin et al., 2002)。

3 结果 3.1 锆石U-Pb年龄

样品18YP64-1中锆石无色透明,自形,呈短柱-柱状,粒径大多为80~150μm,发育清晰的振荡环带(图 3a)。13个测试点的U含量为232×10-6~413×10-6,Th/U比值为0.48~0.72,206Pb/238U年龄为355.4~372.2Ma,加权平均年龄为362.3±3.4Ma(n=13,MSWD=1.4;表 1图 3b),代表样品的结晶年龄。

图 3 样品18YP64-1中典型锆石CL图像(a)和锆石年龄谐和图(b) 图a中:红色虚线椭圆、红色实线椭圆和大的绿色圆形分别代表U-Pb年龄、O同位素和Hf同位素测试点位; 数据代表分析点号、年龄和εHf(t)/δ18O值 Fig. 3 Cathodoluminescence images and U-Pb Concordia plot of zircon from sample 18YP64-1 In Fig. 3a: The red dashed ellipses, red solide ellipses and big green circles represent the analyzed domains of zircon U-Pb age, O isotope, and Hf isotope, respectively; Numbers near zircon denote spot numbers, U-Pb ages and εHf(t)/δ18O values

表 1 景洪南部晚泥盆世英安质火山岩(样品18YP64-1)锆石SHRIMP U-Pb测年结果 Table 1 SHRIMP U-Pb data for zircon from Late Devonian dacitic volcanic rock(Sample 18YP64-1)form the southern Jinghong area
3.2 锆石Hf-O同位素

对测年样品18YP64-1中15颗锆石进行了15次Hf-O同位素分析,分析结果见表 2。其中13颗锆石为已测年颗粒,Hf-O同位素分析在年龄测试点旁,与年龄测试具有相同结构的区域。另外2颗锆石为未测年颗粒。15颗锆石的176Hf/177Hf=0.282577~0.282647,εHf(t)=+0.87~+3.27,对应的tDM2=1.15~1.30Ga。这些测试点的δ18O值较集中,分布在6.31‰~7.64‰之间,平均值为6.77±0.12‰(2σ)。

表 2 景洪南部晚泥盆世英安质火山岩(样品18YP64-1)锆石Hf-O同位素组成 Table 2 Zircon Hf-O isotope compositions of Late Devonian dacitic volcanic rock(Sample 18YP64-1)form the southern Jinghong area
3.3 全岩地球化学

样品的主、微量元素结果见表 3。样品的SiO2含量为62.87%~66.29%,MgO含量(2.15%~ 2.49%)和Fe2O3T含量(4.95%~6.21%)相对较高,对应的Mg#值(摩尔数Mg/(Mg+FeT)×100)为44 ~ 47。样品具有高的Na2O含量(4.77%~5.51%),低的K2O含量(1.43%~2.39%)。它们的全碱(Na2O+K2O)为6.20%~ 7.34%,Na2O/K2O比值为2.1~3.3。在TAS图解中,样品均位于英安岩区域(图 4a),属钙碱性系列(图 4b)。样品富集轻稀土,呈右倾型配分模式(图 5a),(La/Yb)N=8.7~11.1,具有弱的负铕异常(Eu/Eu*=0.81~0.92)。样品的Sr含量较高(285×10-6~522×10-6),而Yb(1.38×10-6~1.70×10-6)和Y(12.5×10-6~15.3×10-6)较低,Sr/Y比值为21.9~34.1。在微量元素蛛网图中,富集Rb、Th、U、Pb,亏损Nb、Ta、Ti等高场强元素(图 5b)。

表 3 景洪南部晚泥盆世英安质火山岩主量元素(wt%)和微量元素(×10-6)组成 Table 3 Major(wt%) and trace(×10-6)elements data for Late Devonian dacitic volcanic rocks form the southern Jinghong area

图 4 景洪晚泥盆世英安质火山岩TAS图解(a,底图据Le Bas et al., 1986)和SiO2-K2O图解(b,底图据Rickwood,1989) Fig. 4 TAS(a, after Le Bas et al., 1986) and SiO2 vs. K2O(b, after Rickwood, 1989)diagrams for Late Devonian dacitic volcanic rocks from the Jinghong area

图 5 景洪晚泥盆世英安质火山岩球粒陨石标准化稀土元素配分图和原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989) Fig. 5 Chondrite-normalized rare earth element patterns and primitive mantle-normalized trace element distributions of Late Devonian dacitic volcanic rocks from the Jinghong area(normalized values after Sun and McDonough, 1989)
4 讨论 4.1 岩石成因和源区

如前文所述,本文报道的英安质晶屑凝灰岩具有埃达克岩的地球化学特征,例如较高SiO2(> 56%)、Al2O3(> 15%)、Na2O(> 3.5%)、Sr(平均为384×10-6,略低于400×10-6)、Sr/Y(> 20)和相对低的Y(< 18 × 10-6)、Yb(< 1.9×10-6)(表 3图 6a)。埃达克岩最初发现于岛弧环境,被认为直接由年轻的玄武质洋壳俯冲熔融而成(Defant and Drummond, 1990)。随后,越来越多的研究表明,具有埃达克质地球化学特征的岩石可以形成于多种构造环境,具有不同的岩石成因。目前,埃达克岩成因主要有以下3种:(1)俯冲洋壳的部分熔融(Kay,1978Defant and Drummond, 1990Yogodzinski et al., 1995Wang et al., 2007);(2)加厚下地壳的部分熔融(Atherton and Petford, 1993Xu et al., 2002Chung et al., 2003Gao et al., 2004Hou et al., 2004);以及(3)玄武质母岩浆的高压结晶分异(Prouteau and Scaillet, 2003Macpherson et al., 2006Rodríguez et al., 2007Rooney et al., 2011)。

图 6 景洪晚泥盆世英安质火山岩Sr/Y-Y(a,底图据Defant and Drummond, 1990)、Sr/Y-SiO2(b)、La/Y-SiO2(c)和La/Sm-La(d) 石榴子石参与的高压分离结晶演化趋势据Wang et al.(2008) Fig. 6 Plots of Sr/Y vs. Y(a, after Defant and Drummond, 1990), Sr/Y-SiO2(b), La/Y-SiO2(c) and La/Sm-La(d)for Late Devonian dacitic volcanic rocks from the Jinghong area High-pressure fractional crystallization trends involving garnet after Wang et al.(2008)

俯冲洋壳部分熔融形成的埃达克岩通常具有高的Na2O、Na2O/K2O以及与MORB相似的放射性同位素组成(Defant and Drummond, 1990Yogodzinski et al., 1994, 1995Aguillón-Robles et al., 2001)。加厚的地壳包括古老的地壳和玄武岩底侵形成的新生地壳。加厚的古老下地壳部分熔融一般富钾,且具有演化的放射性同位素组成(Xu et al., 2002, 2006Gao et al., 2004)。景洪英安质火山岩的Na2O、Na2O/K2O分别为4.77%~5.51%和2.1~3.3,与俯冲洋壳部分熔融成因的埃达克岩相似,而与加厚古老下地壳部分熔融的埃达克岩不同。另一方面,临沧花岗岩中锆石具有很低的εHf(t)值(-17.5~-9.4)和古老的tDM2(1852~2358Ma),且花岗岩中含有大量太古代-古元古代继承锆石(孔会磊等,2012Dong et al., 2013王舫等,2014)。临沧花岗岩中奥陶纪花岗片麻岩的εHf(t)值为-17.5~-9.4,tDM2为1488~1895Ma。澜沧变质杂岩中奥陶纪火山岩的全岩εNd(t)为-7.6,Nd模式年龄为2.1Ga(Xing et al., 2017),锆石εHf(t)为-4.4~-3.3,tDM2为1506~1548 Ma(Nie et al., 2015)。这些演化的同位素特征和大量太古代-古元古代继承锆石暗示南澜沧江带可能存在古老的地壳物质。与上述岩浆岩不同,本文报道的景洪英安质火山岩具有较高的εHf(t)值(+0.87~+3.27)和较年轻的tDM2年龄(1.15~1.30Ga)。尽管埃达克质熔体可与地幔岩石相互作用,导致熔体的176Hf/177Hf和143Nd/144Nd比值升高,同时提高MgO、Ni和Cr含量(Yogodzinski et al., 1995Rapp et al., 1999Prouteau et al., 2001Gao et al., 2004)。本文样品的Ni(7.90×10-6~9.10×10-6)、Cr(30.0×10-6~37.0×10-6)含量均很低,指示岩浆未与地幔橄榄岩发生显著的相互作用。以上结果表明景洪英安质火山岩成因可能与加厚的古老下地壳部分熔融无关。底侵、新生的玄武岩质下地壳部分熔融可形成与起源于俯冲洋壳埃达克岩相似地球化学组成的熔体(Atherton and Petford, 1993)。但样品18YP64-1中锆石的δ18O值为6.31‰~7.64‰(图 7),平均值为6.8±0.1‰(2σ),明显高于与幔源岩浆平衡的锆石的δ18O值(5.3±0.3‰,Valley,2003),不支持新生玄武质下地壳熔融模式。在高压条件下,玄武岩经历石榴子石、角闪石等矿物的分离结晶可以演化成具有埃达克岩地球化学特征的中酸性熔体(Macpherson et al., 2006Rodríguez et al., 2007Rooney et al., 2011)。在这种情况下,岩浆的一些特征元素或元素比值会随SiO2含量的升高表现出一定的演化趋势,例如,La/Y、Sr/Y与SiO2含量均具有正的演化关系(Wang et al., 2008)。景洪英安质火山岩La/Y、Sr/Y比值未随SiO2含量的增加而增加(图 6bc)。此外,La/Sm比值随La含量的演化趋势也不支持岩浆经历了明显的分离结晶作用(图 6d)。高硅埃达克岩被认为由俯冲板片部分熔融而成(Martin et al., 2005),景洪英安质火山岩具有高硅埃达克岩的地球化学特征(图 8ab),在埃达克岩源区的地球化学判别图解中也均落在俯冲洋壳起源的埃达克岩区域(图 8cd)。根据以上讨论,我们认为景洪英安质火山岩很可能由俯冲洋壳的部分熔融而成。

图 7 景洪晚泥盆世英安质火山岩(样品18YP64-1)锆石εHf(t)-δ18O(‰)关系图 Fig. 7 Combined zircon Hf-O isotopes diagram for Late Devonian dacitic volcanic rocks (Sample 18YP64-1)from the Jinghong area

图 8 景洪晚泥盆世英安质火山岩MgO-SiO2(a,底图据Martin et al., 2005;c,底图据Wang et al., 2006)、Sr-(CaO+Na2O)(b,底图据Martin et al., 2005)和Mg#-SiO2(d,底图据Wang et al., 2006)关系图 Fig. 8 Plots of MgO vs. SiO2(a, after Martin et al., 2005; c, after Wang et al., 2006), Sr vs. CaO+Na2O(b, after Martin et al., 2005) and Mg# vs. SiO2(d, after Wang et al., 2006)for Late Devonian dacitic volcanic rocks from the Jinghong area

锆石δ18O小于6.5‰被认为寄主岩浆中基本不含沉积岩组分,而大于6.5‰表明岩浆源区中含有或岩浆混染了富集18O的组分(Cavosie et al., 2005Valley et al., 2005Kemp et al., 2006)。样品18YP64-1中锆石的δ18O的平均值为6.8±0.1‰(2σ),表明岩浆中混入了高δ18O组分(图 7)。俯冲板片中高δ18O的组分为大洋沉积物(例如,海相碳酸盐,δ18O=25‰~32‰;硅质软泥,δ18O=25‰~32‰和深海黏土,δ18O=15‰~25‰;Kolodny and Epstein, 1976)和经历低温水-岩相互作用的洋壳上层玄武质岩石(δ18O=7‰~15‰;Gregory and Taylor, 1981Alt et al., 1986Staudigel et al., 1995)。尽管低温水-岩相互作用导致玄武质岩石的δ18O明显升高,但不会引起Hf同位素组成的明显改变。因此,即使岩浆源区含有低温蚀变的洋壳物质,也不会明显改变俯冲洋壳起源岩浆类似MORB的Hf同位素组成。昌宁-孟连缝合带内奥陶-志留纪蛇绿混杂岩的时代为439~471Ma,其中的基性岩大多为N-MORB型(王保弟等,2018)。样品18YP64-1锆石tDM2的平均值为1195±22Ma(2σ),远大于样品的侵位时代和蛇绿混杂岩的形成时代,暗示岩浆中混入了具有演化Hf同位素特征的组分。因此样品略高的δ18O可能不是由低温蚀变的玄武质洋壳造成的。大洋沉积物的Hf同位素特征受沉积源区控制,如前文所述,南澜沧江带可能存在古老的地壳物质,岩浆中混入来自南澜沧江带的沉积物则可形成景洪英安质火山岩的锆石Hf-O同位素特征(图 7)。与本文报告的锆石Hf-O同位素类似,长江下游被认为起源于板片熔融的早白垩世埃达克岩也具有高的δ18O值和低的εHf(t)值(Wang et al., 2013b)。此外,样品较高的Th/Yb(4.86~7.78)和(La/Sm)N(3.62 ~ 4.56)比值也支持岩浆中混入了大洋沉积物或沉积物起源的熔体(图 9)。

图 9 景洪晚泥盆世英安质火山岩Th/Yb-Ba/La(a,据Woodhead et al., 2001)和Ba/Th-(La/Sm)N(b, 据Tatsumi,2006)图解 Fig. 9 Th/Yb vs. Ba/La(a, after Woodhead et al., 2001) and Ba/Th vs.(La/Sm)N(b, after Tatsumi, 2006)diagrams for Late Devonian dacitic volcanic rocks form the Jinghong area

综上所述,景洪英安质火山岩由俯冲板片部分熔融而成,岩浆中混入了大洋沉积物或沉积物起源的熔体。

4.2 构造意义

如前文所述,南澜沧江带发育一系列与原、古特提斯洋演化有关的岩浆作用(图 1)。本文研究显示景洪南部发育362.3±3.4Ma的英安质火山岩,介于原特提斯和古特提斯演化阶段之间,为探讨原、古特提斯之间的构造演化过程提供了重要的研究对象。本文报告的英安质火山岩具有高硅埃达克岩的地球化学特征,是俯冲洋壳部分熔融的产物,指示南澜沧江带晚泥盆世存在洋壳的俯冲作用。与本文英安质火山岩指示的构造环境相似,Nie et al.(2016)通过对景洪东南部晚泥盆世南光组沉积岩的碎屑物质、全岩地球化学进行研究,认为它们的源区来自弧岩浆岩(Nie et al., 2016)。南光组沉积岩中碎屑锆石年龄呈单峰分布,年龄峰值接近地层的沉积时代,几乎不含年龄明显老于地层沉积时代的碎屑锆石,表明南光组可能沉积于弧前盆地(Cawood et al., 2012Nie et al., 2016)。尽管这些结果均表明晚泥盆世洋壳俯冲事件的存在,但该时期俯冲过程与原、古特提斯洋的关系仍不清楚(Nie et al., 2016),确定它们的关系对认识原特提斯洋俯冲持续的时间以及古特提斯洋的起始俯冲时限均具有重要的意义。考虑到南澜沧江带早古生代岩浆岩的成因被认为与原特提斯洋向东的俯冲过程有关(毛晓长等,2012Lehmann et al., 2013Nie et al., 2015彭智敏等,2018Liu et al., 2019),晚泥盆世俯冲作用可能是原特提斯洋壳消减的持续。Gehrels et al.(2011)通过对比喜马拉雅、拉萨、羌塘等地体元古代-中生代沉积岩中碎屑锆石U-Pb年龄的分布特征,认为原特提斯洋在晚志留世已经闭合。中羌塘志留纪高压麻粒岩的发现也支持原特提斯洋晚志留世的闭合(Zhang et al., 2014)。如果南澜沧江带与羌塘、柴达木-昆仑等地区经历了相似的原特提斯洋阶段的演化,南澜沧江带晚泥盆世的俯冲过程可能代表了古特提斯洋的起始俯冲(Nie et al., 2016)。值得注意的是,除昌宁-孟连蛇绿混杂岩带中的牛井山英云闪长岩外,本文报道的英安质火山岩与研究区其他时代岩浆岩的成因明显不同。景洪晚泥盆世英安质火山岩由俯冲洋壳部分熔融而成,而早古生代的惠民、曼来变火山岩、大中河和大平掌火山岩基性-酸性火山岩以及早二叠世的花岗闪长岩被认为是俯冲洋壳交代的地幔熔融的产物(Nie et al., 2015Xing et al., 2017Liu et al., 2019),临沧花岗岩基中的S型花岗片麻岩由板片俯冲引起的古老地壳物质重熔(彭智敏等,2018)。Sr/Y比值和(La/Yb)N比值也支持景洪英安质火山岩的起源与其他时代岩浆岩存在差异(图 10)。岩石成因的差异暗示晚泥盆世俯冲过程可能不同于早、晚古生代的俯冲过程。此外,惠民、曼来变火山岩,临沧花岗岩及其中的早古生代S型花岗片麻岩均具有演化的同位素特征,表明云县-景洪火山岩带西侧为含古老岩石的大陆边缘。从空间分布特征来看,本文报道的英安质火山岩位于临沧花岗岩东侧,南光组沉积于景洪火山岩东南,靠近思茅陆块的一侧(图 1)。如果晚泥盆世的俯冲作用代表的是西侧原特提斯洋或古特提斯洋向东俯冲,景洪英安质火山岩应为大陆岛弧火山岩,南光组应沉积于弧后环境。景洪英安质火山岩中未见继承锆石,且锆石εHf(t)值偏高,明显与惠民、曼来变火山岩所代表的大陆岛弧岩浆岩不同。南光组中几乎不含明显早于地层沉积时代的碎屑锆石,也不支持其沉积于弧后环境(Cawood et al., 2012Nie et al., 2016)。

图 10 南澜沧江带古生代中-酸性岩浆岩Sr/Y(a)和(La/Yb)N(b)随形成时代的变化图 数据来自:本次研究;Hennig et al.(2009)毛晓长等(2012)Lehmann et al.(2013)Nie et al.(2015)王冬兵等(2016)Xing et al.(2017)彭智敏等(2018)Liu et al.(2019) Fig. 10 Variations of Sr/Y(a) and (La/Yb)N(b)vs. ages of the Paleozoic intermediate-acid magmatic rocks in the southern Lancangjiang belt with age Data from: this study; Hennig et al.(2009); Mao et al.(2012). Lehmann et al.(2013); Nie et al.(2015); Wang et al.(2016); Xing et al.(2017); Peng et al.(2018); Liu et al.(2019)

临沧花岗岩东侧和北侧的南光组、无量山组以及团梁子组中显生宙碎屑锆石主要的年龄峰为~362Ma、~297Ma、~270Ma和~259Ma,次要的年龄峰为480~420Ma(图 11)。这些年龄峰与带内古生代岩浆岩形成时代可以很好的对应,例如,480~420Ma的年龄峰与带内早古生代(477~418Ma)岩浆岩形成时代一致,~362Ma的年龄峰与本文报告的英安质火山岩形成时代一致。由此可见,这些碎屑锆石的年龄峰在一定程度上反应了带内古生代岩浆的活动期次。碎屑锆石分布特征指示南澜沧江带古生代岩浆活动可能具有幕式的特征,晚泥盆世的岩浆作用与早古生代以及晚石炭世-早二叠世的岩浆事件之间均存在时间间隔,不是连续的岩浆过程(图 11)。综合以上分析,景洪晚泥盆世英安质火山岩很可能不是早古生代原特提斯岛弧岩浆的延续,也不是晚石炭世-二叠纪古特提斯岛弧岩浆事件的开始,可能与另外一期独立的俯冲事件有关。

图 11 南澜沧江带晚古生代沉积岩中显生宙碎屑锆石U-Pb年龄频率分布直方图 数据引自Nie et al.(2016); Xing et al.(2016)王冬兵等(2018) Fig. 11 Relative probability plot of U-Pb ages for Paleozoic detrital zircon from Late Paleozoic sedimentary rocks from the southern Lancangjiang belt Data sources: Nie et al.(2016); Xing et al.(2016)and Wang et al.(2018a)

值得注意的是,早古生代晚期(429~418Ma)大中河,大平掌基性-酸性火山岩形成于原特提斯洋向东俯冲导致的弧后拉张环境(图 12),该过程可形成新的洋盆。相对于原、古特提斯洋俯冲作用的延续或开始,晚泥盆世的弧岩浆作用更可能与大中河,大平掌弧后洋盆打开之后的俯冲消减过程有关。弧后洋盆持续打开,形成比昌宁-孟连早古生代蛇绿混杂岩年轻、热的洋壳,年轻的洋壳俯冲熔融形成景洪晚泥盆世具有埃达克岩地球化学特征的英安质火山岩(图 12)。从空间位置来看,景洪晚泥盆世英安质火山岩位于大中河、大平掌火山岩西侧的澜沧江构造带内(半坡-雅口-南联山沿线,图 1),暗示弧后洋盆可能由东向西俯冲。南光组出露在本文报告的景洪晚泥盆世火山岩东侧,沉积于景洪火山岩代表的岛弧岩浆岩东侧靠近洋盆弧前盆地内。打开的大中河、大平掌弧后洋盆有效的阻挡了思茅陆块碎屑物质的加入(图 12)。该模式不仅解释了景洪英安质火山岩与早古生代、二叠纪弧岩浆岩的成因差异,也很好的解释了南光组沉积岩碎屑锆石的年龄分布特征。综上所述,南澜沧江带晚泥盆世的俯冲作用很可能代表的是打开的大中河、大平掌弧后洋盆的俯冲过程。

图 12 南澜沧江带奥陶纪-泥盆纪构造演化模式图 (a)原特提斯洋向东俯冲形成奥陶纪岩浆岩;(b)原特提斯洋向东导致志留纪弧后拉张环境,形成大中河、大平掌火山岩;(c)大中河、大平掌弧后洋盆向西俯冲导致景洪晚泥盆世岩浆活动和南光组沉积 Fig. 12 Schematic model showing tectonic evolution of the southern Lancangjiang belt during the Ordovician to Devonian (a) eastwards subduction of the Proto-Tethyan ocean produced Ordovician magmatic rocks; (b) the Dazhonghe and Dapingzhang volcanic rocks were generated in a Silurian continental back-arc extentsion setting related to the eastwards subduction of the Proto-Tethyan ocean; (c)westwards subduction of the Dazhonghe and Dapingzhang back-arc oceanic basin led to Late Devonian magmatic activities in the Jinghong area and the Nanguang Formation deposition
5 结论

在景洪南部南联山地区识别出362.3±3.4Ma的英安质火山岩,该火山岩具有高硅埃达克岩的地球化学特征,是俯冲洋壳部分熔融的产物。南澜沧江构造带晚泥盆世俯冲作用很可能指示的是打开的大中河、大平掌弧后洋盆的俯冲过程。

致谢      感谢闫臻研究员及另一位匿名审稿人提出许多宝贵修改意见,使本文的讨论更加完善;感谢北京离子探针中心刘建辉、王培智和包泽明等在锆石U-Pb年龄和O同位素测试过程中给予的帮助。

参考文献
Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury RC, Cotten J, Bourgois J and Michaud F. 2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California?. Geology, 29(6): 531-534 DOI:10.1130/0091-7613(2001)029<0531:LMAANE>2.0.CO;2
Alt JC, Muehlenbachs K and Honnorez J. 1986. An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP hole 504B. Earth and Planetary Science Letters, 80(3-4): 217-229 DOI:10.1016/0012-821X(86)90106-8
Atherton MP and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144-146 DOI:10.1038/362144a0
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Cavosie AJ, Valley JW and Wilde SA and EIMF. 2005. Magmatic δ18O in 4400~3900Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235(3-4): 663-681 DOI:10.1016/j.epsl.2005.04.028
Cawood PA, Hawkesworth CJ and Dhuime B. 2012. Detrital zircon record and tectonic setting. Geology, 40(10): 875-878 DOI:10.1130/G32945.1
Cawood PA, Zhao GC, Yao JL, Wang W, Xu YJ and Wang YJ. 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Science Reviews, 186: 173-194 DOI:10.1016/j.earscirev.2017.06.001
Chen L, Wang LQ, Wang BD and Liu H. 2013. Genesis of the Guanfang copper deposit in the Yunxian-Jinggu volcanic arc, western Yunnan: Evidences from fluid inclusions and geochronology. Acta Petrologica Sinica, 29(4): 1279-1289 (in Chinese with English abstract)
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang CM, Zi JW, Xia R and Li Q. 2018. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: New zircon U-Pb ages and Sr-Nd-Pb-Hf-O isotopes of the Lincang Batholith. Gondwana Research, 62: 75-92 DOI:10.1016/j.gr.2017.10.008
Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL and Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294 DOI:10.1016/j.jseaes.2012.10.003
Fan WM, Wang YJ, Zhang YH, Zhang YZ, Jourdan F, Zi JW and Liu HC. 2015. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China. Tectonophysics, 662: 95-108 DOI:10.1016/j.tecto.2014.12.021
Fang NQ, Liu BP, Feng QL and Jia JH. 1994. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan. Journal of Southeast Asian Earth Sciences, 9(4): 363-374 DOI:10.1016/0743-9547(94)90048-5
Fang ZJ, Wang YJ, Zhou ZC, Wang CY, Guo ZY and Xiao YW. 2000. A discussion on two problems concerning the stratigraphy of the west zone in the Changning-Menglian Belt, western Yunnan, China. Journal of Stratigraphy, 24(3): 182-189 (in Chinese with English abstract)
Feng QL. 1992. Permian and Triassic radiolarian biostratigraphy in South and Southwest China. Journal of China University of Geosciences, 3(1): 51-62
Feng QL and Liu BP. 1993. Radiolaria from Late Permian and Early-Middle Triassic in Southwest Yunnan. Earth Science (Journal of China University of Geosciences), 18(5): 540-552 (in Chinese with English abstract)
Feng QL, Liu BP, Ye M and Yang WP. 1996. Age and tectonic setting of the Nanduan Formation and the Laba Group in southwestern Yunnan. Journal of Stratigraphy, 20(3): 183-189 (in Chinese with English abstract)
Feng QL, Liu BP and Wan NQ. 1997. An example on succession reconstruction of thrust slice type stratigraphy in orogenic belt. Chinese Journal of Geology, 32(2): 318-326 (in Chinese with English abstract)
Feng QL, Fang NQ, Zhang ZF and Huang JH. 1998. Uppermost Permian radiolaria from southwestern China. Journal of China University of Geosciences, 9(3): 238-245
Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature, 432(7019): 892-897 DOI:10.1038/nature03162
Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N and Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016
Gregory RT and Taylor Jr HP. 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5km), seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 86(B4): 2737-2755 DOI:10.1029/JB086iB04p02737
Griffin WL, Pearson NJ, Belousova E, Jackson SE, Van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF and Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113(3-4): 408-422 DOI:10.1016/j.lithos.2009.04.031
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155 DOI:10.1016/S0012-821X(04)00007-X
Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schram N, Foster JJ and Clement SW. 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257(1-2): 114-128 DOI:10.1016/j.chemgeo.2008.08.024
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006
Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132 DOI:10.1016/0377-0273(78)90032-X
Kemp AIS, Hawkesworth CJ, Paterson BA and Kinny PD. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439(7076): 580-583 DOI:10.1038/nature04505
Kolodny Y and Epstein S. 1976. Stable isotope geochemistry of deep sea cherts. Geochimica et Cosmochimica Acta, 40(10): 1195-1209 DOI:10.1016/0016-7037(76)90155-1
Kong HL, Dong GC, Mo XX, Zhao ZD, Zhu DC, Wang S, Li R and Wang QL. 2012. Petrogenesis of Lincang granites in Sanjiang area of western Yunnan Province: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotope. Acta Petrologica Sinica, 28(5): 1438-1452 (in Chinese with English abstract)
Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750 DOI:10.1093/petrology/27.3.745
Lehmann B, Zhao XF, Zhou MF, Du AD, Mao JW, Zeng PS, Henjes-Kunst F and Heppe K. 2013. Mid-Silurian back-arc spreading at the northeastern margin of Gondwana: The Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China. Gondwana Research, 24(2): 648-663 DOI:10.1016/j.gr.2012.12.018
Li GZ, Li CS, Ripley EM, Kamo S and Su SG. 2012. Geochronology, petrology and geochemistry of the Nanlinshan and Banpo mafic-ultramafic intrusions: Implications for subduction initiation in the eastern Paleo-Tethys. Contributions to Mineralogy and Petrology, 164(5): 773-788 DOI:10.1007/s00410-012-0770-4
Li J, Sun ZB, Huang L, Xu GX, Tian SM, Deng RH and Zhou K. 2017. P-T-t path and geological significance of retrograded eclogites from Mengku area in western Yunnnan Province, China. Acta Petrologica Sinica, 33(7): 2285-2301 (in Chinese with English abstract)
Li XH, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O Isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134 DOI:10.1111/j.1751-908X.2010.00036.x
Liu BP, Feng QL and Fang NQ. 1991. Tectonic evolution of the Palaeo-tethys in Changning-Menglian belt and adjacent regions, western Yunnan. Journal of China University of Geosciences, 2(1): 18-28
Liu BP, Feng QL, Fang NQ, Jia JH and He FX. 1993. Tectonic evolution of Palaeo-Tethys poly-island-ocean in Changning-Menglian and Lancangjiang belts, southwestern Yunnan, China. Earth Science (Journal of China University of Geosciences), 18(5): 529-539 (in Chinese with English abstract)
Liu GC, Sun ZB, Zeng WT, Feng QL, Huang L and Zhang H. 2017. The age of Wanhe ophiolitic mélange from Mengku area, Shuangjiang County, western Yunnnan Province, and its geological significance. Acta Petrologica et Mineralogica, 36(2): 163-174 (in Chinese with English abstract)
Liu HC, Bi MW, Guo XF, Zhou YZ and Wang YK. 2019. Petrogenesis of Late Silurian volcanism in SW Yunnan (China) and implications for the tectonic reconstruction of northern Gondwana. International Geology Review, 61(11): 1297-1312 DOI:10.1080/00206814.2018.1506947
Lü LY, Li J, Zeng WT, Yu SY, Sun ZB and Wang XF. 2019. The discovery of Early Jurassic volcanic rocks along the southern Lancangjiang tectonic magmatic belt in Southwest Yunnan, with a discussion on the upper limit of Indosinian tectonic cycles in Yunnan Province. Geology in China, 46(6): 1270-1283 (in Chinese with English abstract)
Ludwig KR. 2001. Squid 1.02:A User's Manual. Berkeley: Berkeley Geochronology Centre Special Publication, 1-19
Macpherson CG, Dreher ST and Thirlwall MF. 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581-593 DOI:10.1016/j.epsl.2005.12.034
Mao XC, Wang LQ, Li B, Wang BD, Wang DB, Yin FG and Sun ZM. 2012. Discovery of the Late Silurian volcanic rocks in the Dazhonghe area, Yunxian-Jinggu volcanic arc belt, western Yunnan, China and its geological significance. Acta Petrologica Sinica, 28(5): 1517-1528 (in Chinese with English abstract)
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24 DOI:10.1016/j.lithos.2004.04.048
Mo XX, Liu FX, Shen SY, Zhu QW, Hou ZQ, Yang KH, Deng JF, Liu XP and He CX. 1993. Volcanism and Mineralization in the Sanjiang Area. Beijing: Geological Publishing House, 1-267 (in Chinese)
Mo XX, Shen SY, Zhu QW, Xu TR, Wei QR, Tan J, Zhang SQ and Chen HL. 1998. Volcanics-Ophiolite and Mineralization of Middle and Southern Part in Sanjiang, Southern China. Beijing: Geological Publishing House, 1-128 (in Chinese)
Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A and Valley JW. 2008. Zircon M257:A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265 DOI:10.1111/j.1751-908X.2008.00914.x
Nie XM, Feng QL, Qian X and Wang YJ. 2015. Magmatic record of Prototethyan evolution in SW Yunnan, China: Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone. Gondwana Research, 28(2): 757-768 DOI:10.1016/j.gr.2014.05.011
Nie XM, Feng QL, Metcalfe I, Baxter AT and Liu GC. 2016. Discovery of a Late Devonian magmatic arc in the southern Lancangjiang zone, western Yunnan: Geochemical and zircon U-Pb geochronological constraints on the evolution of Tethyan ocean basins in SW China. Journal of Asian Earth Sciences, 118: 32-50 DOI:10.1016/j.jseaes.2015.12.026
Peng TP, Wang YJ, Fan WM, Liu DY, Shi YR and Miao LC. 2006. SHRIMP ziron U-Pb geochronology of Early Mesozoic felsic igneous rocks from the southern Lancangjiang and its tectonic implications. Science in China (Series D), 49(10): 1032-1042 DOI:10.1007/s11430-006-1032-y
Peng TP, Wang YJ, Zhao GC, Fan WM and Peng BX. 2008. Arc-like volcanic rocks from the southern Lancangjiang zone, SW China: Geochronological and geochemical constraints on their petrogenesis and tectonic implications. Lithos, 102(1-2): 358-373 DOI:10.1016/j.lithos.2007.08.012
Peng TP, Wilde SA, Wang YJ, Fan WM and Peng BX. 2013. Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: Petrogenesis and implications for the evolution of Paleo-Tethys. Lithos, 168-169: 15-32 DOI:10.1016/j.lithos.2013.01.015
Peng ZM, Zhang J, Guan JL, Zhang Z, Han WW and Fu YZ. 2018. The discovery of Early-Middle Ordovician granitic gneiss from the giant Lincang batholith in Sanjiang area of western Yunnan and its geological implications. Earth Science, 43(8): 2571-2585 (in Chinese with English abstract)
Prouteau G, Scaillet B, Pichavant M and Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410(6825): 197-200 DOI:10.1038/35065583
Prouteau G and Scaillet B. 2003. Experimental constraints on the origin of the 1991 Pinatubo dacite. Journal of Petrology, 44(12): 2203-2241 DOI:10.1093/petrology/egg075
Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356 DOI:10.1016/S0009-2541(99)00106-0
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263 DOI:10.1016/0024-4937(89)90028-5
Rodríguez C, Selles D, Dungan M, Langmuir C and Leeman W. 2007. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean Southern Volcanic Zone, central Chile). Journal of Petrology, 48(11): 2033-2061 DOI:10.1093/petrology/egm049
Rooney TO, Franceschi P and Hall CM. 2011. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation?. Contributions to Mineralogy and Petrology, 161(3): 373-388 DOI:10.1007/s00410-010-0537-8
Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35 DOI:10.1016/j.chemgeo.2007.11.005
Söderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324 DOI:10.1016/S0012-821X(04)00012-3
Staudigel H, Davies GR, Hart SR, Marchant KM and Smith BM. 1995. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth and Planetary Science Letters, 130(1-4): 169-185 DOI:10.1016/0012-821X(94)00263-X
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London: Special Publication, 313-345
Sun ZB, Zeng WT, Zhou K, Wu JL, Li GJ, Huang L and Zhao JT. 2017. Identification of Ordovician oceanic island basalt in the Changning-Menglian suture zone and its tectonic implications: Evidence from geochemical and geochronological data. Geological Bulletin of China, 36(10): 1760-1771 (in Chinese with English abstract)
Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation?. Annual Review of Earth and Planetary Science, 34: 467-499 DOI:10.1146/annurev.earth.34.031405.125014
Valley JW. 2003. Oxygen isotopes in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 343-385 DOI:10.2113/0530343
Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK and Wei CS. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580 DOI:10.1007/s00410-005-0025-8
Wang BD, Wang LQ, Pan GT, Yin FG, Wang DB and Tang Y. 2013a. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chinese Science Bulletin, 58(8): 920-930 DOI:10.1007/s11434-012-5481-8
Wang BD, Wang LQ, Wang DB, Yin FG, He J, Peng ZM and Yan GC. 2018. Tectonic evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang area, southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract)
Wang DB, Luo L, Tang Y, Yin FG, Wang BD and Wang LQ. 2016. Zircon U-Pb dating and petrogenesis of Early Paleozoic adakites from the Niujingshan ophiolitic mélange in the Changning-Menglian suture zone and its geological implications. Acta Petrologica Sinica, 32(8): 2317-2329 (in Chinese with English abstract)
Wang DB, Luo L, Tang Y, Yin FG, Wang BD and Wang LQ. 2017. LA-ICP-MS zircon U-Pb age and geochemical signatures of the amphibolites in the Changning-Menglian suture zone and its geological implications. Sedimentary Geology and Tethyan Geology, 37(4): 17-28 (in Chinese with English abstract)
Wang DB, Luo L, Wang BD, Tang Y, Wang LQ and Yin FG. 2018. Timing and tectonic affinity of the Tuanliangzi Formation in the Lancangjiang tectonic belt in the western Yunnan Province, China. Earth Science, 43(8): 2551-2570 (in Chinese with English abstract)
Wang F, Liu FL, Liu PH, Shi JR and Cai J. 2014. Petrogenesis of Lincang granites in the south of Lancangjiang area: Constrain from geochemistry and zircon U-Pb geochronology. Acta Petrologica Sinica, 30(10): 3034-3050 (in Chinese with English abstract)
Wang F, Liu FL, Ji L, Liu PH, Cai J, Tian ZH and Liu LS. 2016. Petrogenesis and metamorphic evolution of blueschist from Xiaoheijiang-Shangyun area in Lancangjiang metamorphic complex. Acta Petrologica et Mineralogica, 35(5): 804-820 (in Chinese with English abstract)
Wang F, Liu FL, Ji L and Liu LS. 2017. LA-ICP-MS U-Pb dating of detrital zircon from low-grade metamorphic rocks of the Lancang Group in the Lancangjiang Complex and its tectonic implications. Acta Petrologica Sinica, 33(9): 2975-2985 (in Chinese with English abstract)
Wang F, Liu FL, Schertl HP, Liu PH, Ji L, Cai J and Liu LS. 2019a. Paleo-Tethyan tectonic evolution of Lancangjiang metamorphic complex: Evidence from SHRIMP U-Pb zircon dating and 40Ar/39Ar isotope geochronology of blueschists in Xiaoheijiang-Xiayun area, southeastern Tibetan Plateau. Gondwana Research, 65: 142-155 DOI:10.1016/j.gr.2018.08.007
Wang FY, Liu SA, Li SG and He YS. 2013b. Contrasting zircon Hf-O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: Implications for genetic relation to Cu-Au mineralization. Lithos, 156-159: 97-111 DOI:10.1016/j.lithos.2012.10.017
Wang HN, Liu FL, Li J, Sun ZB, Ji L, Tian ZH, Liu LS and Santosh M. 2019b. Petrology, geochemistry and P-T-t path of lawsonite-bearing retrograded eclogites in the Changning-Menglian orogenic belt, southeast Tibetan Plateau. Journal of Metamorphic Geology, 37(4): 439-478 DOI:10.1111/jmg.12462
Wang HN, Liu FL, Santosh M and Wang F. 2020. Subduction erosion associated with Paleo-Tethys closure: Deep subduction of sediments and high pressure metamorphism in the SE Tibetan Plateau. Gondwana Research, 82: 171-192 DOI:10.1016/j.gr.2020.01.001
Wang Q, Xu JF, Jian P, Bao ZW, Zhao ZH, Li CF, Xiong XL and Ma JL. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119-144 DOI:10.1093/petrology/egi070
Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF and Chu ZY. 2007. Petrogenesis of carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implications for phanerozoic crustal growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1-2): 42-64 DOI:10.1016/j.chemgeo.2006.08.013
Wang Q, Wyman DA, Xu JF, Dong YH, Vasconcelos PM, Pearson N, Wan YS, Dong H, Li CF, Yu YS, Zhu TX, Feng XT, Zhang QY, Zi F and Chu ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272(1-2): 158-171 DOI:10.1016/j.epsl.2008.04.034
Wang YJ, Zhang AM, Fan WM, Peng TP, Zhang FF, Zhang YH and Bi XW. 2010. Petrogenesis of Late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, Southwest China, and tectonic implications for the evolution of the eastern Paleotethys: Geochronological and geochemical constraints. Lithos, 120(3-4): 529-546 DOI:10.1016/j.lithos.2010.09.012
Wang YJ, Qian X, Cawood PA, Liu HC, Feng QL, Zhao GC, Zhang YH, He HY and Zhang PZ. 2018. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Science Reviews, 186: 195-230 DOI:10.1016/j.earscirev.2017.09.013
Wei C, Qi XX, Chang YL, Ji FB and Zhang SQ. 2016. Identification on age of Xiaodingxi Formation volcanic rocks in central-sourthern Lancangjiang orogeny and its tectonic implication. Acta Geologica Sinica, 90(11): 3192-3214 (in Chinese with English abstract)
Williams IS. 1998. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben MA, Shanks Ⅲ WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology, 7: 1-35 DOI:10.1080/07474938808800138
Woodhead JD, Hergt JM, Davidson JP and Eggins SM. 2001. Hafnium isotope evidence for 'conservative' element mobility during subduction zone processes. Earth and Planetary Science Letters, 192(3): 331-346 DOI:10.1016/S0012-821X(01)00453-8
Wu HR and Li HS. 1989. Carboniferous and Permian radiolaria in the Menglian area, western Yunnan. Acta Micropalaeontologica Sinica, 6(4): 337-343 (in Chinese with English abstract)
Xing XW, Wang YJ and Zhang YZ. 2016. Detrital zircon U-Pb geochronology and Lu-Hf isotopic compositions of the Wuliangshan metasediment rocks in SW Yunnan (China) and its provenance implications. Journal of Earth Science, 27(3): 412-424 DOI:10.1007/s12583-015-0647-3
Xing XW, Wang YJ, Cawood PA and Zhang YZ. 2017. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan. International Journal of Earth Sciences, 106(5): 1469-1486 DOI:10.1007/s00531-015-1282-z
Xu GX, Zeng WT, Sun ZB, Huang L, Chen GY, Tian SM and Zhou K. 2016. Petrology and mineralogy of (retrograded) eclogites from Mengku area, Shuangjiang County, western Yunnan Province. Geological Bulletin of China, 35(7): 1035-1045 (in Chinese with English abstract)
Xu JF, Shinjo R, Defant MJ, Wang Q and Rapp RP. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?. Geology, 30(12): 1111-1114 DOI:10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Xu WL, Wang QH, Wang DY, Guo JH and Pei FP. 2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences, 27(2): 230-240 DOI:10.1016/j.jseaes.2005.03.005
Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI and Matvenkov VV. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, far western Aleutians. Journal of Petrology, 35(1): 163-204 DOI:10.1093/petrology/35.1.163
Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV and Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. GSA Bulletin, 107(5): 505-519 DOI:10.1130/0016-7606(1995)107<0505:MAITWA>2.3.CO;2
Zhai QG, Chung SL, Tang Y, Hu PY, Jin XC, Wang J, Wang HT, Wang KL and Lee HY. 2019. Late Carboniferous ophiolites from the southern Lancangjiang belt, SW China: Implication for the arc-back-arc system in the eastern Paleo-Tethys. Lithos, 344-345: 134-146 DOI:10.1016/j.lithos.2019.06.020
Zhang Q, Li DZ and Zhang KW. 1985. Preliminary study on Tongchangjie ophiolite mélange from Yun County, Yunnan Province. Acta Petrologica Sinica, 1(3): 1-14 (in Chinese with English abstract)
Zhang XZ, Dong YS, Li C, Deng MR, Zhang L and Xu W. 2014. Silurian high-pressure granulites from Central Qiangtang, Tibet: Constraints on early Paleozoic collision along the northeastern margin of Gondwana. Earth and Planetary Science Letters, 405: 39-51 DOI:10.1016/j.epsl.2014.08.013
Zhao TY, Feng QL, Metcalfe I, Milan LA, Liu GC and Zhang ZB. 2017. Detrital zircon U-Pb-Hf isotopes and provenance of Late Neoproterozoic and Early Paleozoic sediments of the Simao and Baoshan blocks, SW China: Implications for Proto-Tethys and Paleo-Tethys evolution and Gondwana reconstruction. Gondwana Research, 51: 193-208 DOI:10.1016/j.gr.2017.07.012
Zhu WG, Zhong H, Wang LQ, He DF, Ren T, Fan HP and Bai ZJ. 2011. Petrogenesis of the basalts and rhyolite porphyries of the Minle copper deposit, Yunnan: Geochronological and geochemical constraints. Acta Petrologica Sinica, 27(9): 2694-2708 (in Chinese with English abstract)
陈莉, 王立全, 王保弟, 刘函. 2013. 滇西云县-景谷火山弧带官房铜矿床成因: 流体包裹体及年代学证据. 岩石学报, 29(4): 1279-1289.
方宗杰, 王玉净, 周志澄, 王成源, 郭震宇, 肖荫文. 2000. 滇西昌宁-孟连带西区两个地层问题——兼论昌宁-孟连带的闭合造山过程. 地层学杂志, 24(3): 182-189. DOI:10.3969/j.issn.0253-4959.2000.03.003
冯庆来, 刘本培. 1993. 滇西南晚二叠世和早、中三叠世放射虫研究. 地球科学(中国地质大学学报), 18(5): 540-552.
冯庆来, 刘本培, 叶玫, 杨伟平. 1996. 滇西南南段组和拉巴群地质时代及构造背景. 地层学杂志, 20(3): 183-189.
冯庆来, 刘本培, 方念乔. 1997. 造山带断片型地层层序恢复实例剖析. 地质科学, 32(2): 318-326.
孔会磊, 董国臣, 莫宣学, 赵志丹, 朱弟成, 王硕, 李荣, 王乔林. 2012. 滇西三江地区临沧花岗岩的岩石成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 28(5): 1438-1452.
李静, 孙载波, 黄亮, 徐桂香, 田素梅, 邓仁宏, 周坤. 2017. 滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义. 岩石学报, 33(7): 2285-2301.
刘本培, 冯庆来, 方念乔, 贾进华, 何馥香. 1993. 滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化. 地球科学(中国地质大学学报), 18(5): 529-539.
刘桂春, 孙载波, 曾文涛, 冯庆来, 黄亮, 张虎. 2017. 滇西双江县勐库地区湾河蛇绿混杂岩的形成时代、岩石地球化学特征及地质意义. 岩石矿物学杂志, 36(2): 163-174. DOI:10.3969/j.issn.1000-6524.2017.02.003
吕留彦, 李静, 曾文涛, 俞赛赢, 孙载波, 王晓峰. 2019. 滇西南南澜沧江构造岩浆岩带早侏罗世火山岩的发现——兼论云南省境内印支构造旋回的上限. 中国地质, 46(6): 1270-1283.
毛晓长, 王立全, 李冰, 王保弟, 王冬兵, 尹福光, 孙志明. 2012. 云县-景谷火山弧带大中河晚志留世火山岩的发现及其地质意义. 岩石学报, 28(5): 1517-1528.
莫宣学, 路凤香, 沈上越, 朱勤文, 侯增谦, 杨开辉, 邓晋福, 刘祥品, 何昌祥. 1993. 三江特提斯火山作用与成矿. 北京: 地质出版社, 1-267.
莫宣学, 沈上越, 朱勤文, 须同瑞, 魏启荣, 谭劲, 张双全, 程惠兰. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京: 地质出版社, l-128.
彭智敏, 张辑, 关俊雷, 张璋, 韩文文, 付于真. 2018. 滇西"三江"地区临沧花岗岩基早-中奥陶世花岗质片麻岩的发现及其意义. 地球科学, 43(8): 2571-2585.
孙载波, 曾文涛, 周坤, 吴嘉琳, 李龚健, 黄亮, 赵江泰. 2017. 昌宁-孟连结合带奥陶纪洋岛玄武岩的识别及其构造意义——来自地球化学和锆石U-Pb年龄的证据. 地质通报, 36(10): 1760-1771. DOI:10.3969/j.issn.1671-2552.2017.10.008
王保弟, 王立全, 王冬兵, 尹福光, 贺娟, 彭智敏, 闫国川. 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550.
王冬兵, 罗亮, 唐渊, 尹福光, 王保弟, 王立全. 2016. 昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义. 岩石学报, 32(8): 2317-2329.
王冬兵, 罗亮, 唐渊, 尹福光, 王保弟, 王立全. 2017. 昌宁-孟连结合带斜长角闪岩锆石U-Pb年龄、地球化学特征及其地质意义. 沉积与特提斯地质, 37(4): 17-28. DOI:10.3969/j.issn.1009-3850.2017.04.004
王冬兵, 罗亮, 王保弟, 唐渊, 王立全, 尹福光. 2018. 滇西澜沧江构造带景谷地区团梁子岩组的时代与构造属性. 地球科学, 43(8): 2551-2570.
王舫, 刘福来, 刘平华, 施建荣, 蔡佳. 2014. 澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义. 岩石学报, 30(10): 3034-3050.
王舫, 刘福来, 冀磊, 刘平华, 蔡佳, 田忠华, 刘利双. 2016. 澜沧江杂岩带小黑江-上允地区蓝片岩的成因及变质演化. 岩石矿物学杂志, 35(5): 804-820. DOI:10.3969/j.issn.1000-6524.2016.05.005
王舫, 刘福来, 冀磊, 刘利双. 2017. 澜沧江杂岩带澜沧群浅变质岩系碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义. 岩石学报, 33(9): 2975-2985.
韦诚, 戚学祥, 常裕林, 吉风宝, 张诗启. 2016. 澜沧江构造带中南段小定西组火山岩形成时代的厘定及其构造意义. 地质学报, 90(11): 3192-3214. DOI:10.3969/j.issn.0001-5717.2016.11.014
吴浩若, 李红生. 1989. 滇西孟连地区的石炭纪和二叠纪放射虫化石. 微体古生物学报, 6(4): 337-343.
徐桂香, 曾文涛, 孙载波, 黄亮, 陈光艳, 田素梅, 周坤. 2016. 滇西双江县勐库地区(退变)榴辉岩的岩石学、矿物学特征. 地质通报, 35(7): 1035-1045. DOI:10.3969/j.issn.1671-2552.2016.07.001
张旗, 李达周, 张魁武. 1985. 云南省云县铜厂街蛇绿混杂岩的初步研究. 岩石学报, 1(3): 1-14. DOI:10.3321/j.issn:1000-0569.1985.03.001
朱维光, 钟宏, 王立全, 何德锋, 任涛, 范宏鹏, 柏中杰. 2011. 云南民乐铜矿床中玄武岩和流纹斑岩的成因: 年代学和地球化学制约. 岩石学报, 27(9): 2694-2708.